llama-stack 0.4.3__py3-none-any.whl → 0.5.0rc1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- llama_stack/cli/stack/_list_deps.py +11 -7
- llama_stack/cli/stack/run.py +3 -25
- llama_stack/core/access_control/datatypes.py +78 -0
- llama_stack/core/configure.py +2 -2
- {llama_stack_api/internal → llama_stack/core/connectors}/__init__.py +2 -2
- llama_stack/core/connectors/connectors.py +162 -0
- llama_stack/core/conversations/conversations.py +61 -58
- llama_stack/core/datatypes.py +54 -8
- llama_stack/core/library_client.py +60 -13
- llama_stack/core/prompts/prompts.py +43 -42
- llama_stack/core/routers/datasets.py +20 -17
- llama_stack/core/routers/eval_scoring.py +143 -53
- llama_stack/core/routers/inference.py +20 -9
- llama_stack/core/routers/safety.py +30 -42
- llama_stack/core/routers/vector_io.py +15 -7
- llama_stack/core/routing_tables/models.py +42 -3
- llama_stack/core/routing_tables/scoring_functions.py +19 -19
- llama_stack/core/routing_tables/shields.py +20 -17
- llama_stack/core/routing_tables/vector_stores.py +8 -5
- llama_stack/core/server/auth.py +192 -17
- llama_stack/core/server/fastapi_router_registry.py +40 -5
- llama_stack/core/server/server.py +24 -5
- llama_stack/core/stack.py +54 -10
- llama_stack/core/storage/datatypes.py +9 -0
- llama_stack/core/store/registry.py +1 -1
- llama_stack/core/utils/exec.py +2 -2
- llama_stack/core/utils/type_inspection.py +16 -2
- llama_stack/distributions/dell/config.yaml +4 -1
- llama_stack/distributions/dell/doc_template.md +209 -0
- llama_stack/distributions/dell/run-with-safety.yaml +4 -1
- llama_stack/distributions/nvidia/config.yaml +4 -1
- llama_stack/distributions/nvidia/doc_template.md +170 -0
- llama_stack/distributions/nvidia/run-with-safety.yaml +4 -1
- llama_stack/distributions/oci/config.yaml +4 -1
- llama_stack/distributions/oci/doc_template.md +140 -0
- llama_stack/distributions/open-benchmark/config.yaml +9 -1
- llama_stack/distributions/postgres-demo/config.yaml +1 -1
- llama_stack/distributions/starter/build.yaml +62 -0
- llama_stack/distributions/starter/config.yaml +22 -3
- llama_stack/distributions/starter/run-with-postgres-store.yaml +22 -3
- llama_stack/distributions/starter/starter.py +13 -1
- llama_stack/distributions/starter-gpu/build.yaml +62 -0
- llama_stack/distributions/starter-gpu/config.yaml +22 -3
- llama_stack/distributions/starter-gpu/run-with-postgres-store.yaml +22 -3
- llama_stack/distributions/template.py +10 -2
- llama_stack/distributions/watsonx/config.yaml +4 -1
- llama_stack/log.py +1 -0
- llama_stack/models/llama/resources/dog.jpg +0 -0
- llama_stack/models/llama/resources/pasta.jpeg +0 -0
- llama_stack/models/llama/resources/small_dog.jpg +0 -0
- llama_stack/providers/inline/agents/meta_reference/__init__.py +1 -0
- llama_stack/providers/inline/agents/meta_reference/agents.py +57 -61
- llama_stack/providers/inline/agents/meta_reference/responses/openai_responses.py +183 -60
- llama_stack/providers/inline/agents/meta_reference/responses/streaming.py +94 -22
- llama_stack/providers/inline/agents/meta_reference/responses/types.py +2 -1
- llama_stack/providers/inline/agents/meta_reference/responses/utils.py +4 -1
- llama_stack/providers/inline/agents/meta_reference/safety.py +2 -2
- llama_stack/providers/inline/batches/reference/batches.py +2 -1
- llama_stack/providers/inline/eval/meta_reference/eval.py +40 -32
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl/LocalInference.h +9 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl/LocalInference.swift +189 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl/Parsing.swift +238 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl/PromptTemplate.swift +12 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl/SystemPrompts.swift +89 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl.xcodeproj/project.pbxproj +550 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl.xcodeproj/project.xcworkspace/contents.xcworkspacedata +7 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl.xcodeproj/project.xcworkspace/xcshareddata/IDEWorkspaceChecks.plist +8 -0
- llama_stack/providers/inline/post_training/huggingface/post_training.py +33 -38
- llama_stack/providers/inline/post_training/huggingface/utils.py +2 -5
- llama_stack/providers/inline/post_training/torchtune/post_training.py +28 -33
- llama_stack/providers/inline/post_training/torchtune/recipes/lora_finetuning_single_device.py +2 -4
- llama_stack/providers/inline/safety/code_scanner/code_scanner.py +12 -15
- llama_stack/providers/inline/safety/llama_guard/llama_guard.py +15 -18
- llama_stack/providers/inline/safety/prompt_guard/prompt_guard.py +11 -17
- llama_stack/providers/inline/scoring/basic/scoring.py +13 -17
- llama_stack/providers/inline/scoring/braintrust/braintrust.py +15 -15
- llama_stack/providers/inline/scoring/llm_as_judge/scoring.py +13 -17
- llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py +1 -1
- llama_stack/providers/registry/agents.py +1 -0
- llama_stack/providers/registry/inference.py +1 -9
- llama_stack/providers/registry/vector_io.py +136 -16
- llama_stack/providers/remote/datasetio/nvidia/README.md +74 -0
- llama_stack/providers/remote/eval/nvidia/README.md +134 -0
- llama_stack/providers/remote/eval/nvidia/eval.py +22 -21
- llama_stack/providers/remote/files/s3/README.md +266 -0
- llama_stack/providers/remote/files/s3/config.py +5 -3
- llama_stack/providers/remote/files/s3/files.py +2 -2
- llama_stack/providers/remote/inference/gemini/gemini.py +4 -0
- llama_stack/providers/remote/inference/nvidia/NVIDIA.md +203 -0
- llama_stack/providers/remote/inference/openai/openai.py +2 -0
- llama_stack/providers/remote/inference/together/together.py +4 -0
- llama_stack/providers/remote/inference/vertexai/config.py +3 -3
- llama_stack/providers/remote/inference/vertexai/vertexai.py +5 -2
- llama_stack/providers/remote/inference/vllm/config.py +37 -18
- llama_stack/providers/remote/inference/vllm/vllm.py +0 -3
- llama_stack/providers/remote/inference/watsonx/watsonx.py +4 -0
- llama_stack/providers/remote/post_training/nvidia/README.md +151 -0
- llama_stack/providers/remote/post_training/nvidia/post_training.py +31 -33
- llama_stack/providers/remote/safety/bedrock/bedrock.py +10 -27
- llama_stack/providers/remote/safety/nvidia/README.md +78 -0
- llama_stack/providers/remote/safety/nvidia/nvidia.py +9 -25
- llama_stack/providers/remote/safety/sambanova/sambanova.py +13 -11
- llama_stack/providers/remote/vector_io/elasticsearch/__init__.py +17 -0
- llama_stack/providers/remote/vector_io/elasticsearch/config.py +32 -0
- llama_stack/providers/remote/vector_io/elasticsearch/elasticsearch.py +463 -0
- llama_stack/providers/remote/vector_io/oci/__init__.py +22 -0
- llama_stack/providers/remote/vector_io/oci/config.py +41 -0
- llama_stack/providers/remote/vector_io/oci/oci26ai.py +595 -0
- llama_stack/providers/remote/vector_io/pgvector/config.py +69 -2
- llama_stack/providers/remote/vector_io/pgvector/pgvector.py +255 -6
- llama_stack/providers/remote/vector_io/qdrant/qdrant.py +62 -38
- llama_stack/providers/utils/bedrock/client.py +3 -3
- llama_stack/providers/utils/bedrock/config.py +7 -7
- llama_stack/providers/utils/inference/embedding_mixin.py +4 -0
- llama_stack/providers/utils/inference/http_client.py +239 -0
- llama_stack/providers/utils/inference/litellm_openai_mixin.py +5 -0
- llama_stack/providers/utils/inference/model_registry.py +148 -2
- llama_stack/providers/utils/inference/openai_compat.py +2 -1
- llama_stack/providers/utils/inference/openai_mixin.py +41 -2
- llama_stack/providers/utils/memory/openai_vector_store_mixin.py +92 -5
- llama_stack/providers/utils/memory/vector_store.py +46 -19
- llama_stack/providers/utils/responses/responses_store.py +40 -6
- llama_stack/providers/utils/safety.py +114 -0
- llama_stack/providers/utils/tools/mcp.py +44 -3
- llama_stack/testing/api_recorder.py +9 -3
- {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/METADATA +14 -2
- {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/RECORD +131 -275
- llama_stack-0.5.0rc1.dist-info/top_level.txt +1 -0
- llama_stack/distributions/meta-reference-gpu/__init__.py +0 -7
- llama_stack/distributions/meta-reference-gpu/config.yaml +0 -140
- llama_stack/distributions/meta-reference-gpu/meta_reference.py +0 -163
- llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml +0 -155
- llama_stack/models/llama/hadamard_utils.py +0 -88
- llama_stack/models/llama/llama3/args.py +0 -74
- llama_stack/models/llama/llama3/generation.py +0 -378
- llama_stack/models/llama/llama3/model.py +0 -304
- llama_stack/models/llama/llama3/multimodal/__init__.py +0 -12
- llama_stack/models/llama/llama3/multimodal/encoder_utils.py +0 -180
- llama_stack/models/llama/llama3/multimodal/image_transform.py +0 -409
- llama_stack/models/llama/llama3/multimodal/model.py +0 -1430
- llama_stack/models/llama/llama3/multimodal/utils.py +0 -26
- llama_stack/models/llama/llama3/quantization/__init__.py +0 -5
- llama_stack/models/llama/llama3/quantization/loader.py +0 -316
- llama_stack/models/llama/llama3_1/__init__.py +0 -12
- llama_stack/models/llama/llama3_1/prompt_format.md +0 -358
- llama_stack/models/llama/llama3_1/prompts.py +0 -258
- llama_stack/models/llama/llama3_2/__init__.py +0 -5
- llama_stack/models/llama/llama3_2/prompts_text.py +0 -229
- llama_stack/models/llama/llama3_2/prompts_vision.py +0 -126
- llama_stack/models/llama/llama3_2/text_prompt_format.md +0 -286
- llama_stack/models/llama/llama3_2/vision_prompt_format.md +0 -141
- llama_stack/models/llama/llama3_3/__init__.py +0 -5
- llama_stack/models/llama/llama3_3/prompts.py +0 -259
- llama_stack/models/llama/llama4/args.py +0 -107
- llama_stack/models/llama/llama4/ffn.py +0 -58
- llama_stack/models/llama/llama4/moe.py +0 -214
- llama_stack/models/llama/llama4/preprocess.py +0 -435
- llama_stack/models/llama/llama4/quantization/__init__.py +0 -5
- llama_stack/models/llama/llama4/quantization/loader.py +0 -226
- llama_stack/models/llama/llama4/vision/__init__.py +0 -5
- llama_stack/models/llama/llama4/vision/embedding.py +0 -210
- llama_stack/models/llama/llama4/vision/encoder.py +0 -412
- llama_stack/models/llama/quantize_impls.py +0 -316
- llama_stack/providers/inline/inference/meta_reference/__init__.py +0 -20
- llama_stack/providers/inline/inference/meta_reference/common.py +0 -24
- llama_stack/providers/inline/inference/meta_reference/config.py +0 -68
- llama_stack/providers/inline/inference/meta_reference/generators.py +0 -201
- llama_stack/providers/inline/inference/meta_reference/inference.py +0 -542
- llama_stack/providers/inline/inference/meta_reference/model_parallel.py +0 -77
- llama_stack/providers/inline/inference/meta_reference/parallel_utils.py +0 -353
- llama_stack-0.4.3.dist-info/top_level.txt +0 -2
- llama_stack_api/__init__.py +0 -945
- llama_stack_api/admin/__init__.py +0 -45
- llama_stack_api/admin/api.py +0 -72
- llama_stack_api/admin/fastapi_routes.py +0 -117
- llama_stack_api/admin/models.py +0 -113
- llama_stack_api/agents.py +0 -173
- llama_stack_api/batches/__init__.py +0 -40
- llama_stack_api/batches/api.py +0 -53
- llama_stack_api/batches/fastapi_routes.py +0 -113
- llama_stack_api/batches/models.py +0 -78
- llama_stack_api/benchmarks/__init__.py +0 -43
- llama_stack_api/benchmarks/api.py +0 -39
- llama_stack_api/benchmarks/fastapi_routes.py +0 -109
- llama_stack_api/benchmarks/models.py +0 -109
- llama_stack_api/common/__init__.py +0 -5
- llama_stack_api/common/content_types.py +0 -101
- llama_stack_api/common/errors.py +0 -95
- llama_stack_api/common/job_types.py +0 -38
- llama_stack_api/common/responses.py +0 -77
- llama_stack_api/common/training_types.py +0 -47
- llama_stack_api/common/type_system.py +0 -146
- llama_stack_api/connectors.py +0 -146
- llama_stack_api/conversations.py +0 -270
- llama_stack_api/datasetio.py +0 -55
- llama_stack_api/datasets/__init__.py +0 -61
- llama_stack_api/datasets/api.py +0 -35
- llama_stack_api/datasets/fastapi_routes.py +0 -104
- llama_stack_api/datasets/models.py +0 -152
- llama_stack_api/datatypes.py +0 -373
- llama_stack_api/eval.py +0 -137
- llama_stack_api/file_processors/__init__.py +0 -27
- llama_stack_api/file_processors/api.py +0 -64
- llama_stack_api/file_processors/fastapi_routes.py +0 -78
- llama_stack_api/file_processors/models.py +0 -42
- llama_stack_api/files/__init__.py +0 -35
- llama_stack_api/files/api.py +0 -51
- llama_stack_api/files/fastapi_routes.py +0 -124
- llama_stack_api/files/models.py +0 -107
- llama_stack_api/inference.py +0 -1169
- llama_stack_api/inspect_api/__init__.py +0 -37
- llama_stack_api/inspect_api/api.py +0 -25
- llama_stack_api/inspect_api/fastapi_routes.py +0 -76
- llama_stack_api/inspect_api/models.py +0 -28
- llama_stack_api/internal/kvstore.py +0 -28
- llama_stack_api/internal/sqlstore.py +0 -81
- llama_stack_api/llama_stack_api/__init__.py +0 -945
- llama_stack_api/llama_stack_api/admin/__init__.py +0 -45
- llama_stack_api/llama_stack_api/admin/api.py +0 -72
- llama_stack_api/llama_stack_api/admin/fastapi_routes.py +0 -117
- llama_stack_api/llama_stack_api/admin/models.py +0 -113
- llama_stack_api/llama_stack_api/agents.py +0 -173
- llama_stack_api/llama_stack_api/batches/__init__.py +0 -40
- llama_stack_api/llama_stack_api/batches/api.py +0 -53
- llama_stack_api/llama_stack_api/batches/fastapi_routes.py +0 -113
- llama_stack_api/llama_stack_api/batches/models.py +0 -78
- llama_stack_api/llama_stack_api/benchmarks/__init__.py +0 -43
- llama_stack_api/llama_stack_api/benchmarks/api.py +0 -39
- llama_stack_api/llama_stack_api/benchmarks/fastapi_routes.py +0 -109
- llama_stack_api/llama_stack_api/benchmarks/models.py +0 -109
- llama_stack_api/llama_stack_api/common/__init__.py +0 -5
- llama_stack_api/llama_stack_api/common/content_types.py +0 -101
- llama_stack_api/llama_stack_api/common/errors.py +0 -95
- llama_stack_api/llama_stack_api/common/job_types.py +0 -38
- llama_stack_api/llama_stack_api/common/responses.py +0 -77
- llama_stack_api/llama_stack_api/common/training_types.py +0 -47
- llama_stack_api/llama_stack_api/common/type_system.py +0 -146
- llama_stack_api/llama_stack_api/connectors.py +0 -146
- llama_stack_api/llama_stack_api/conversations.py +0 -270
- llama_stack_api/llama_stack_api/datasetio.py +0 -55
- llama_stack_api/llama_stack_api/datasets/__init__.py +0 -61
- llama_stack_api/llama_stack_api/datasets/api.py +0 -35
- llama_stack_api/llama_stack_api/datasets/fastapi_routes.py +0 -104
- llama_stack_api/llama_stack_api/datasets/models.py +0 -152
- llama_stack_api/llama_stack_api/datatypes.py +0 -373
- llama_stack_api/llama_stack_api/eval.py +0 -137
- llama_stack_api/llama_stack_api/file_processors/__init__.py +0 -27
- llama_stack_api/llama_stack_api/file_processors/api.py +0 -64
- llama_stack_api/llama_stack_api/file_processors/fastapi_routes.py +0 -78
- llama_stack_api/llama_stack_api/file_processors/models.py +0 -42
- llama_stack_api/llama_stack_api/files/__init__.py +0 -35
- llama_stack_api/llama_stack_api/files/api.py +0 -51
- llama_stack_api/llama_stack_api/files/fastapi_routes.py +0 -124
- llama_stack_api/llama_stack_api/files/models.py +0 -107
- llama_stack_api/llama_stack_api/inference.py +0 -1169
- llama_stack_api/llama_stack_api/inspect_api/__init__.py +0 -37
- llama_stack_api/llama_stack_api/inspect_api/api.py +0 -25
- llama_stack_api/llama_stack_api/inspect_api/fastapi_routes.py +0 -76
- llama_stack_api/llama_stack_api/inspect_api/models.py +0 -28
- llama_stack_api/llama_stack_api/internal/__init__.py +0 -9
- llama_stack_api/llama_stack_api/internal/kvstore.py +0 -28
- llama_stack_api/llama_stack_api/internal/sqlstore.py +0 -81
- llama_stack_api/llama_stack_api/models.py +0 -171
- llama_stack_api/llama_stack_api/openai_responses.py +0 -1468
- llama_stack_api/llama_stack_api/post_training.py +0 -370
- llama_stack_api/llama_stack_api/prompts.py +0 -203
- llama_stack_api/llama_stack_api/providers/__init__.py +0 -33
- llama_stack_api/llama_stack_api/providers/api.py +0 -16
- llama_stack_api/llama_stack_api/providers/fastapi_routes.py +0 -57
- llama_stack_api/llama_stack_api/providers/models.py +0 -24
- llama_stack_api/llama_stack_api/py.typed +0 -0
- llama_stack_api/llama_stack_api/rag_tool.py +0 -168
- llama_stack_api/llama_stack_api/resource.py +0 -37
- llama_stack_api/llama_stack_api/router_utils.py +0 -160
- llama_stack_api/llama_stack_api/safety.py +0 -132
- llama_stack_api/llama_stack_api/schema_utils.py +0 -208
- llama_stack_api/llama_stack_api/scoring.py +0 -93
- llama_stack_api/llama_stack_api/scoring_functions.py +0 -211
- llama_stack_api/llama_stack_api/shields.py +0 -93
- llama_stack_api/llama_stack_api/tools.py +0 -226
- llama_stack_api/llama_stack_api/vector_io.py +0 -941
- llama_stack_api/llama_stack_api/vector_stores.py +0 -53
- llama_stack_api/llama_stack_api/version.py +0 -9
- llama_stack_api/models.py +0 -171
- llama_stack_api/openai_responses.py +0 -1468
- llama_stack_api/post_training.py +0 -370
- llama_stack_api/prompts.py +0 -203
- llama_stack_api/providers/__init__.py +0 -33
- llama_stack_api/providers/api.py +0 -16
- llama_stack_api/providers/fastapi_routes.py +0 -57
- llama_stack_api/providers/models.py +0 -24
- llama_stack_api/py.typed +0 -0
- llama_stack_api/rag_tool.py +0 -168
- llama_stack_api/resource.py +0 -37
- llama_stack_api/router_utils.py +0 -160
- llama_stack_api/safety.py +0 -132
- llama_stack_api/schema_utils.py +0 -208
- llama_stack_api/scoring.py +0 -93
- llama_stack_api/scoring_functions.py +0 -211
- llama_stack_api/shields.py +0 -93
- llama_stack_api/tools.py +0 -226
- llama_stack_api/vector_io.py +0 -941
- llama_stack_api/vector_stores.py +0 -53
- llama_stack_api/version.py +0 -9
- {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/WHEEL +0 -0
- {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/entry_points.txt +0 -0
- {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,226 +0,0 @@
|
|
|
1
|
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
-
# All rights reserved.
|
|
3
|
-
#
|
|
4
|
-
# This source code is licensed under the terms described in the LICENSE file in
|
|
5
|
-
# the root directory of this source tree.
|
|
6
|
-
|
|
7
|
-
import os
|
|
8
|
-
from collections.abc import Callable
|
|
9
|
-
|
|
10
|
-
import torch
|
|
11
|
-
from fairscale.nn.model_parallel.initialize import get_model_parallel_rank
|
|
12
|
-
from torch import Tensor, nn
|
|
13
|
-
from torch.nn import functional as F
|
|
14
|
-
|
|
15
|
-
from llama_stack.log import get_logger
|
|
16
|
-
|
|
17
|
-
from ...datatypes import QuantizationMode
|
|
18
|
-
from ..model import Transformer, TransformerBlock
|
|
19
|
-
from ..moe import MoE
|
|
20
|
-
|
|
21
|
-
log = get_logger(name=__name__, category="models::llama")
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
def swiglu_wrapper_no_reduce(
|
|
25
|
-
self,
|
|
26
|
-
x: Tensor,
|
|
27
|
-
):
|
|
28
|
-
from ...quantize_impls import ffn_swiglu
|
|
29
|
-
|
|
30
|
-
return ffn_swiglu(x, self.w1.weight, self.w3.weight, self.w2.weight)
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
def experts_batched_swiglu_wrapper(
|
|
34
|
-
self,
|
|
35
|
-
x: Tensor, # (e, g, D)
|
|
36
|
-
w1: Tensor, # (e, D, F)
|
|
37
|
-
w3: Tensor, # (e, D, F)
|
|
38
|
-
w2: Tensor, # (e, F, D)
|
|
39
|
-
) -> torch.Tensor:
|
|
40
|
-
from ...quantize_impls import bmm_nt
|
|
41
|
-
|
|
42
|
-
middle_out_egF = F.silu(bmm_nt(x, w1)) * bmm_nt(x, w3) # noqa: N806
|
|
43
|
-
return bmm_nt(middle_out_egF, w2)
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
def convert_to_quantized_model(
|
|
47
|
-
model: Transformer,
|
|
48
|
-
checkpoint_dir: str,
|
|
49
|
-
quantization_mode: str | None = None,
|
|
50
|
-
fp8_activation_scale_ub: float | None = 1200.0,
|
|
51
|
-
use_rich_progress: bool = True,
|
|
52
|
-
) -> Transformer:
|
|
53
|
-
from ...quantize_impls import (
|
|
54
|
-
Fp8ScaledWeights,
|
|
55
|
-
Int4ScaledWeights,
|
|
56
|
-
load_fp8,
|
|
57
|
-
load_int4,
|
|
58
|
-
quantize_fp8,
|
|
59
|
-
quantize_int4,
|
|
60
|
-
)
|
|
61
|
-
|
|
62
|
-
rank = get_model_parallel_rank()
|
|
63
|
-
|
|
64
|
-
def should_quantize_block(block: nn.Module) -> bool:
|
|
65
|
-
if not isinstance(block, TransformerBlock):
|
|
66
|
-
return False
|
|
67
|
-
|
|
68
|
-
is_moe = isinstance(block.feed_forward, MoE)
|
|
69
|
-
if quantization_mode == QuantizationMode.fp8_mixed:
|
|
70
|
-
# skip quantization on first and last layers
|
|
71
|
-
return is_moe and not (block.layer_id == 0 or block.layer_id == (model.n_layers - 1))
|
|
72
|
-
|
|
73
|
-
return is_moe
|
|
74
|
-
|
|
75
|
-
use_rich_progress = use_rich_progress and rank == 0
|
|
76
|
-
progress, log_status, update_status = logging_callbacks(use_rich_progress, rank, model, should_quantize_block)
|
|
77
|
-
if quantization_mode == QuantizationMode.int4_mixed:
|
|
78
|
-
int4_scales_path = os.path.join(checkpoint_dir, f"int4_scales_{rank}.pt")
|
|
79
|
-
if os.path.isfile(int4_scales_path):
|
|
80
|
-
log_status(f"Rank {rank}: Loading int4 scales")
|
|
81
|
-
int4_scales = torch.load(int4_scales_path, weights_only=True)
|
|
82
|
-
|
|
83
|
-
def apply_quantization(key, weight):
|
|
84
|
-
scale = int4_scales[key]
|
|
85
|
-
return load_int4(
|
|
86
|
-
weight,
|
|
87
|
-
scale,
|
|
88
|
-
output_device=torch.device("cuda"),
|
|
89
|
-
)
|
|
90
|
-
|
|
91
|
-
else:
|
|
92
|
-
log_status(f"Rank {rank}: Quantizing int4 weights from bf16")
|
|
93
|
-
|
|
94
|
-
def apply_quantization(_, weight):
|
|
95
|
-
return quantize_int4(weight, output_device=torch.device("cuda"))
|
|
96
|
-
|
|
97
|
-
else:
|
|
98
|
-
fp8_scales_path = os.path.join(checkpoint_dir, f"fp8_scales_{rank}.pt")
|
|
99
|
-
if os.path.isfile(fp8_scales_path):
|
|
100
|
-
log_status(f"Rank {rank}: Loading fp8 scales")
|
|
101
|
-
fp8_scales = torch.load(fp8_scales_path, weights_only=True)
|
|
102
|
-
|
|
103
|
-
def apply_quantization(key, weight):
|
|
104
|
-
scale = fp8_scales[key]
|
|
105
|
-
return load_fp8(
|
|
106
|
-
weight,
|
|
107
|
-
scale,
|
|
108
|
-
fp8_activation_scale_ub,
|
|
109
|
-
output_device=torch.device("cuda"),
|
|
110
|
-
)
|
|
111
|
-
|
|
112
|
-
else:
|
|
113
|
-
log_status(f"Rank {rank}: Quantizing fp8 weights from bf16")
|
|
114
|
-
|
|
115
|
-
def apply_quantization(_, weight):
|
|
116
|
-
return quantize_fp8(weight, fp8_activation_scale_ub, output_device=torch.device("cuda"))
|
|
117
|
-
|
|
118
|
-
processed_blocks = 0
|
|
119
|
-
try:
|
|
120
|
-
if use_rich_progress:
|
|
121
|
-
progress.start()
|
|
122
|
-
|
|
123
|
-
for _, block in model.named_modules():
|
|
124
|
-
if not should_quantize_block(block):
|
|
125
|
-
continue
|
|
126
|
-
|
|
127
|
-
update_status(f"Rank {rank} - Layer {block.layer_id}")
|
|
128
|
-
|
|
129
|
-
# Quantize only routed experts, not shared
|
|
130
|
-
prefix = f"layers.{block.layer_id}.feed_forward"
|
|
131
|
-
moe = block.feed_forward
|
|
132
|
-
moe.experts.batched_swiglu = experts_batched_swiglu_wrapper.__get__(moe.experts)
|
|
133
|
-
|
|
134
|
-
for key in ("w1", "w3", "w2"):
|
|
135
|
-
param = getattr(moe.experts, key)
|
|
136
|
-
update_status(f"Rank {rank} - Layer {block.layer_id} - MoE {key}")
|
|
137
|
-
setattr(
|
|
138
|
-
moe.experts,
|
|
139
|
-
key,
|
|
140
|
-
apply_quantization(
|
|
141
|
-
f"{prefix}.experts.{key}",
|
|
142
|
-
param.transpose(1, 2).contiguous(),
|
|
143
|
-
),
|
|
144
|
-
)
|
|
145
|
-
|
|
146
|
-
if quantization_mode == QuantizationMode.int4_mixed:
|
|
147
|
-
# Quantize shared experts
|
|
148
|
-
moe.shared_expert.forward = swiglu_wrapper_no_reduce.__get__(moe.shared_expert)
|
|
149
|
-
for key in ("w1", "w3", "w2"):
|
|
150
|
-
param = getattr(moe.shared_expert, key)
|
|
151
|
-
update_status(f"Rank {rank} - Layer {block.layer_id} - MoE shared expert {key}")
|
|
152
|
-
param.weight = apply_quantization(f"{prefix}.shared_expert.{key}", param.weight)
|
|
153
|
-
|
|
154
|
-
processed_blocks += 1
|
|
155
|
-
update_status(message=None, completed=processed_blocks)
|
|
156
|
-
|
|
157
|
-
update_status(f"Rank {rank} - Moving parameters to CUDA")
|
|
158
|
-
|
|
159
|
-
param_count = 0
|
|
160
|
-
for _, parameter in model.named_parameters():
|
|
161
|
-
if not isinstance(parameter, Fp8ScaledWeights) and not isinstance(parameter, Int4ScaledWeights):
|
|
162
|
-
parameter.data = parameter.to(device="cuda")
|
|
163
|
-
param_count += 1
|
|
164
|
-
|
|
165
|
-
update_status(f"Rank {rank} - Completed - moved {param_count} parameters to CUDA")
|
|
166
|
-
finally:
|
|
167
|
-
if use_rich_progress:
|
|
168
|
-
progress.stop()
|
|
169
|
-
|
|
170
|
-
return model
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
# fp8/int4 loading can be very slow so we add progress bars to make life slightly better
|
|
174
|
-
def logging_callbacks(
|
|
175
|
-
use_rich_progress: bool,
|
|
176
|
-
rank: int,
|
|
177
|
-
model: Transformer,
|
|
178
|
-
should_quantize_block: Callable[[nn.Module], bool],
|
|
179
|
-
):
|
|
180
|
-
console = None
|
|
181
|
-
if use_rich_progress:
|
|
182
|
-
from rich.console import Console
|
|
183
|
-
|
|
184
|
-
console = Console(highlight=False)
|
|
185
|
-
|
|
186
|
-
def log_status(message: str) -> None:
|
|
187
|
-
if use_rich_progress:
|
|
188
|
-
console.print(message)
|
|
189
|
-
elif rank == 0: # Only log from rank 0 for non-rich logging
|
|
190
|
-
log.info(message)
|
|
191
|
-
|
|
192
|
-
total_blocks = sum(1 for _, block in model.named_modules() if should_quantize_block(block))
|
|
193
|
-
progress = None
|
|
194
|
-
if use_rich_progress:
|
|
195
|
-
from rich.progress import (
|
|
196
|
-
BarColumn,
|
|
197
|
-
Progress,
|
|
198
|
-
SpinnerColumn,
|
|
199
|
-
TextColumn,
|
|
200
|
-
TimeElapsedColumn,
|
|
201
|
-
TimeRemainingColumn,
|
|
202
|
-
)
|
|
203
|
-
|
|
204
|
-
progress = Progress(
|
|
205
|
-
SpinnerColumn(),
|
|
206
|
-
BarColumn(complete_style="green", finished_style="bright_green"),
|
|
207
|
-
TextColumn("[progress.percentage]{task.percentage:>3.0f}%"),
|
|
208
|
-
TimeElapsedColumn(),
|
|
209
|
-
TextColumn("ETA:"),
|
|
210
|
-
TimeRemainingColumn(),
|
|
211
|
-
TextColumn("[bold]{task.fields[status]}"),
|
|
212
|
-
console=console,
|
|
213
|
-
expand=True,
|
|
214
|
-
)
|
|
215
|
-
task_id = progress.add_task("[blue]Converting layers...", total=total_blocks, status="Starting")
|
|
216
|
-
|
|
217
|
-
def update_status(message: str | None, completed: int | None = None) -> None:
|
|
218
|
-
if use_rich_progress:
|
|
219
|
-
if message is not None:
|
|
220
|
-
progress.update(task_id, status=message)
|
|
221
|
-
if completed is not None:
|
|
222
|
-
progress.update(task_id, completed=completed)
|
|
223
|
-
elif rank == 0 and completed and completed % 10 == 0:
|
|
224
|
-
log.info(f"Rank {rank}: {completed}/{total_blocks} blocks completed")
|
|
225
|
-
|
|
226
|
-
return progress, log_status, update_status
|
|
@@ -1,210 +0,0 @@
|
|
|
1
|
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
-
# All rights reserved.
|
|
3
|
-
#
|
|
4
|
-
# This source code is licensed under the terms described in the LICENSE file in
|
|
5
|
-
# the root directory of this source tree.
|
|
6
|
-
|
|
7
|
-
import math
|
|
8
|
-
from collections.abc import Callable
|
|
9
|
-
from typing import Any
|
|
10
|
-
|
|
11
|
-
import torch
|
|
12
|
-
import torch.nn as nn
|
|
13
|
-
import torch.nn.functional as F
|
|
14
|
-
from fairscale.nn.model_parallel.layers import ColumnParallelLinear, RowParallelLinear
|
|
15
|
-
|
|
16
|
-
from ..args import VisionArgs
|
|
17
|
-
from .encoder import VisionEncoder
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
class PixelShuffle(nn.Module):
|
|
21
|
-
def __init__(self, ps_ratio):
|
|
22
|
-
super().__init__()
|
|
23
|
-
self.ps_ratio = ps_ratio
|
|
24
|
-
|
|
25
|
-
def forward(self, x):
|
|
26
|
-
# x: [B, N, C], N = number of patches
|
|
27
|
-
assert self.ps_ratio is not None, "ps_ratio is required for pixel shuffle"
|
|
28
|
-
assert x.dim() == 3, "pixel shuffle requires encoded patches [B, N, C]"
|
|
29
|
-
hh = ww = int(math.sqrt(x.shape[1]))
|
|
30
|
-
x = x.reshape(x.shape[0], hh, ww, -1)
|
|
31
|
-
x = pixel_shuffle_op(x, ps_ratio=self.ps_ratio)
|
|
32
|
-
pixel_shuffle_patches = x.reshape(x.shape[0], -1, x.shape[-1])
|
|
33
|
-
return pixel_shuffle_patches
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
def pixel_shuffle_op(input_x, ps_ratio):
|
|
37
|
-
n, w, h, c = input_x.size()
|
|
38
|
-
input_x = input_x.view(n, w, int(h * ps_ratio), int(c / ps_ratio))
|
|
39
|
-
input_x = input_x.permute(0, 2, 1, 3).contiguous()
|
|
40
|
-
input_x = input_x.view(
|
|
41
|
-
n,
|
|
42
|
-
int(h * ps_ratio),
|
|
43
|
-
int(w * ps_ratio),
|
|
44
|
-
int(c / (ps_ratio * ps_ratio)),
|
|
45
|
-
)
|
|
46
|
-
input_x = input_x.permute(0, 2, 1, 3).contiguous()
|
|
47
|
-
return input_x
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
class SimpleMLP(torch.nn.Module):
|
|
51
|
-
def __init__(
|
|
52
|
-
self,
|
|
53
|
-
dim: int,
|
|
54
|
-
hidden_dim: int,
|
|
55
|
-
bias: bool = True,
|
|
56
|
-
dropout: float = 0.0,
|
|
57
|
-
act_layer: Callable = nn.GELU,
|
|
58
|
-
):
|
|
59
|
-
super().__init__()
|
|
60
|
-
# layers
|
|
61
|
-
self.c_fc = ColumnParallelLinear(
|
|
62
|
-
dim,
|
|
63
|
-
hidden_dim,
|
|
64
|
-
bias=bias,
|
|
65
|
-
gather_output=False,
|
|
66
|
-
)
|
|
67
|
-
self.c_proj = RowParallelLinear(
|
|
68
|
-
hidden_dim,
|
|
69
|
-
hidden_dim,
|
|
70
|
-
bias=bias,
|
|
71
|
-
input_is_parallel=True,
|
|
72
|
-
)
|
|
73
|
-
self.non_linearity = act_layer()
|
|
74
|
-
self.dropout = dropout
|
|
75
|
-
|
|
76
|
-
def forward(self, x):
|
|
77
|
-
hidden = self.c_fc(x)
|
|
78
|
-
hidden = self.non_linearity(hidden)
|
|
79
|
-
hidden = F.dropout(hidden, p=self.dropout, training=self.training)
|
|
80
|
-
return self.non_linearity(self.c_proj(hidden))
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
class PixelShuffleMLP(torch.nn.Module):
|
|
84
|
-
def __init__(
|
|
85
|
-
self,
|
|
86
|
-
ps_ratio: float,
|
|
87
|
-
input_dim: int,
|
|
88
|
-
output_dim: int = 4096,
|
|
89
|
-
add_fc: bool = False,
|
|
90
|
-
):
|
|
91
|
-
super().__init__()
|
|
92
|
-
self.pixel_shuffle = PixelShuffle(ps_ratio)
|
|
93
|
-
self.mlp = SimpleMLP(
|
|
94
|
-
int(input_dim // (ps_ratio**2)),
|
|
95
|
-
output_dim,
|
|
96
|
-
bias=False,
|
|
97
|
-
dropout=0.0,
|
|
98
|
-
act_layer=nn.GELU,
|
|
99
|
-
)
|
|
100
|
-
self.fc = nn.Identity()
|
|
101
|
-
if add_fc:
|
|
102
|
-
self.fc = ColumnParallelLinear(
|
|
103
|
-
output_dim,
|
|
104
|
-
output_dim,
|
|
105
|
-
bias=False,
|
|
106
|
-
)
|
|
107
|
-
|
|
108
|
-
def forward(self, encoded_patches: torch.Tensor) -> torch.Tensor:
|
|
109
|
-
encoded_patches = self.pixel_shuffle(encoded_patches)
|
|
110
|
-
return self.fc(self.mlp(encoded_patches))
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
class VisionEmbeddings(torch.nn.Module):
|
|
114
|
-
def __init__(self, args: VisionArgs):
|
|
115
|
-
super().__init__()
|
|
116
|
-
self.args = args
|
|
117
|
-
|
|
118
|
-
image_size = args.image_size
|
|
119
|
-
patch_size = args.patch_size
|
|
120
|
-
self.vision_encoder = VisionEncoder(
|
|
121
|
-
image_size=(image_size.height, image_size.width),
|
|
122
|
-
patch_size=(patch_size.height, patch_size.width),
|
|
123
|
-
dim=args.dim,
|
|
124
|
-
layers=args.n_layers,
|
|
125
|
-
heads=args.n_heads,
|
|
126
|
-
mlp_ratio=args.mlp_ratio,
|
|
127
|
-
)
|
|
128
|
-
self.vision_encoder = self.vision_encoder.to(torch.bfloat16)
|
|
129
|
-
self.vision_adapter = PixelShuffleMLP(
|
|
130
|
-
ps_ratio=args.pixel_shuffle_ratio,
|
|
131
|
-
input_dim=args.dim,
|
|
132
|
-
output_dim=args.output_dim,
|
|
133
|
-
)
|
|
134
|
-
|
|
135
|
-
self.output_dim = args.output_dim
|
|
136
|
-
self._register_load_state_dict_pre_hook(self.load_hook)
|
|
137
|
-
|
|
138
|
-
def load_hook(
|
|
139
|
-
self,
|
|
140
|
-
state_dict: dict[str, Any],
|
|
141
|
-
prefix: str,
|
|
142
|
-
local_metadata: dict[str, Any],
|
|
143
|
-
strict: bool = True,
|
|
144
|
-
missing_keys: list[str] = None,
|
|
145
|
-
unexpected_keys: list[str] = None,
|
|
146
|
-
error_msgs: list[str] = None,
|
|
147
|
-
return_state_dict: bool = False,
|
|
148
|
-
) -> None:
|
|
149
|
-
original_sd = self.state_dict()
|
|
150
|
-
for k in state_dict:
|
|
151
|
-
if k.startswith(prefix) and len(state_dict[k].shape) == 1 and state_dict[k].shape[0] == 0:
|
|
152
|
-
state_dict[k] = state_dict[k].reshape(original_sd[k[len(prefix) :]].shape)
|
|
153
|
-
|
|
154
|
-
def _get_empty_sequence(self, h):
|
|
155
|
-
return torch.zeros(
|
|
156
|
-
h.shape[0],
|
|
157
|
-
h.shape[1],
|
|
158
|
-
self.output_dim,
|
|
159
|
-
device=h.device,
|
|
160
|
-
dtype=h.dtype,
|
|
161
|
-
)
|
|
162
|
-
|
|
163
|
-
# x_images is batched; each batch sample contains a list of images. so this is List[List[torch.Tensor]]
|
|
164
|
-
# each image is a tensor of shape [num_tiles, C, H, W]
|
|
165
|
-
def forward(
|
|
166
|
-
self,
|
|
167
|
-
image_batch: list[list[torch.Tensor]],
|
|
168
|
-
image_mask: torch.Tensor,
|
|
169
|
-
h_ref: torch.Tensor,
|
|
170
|
-
) -> torch.Tensor:
|
|
171
|
-
images_flattened = [image for sample in image_batch for image in sample]
|
|
172
|
-
images_flattened = torch.vstack(images_flattened).unsqueeze(1).to(h_ref.dtype).to(h_ref.device)
|
|
173
|
-
embedding = self.vision_encoder(images_flattened)
|
|
174
|
-
projected_embedding = self.vision_adapter(embedding)
|
|
175
|
-
|
|
176
|
-
h_image = self._get_empty_sequence(h_ref)
|
|
177
|
-
return scatter_embeddings(image_batch, image_mask, h_image, projected_embedding)
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
def scatter_embeddings(image_batch, image_mask, h_image, encoded_patches_proj):
|
|
181
|
-
# If dynamic transform is used and the batch contains 2 images (where image_1 has 2 chunks and image_2 has 3 chunks),
|
|
182
|
-
# `num_images_per_sequence` now records the number of chunks per image as `[2, 3]`.
|
|
183
|
-
# `encoded_patches_proj.split` will then split the image chunks into 2 groups: `[image_1_chunks, image_2_chunks]`.
|
|
184
|
-
num_images_per_sequence = [sum(image.size(0) for image in sample_images) for sample_images in image_batch]
|
|
185
|
-
|
|
186
|
-
assert not torch.isnan(encoded_patches_proj).any()
|
|
187
|
-
assert sum(num_images_per_sequence) == encoded_patches_proj.size(0), (
|
|
188
|
-
f"{sum(num_images_per_sequence)=} != {encoded_patches_proj.shape=}"
|
|
189
|
-
)
|
|
190
|
-
|
|
191
|
-
encoded_patches_list = encoded_patches_proj.split(num_images_per_sequence, dim=0)
|
|
192
|
-
for index in range(h_image.size(0)):
|
|
193
|
-
encoded_patches_per_sample = encoded_patches_list[index]
|
|
194
|
-
sample_image_mask = image_mask[index]
|
|
195
|
-
|
|
196
|
-
if encoded_patches_per_sample.numel() == 0:
|
|
197
|
-
continue
|
|
198
|
-
encoded_patches_per_sample = encoded_patches_per_sample.contiguous().view(
|
|
199
|
-
-1, encoded_patches_per_sample.size(-1)
|
|
200
|
-
)
|
|
201
|
-
|
|
202
|
-
n_tokens_to_fill = sample_image_mask.sum()
|
|
203
|
-
assert n_tokens_to_fill <= encoded_patches_per_sample.size(0)
|
|
204
|
-
|
|
205
|
-
h_image[index].masked_scatter_(
|
|
206
|
-
sample_image_mask.expand(-1, h_image.size(-1)),
|
|
207
|
-
encoded_patches_per_sample[:n_tokens_to_fill],
|
|
208
|
-
)
|
|
209
|
-
|
|
210
|
-
return h_image
|