llama-stack 0.4.3__py3-none-any.whl → 0.5.0rc1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (307) hide show
  1. llama_stack/cli/stack/_list_deps.py +11 -7
  2. llama_stack/cli/stack/run.py +3 -25
  3. llama_stack/core/access_control/datatypes.py +78 -0
  4. llama_stack/core/configure.py +2 -2
  5. {llama_stack_api/internal → llama_stack/core/connectors}/__init__.py +2 -2
  6. llama_stack/core/connectors/connectors.py +162 -0
  7. llama_stack/core/conversations/conversations.py +61 -58
  8. llama_stack/core/datatypes.py +54 -8
  9. llama_stack/core/library_client.py +60 -13
  10. llama_stack/core/prompts/prompts.py +43 -42
  11. llama_stack/core/routers/datasets.py +20 -17
  12. llama_stack/core/routers/eval_scoring.py +143 -53
  13. llama_stack/core/routers/inference.py +20 -9
  14. llama_stack/core/routers/safety.py +30 -42
  15. llama_stack/core/routers/vector_io.py +15 -7
  16. llama_stack/core/routing_tables/models.py +42 -3
  17. llama_stack/core/routing_tables/scoring_functions.py +19 -19
  18. llama_stack/core/routing_tables/shields.py +20 -17
  19. llama_stack/core/routing_tables/vector_stores.py +8 -5
  20. llama_stack/core/server/auth.py +192 -17
  21. llama_stack/core/server/fastapi_router_registry.py +40 -5
  22. llama_stack/core/server/server.py +24 -5
  23. llama_stack/core/stack.py +54 -10
  24. llama_stack/core/storage/datatypes.py +9 -0
  25. llama_stack/core/store/registry.py +1 -1
  26. llama_stack/core/utils/exec.py +2 -2
  27. llama_stack/core/utils/type_inspection.py +16 -2
  28. llama_stack/distributions/dell/config.yaml +4 -1
  29. llama_stack/distributions/dell/doc_template.md +209 -0
  30. llama_stack/distributions/dell/run-with-safety.yaml +4 -1
  31. llama_stack/distributions/nvidia/config.yaml +4 -1
  32. llama_stack/distributions/nvidia/doc_template.md +170 -0
  33. llama_stack/distributions/nvidia/run-with-safety.yaml +4 -1
  34. llama_stack/distributions/oci/config.yaml +4 -1
  35. llama_stack/distributions/oci/doc_template.md +140 -0
  36. llama_stack/distributions/open-benchmark/config.yaml +9 -1
  37. llama_stack/distributions/postgres-demo/config.yaml +1 -1
  38. llama_stack/distributions/starter/build.yaml +62 -0
  39. llama_stack/distributions/starter/config.yaml +22 -3
  40. llama_stack/distributions/starter/run-with-postgres-store.yaml +22 -3
  41. llama_stack/distributions/starter/starter.py +13 -1
  42. llama_stack/distributions/starter-gpu/build.yaml +62 -0
  43. llama_stack/distributions/starter-gpu/config.yaml +22 -3
  44. llama_stack/distributions/starter-gpu/run-with-postgres-store.yaml +22 -3
  45. llama_stack/distributions/template.py +10 -2
  46. llama_stack/distributions/watsonx/config.yaml +4 -1
  47. llama_stack/log.py +1 -0
  48. llama_stack/models/llama/resources/dog.jpg +0 -0
  49. llama_stack/models/llama/resources/pasta.jpeg +0 -0
  50. llama_stack/models/llama/resources/small_dog.jpg +0 -0
  51. llama_stack/providers/inline/agents/meta_reference/__init__.py +1 -0
  52. llama_stack/providers/inline/agents/meta_reference/agents.py +57 -61
  53. llama_stack/providers/inline/agents/meta_reference/responses/openai_responses.py +183 -60
  54. llama_stack/providers/inline/agents/meta_reference/responses/streaming.py +94 -22
  55. llama_stack/providers/inline/agents/meta_reference/responses/types.py +2 -1
  56. llama_stack/providers/inline/agents/meta_reference/responses/utils.py +4 -1
  57. llama_stack/providers/inline/agents/meta_reference/safety.py +2 -2
  58. llama_stack/providers/inline/batches/reference/batches.py +2 -1
  59. llama_stack/providers/inline/eval/meta_reference/eval.py +40 -32
  60. llama_stack/providers/inline/ios/inference/LocalInferenceImpl/LocalInference.h +9 -0
  61. llama_stack/providers/inline/ios/inference/LocalInferenceImpl/LocalInference.swift +189 -0
  62. llama_stack/providers/inline/ios/inference/LocalInferenceImpl/Parsing.swift +238 -0
  63. llama_stack/providers/inline/ios/inference/LocalInferenceImpl/PromptTemplate.swift +12 -0
  64. llama_stack/providers/inline/ios/inference/LocalInferenceImpl/SystemPrompts.swift +89 -0
  65. llama_stack/providers/inline/ios/inference/LocalInferenceImpl.xcodeproj/project.pbxproj +550 -0
  66. llama_stack/providers/inline/ios/inference/LocalInferenceImpl.xcodeproj/project.xcworkspace/contents.xcworkspacedata +7 -0
  67. llama_stack/providers/inline/ios/inference/LocalInferenceImpl.xcodeproj/project.xcworkspace/xcshareddata/IDEWorkspaceChecks.plist +8 -0
  68. llama_stack/providers/inline/post_training/huggingface/post_training.py +33 -38
  69. llama_stack/providers/inline/post_training/huggingface/utils.py +2 -5
  70. llama_stack/providers/inline/post_training/torchtune/post_training.py +28 -33
  71. llama_stack/providers/inline/post_training/torchtune/recipes/lora_finetuning_single_device.py +2 -4
  72. llama_stack/providers/inline/safety/code_scanner/code_scanner.py +12 -15
  73. llama_stack/providers/inline/safety/llama_guard/llama_guard.py +15 -18
  74. llama_stack/providers/inline/safety/prompt_guard/prompt_guard.py +11 -17
  75. llama_stack/providers/inline/scoring/basic/scoring.py +13 -17
  76. llama_stack/providers/inline/scoring/braintrust/braintrust.py +15 -15
  77. llama_stack/providers/inline/scoring/llm_as_judge/scoring.py +13 -17
  78. llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py +1 -1
  79. llama_stack/providers/registry/agents.py +1 -0
  80. llama_stack/providers/registry/inference.py +1 -9
  81. llama_stack/providers/registry/vector_io.py +136 -16
  82. llama_stack/providers/remote/datasetio/nvidia/README.md +74 -0
  83. llama_stack/providers/remote/eval/nvidia/README.md +134 -0
  84. llama_stack/providers/remote/eval/nvidia/eval.py +22 -21
  85. llama_stack/providers/remote/files/s3/README.md +266 -0
  86. llama_stack/providers/remote/files/s3/config.py +5 -3
  87. llama_stack/providers/remote/files/s3/files.py +2 -2
  88. llama_stack/providers/remote/inference/gemini/gemini.py +4 -0
  89. llama_stack/providers/remote/inference/nvidia/NVIDIA.md +203 -0
  90. llama_stack/providers/remote/inference/openai/openai.py +2 -0
  91. llama_stack/providers/remote/inference/together/together.py +4 -0
  92. llama_stack/providers/remote/inference/vertexai/config.py +3 -3
  93. llama_stack/providers/remote/inference/vertexai/vertexai.py +5 -2
  94. llama_stack/providers/remote/inference/vllm/config.py +37 -18
  95. llama_stack/providers/remote/inference/vllm/vllm.py +0 -3
  96. llama_stack/providers/remote/inference/watsonx/watsonx.py +4 -0
  97. llama_stack/providers/remote/post_training/nvidia/README.md +151 -0
  98. llama_stack/providers/remote/post_training/nvidia/post_training.py +31 -33
  99. llama_stack/providers/remote/safety/bedrock/bedrock.py +10 -27
  100. llama_stack/providers/remote/safety/nvidia/README.md +78 -0
  101. llama_stack/providers/remote/safety/nvidia/nvidia.py +9 -25
  102. llama_stack/providers/remote/safety/sambanova/sambanova.py +13 -11
  103. llama_stack/providers/remote/vector_io/elasticsearch/__init__.py +17 -0
  104. llama_stack/providers/remote/vector_io/elasticsearch/config.py +32 -0
  105. llama_stack/providers/remote/vector_io/elasticsearch/elasticsearch.py +463 -0
  106. llama_stack/providers/remote/vector_io/oci/__init__.py +22 -0
  107. llama_stack/providers/remote/vector_io/oci/config.py +41 -0
  108. llama_stack/providers/remote/vector_io/oci/oci26ai.py +595 -0
  109. llama_stack/providers/remote/vector_io/pgvector/config.py +69 -2
  110. llama_stack/providers/remote/vector_io/pgvector/pgvector.py +255 -6
  111. llama_stack/providers/remote/vector_io/qdrant/qdrant.py +62 -38
  112. llama_stack/providers/utils/bedrock/client.py +3 -3
  113. llama_stack/providers/utils/bedrock/config.py +7 -7
  114. llama_stack/providers/utils/inference/embedding_mixin.py +4 -0
  115. llama_stack/providers/utils/inference/http_client.py +239 -0
  116. llama_stack/providers/utils/inference/litellm_openai_mixin.py +5 -0
  117. llama_stack/providers/utils/inference/model_registry.py +148 -2
  118. llama_stack/providers/utils/inference/openai_compat.py +2 -1
  119. llama_stack/providers/utils/inference/openai_mixin.py +41 -2
  120. llama_stack/providers/utils/memory/openai_vector_store_mixin.py +92 -5
  121. llama_stack/providers/utils/memory/vector_store.py +46 -19
  122. llama_stack/providers/utils/responses/responses_store.py +40 -6
  123. llama_stack/providers/utils/safety.py +114 -0
  124. llama_stack/providers/utils/tools/mcp.py +44 -3
  125. llama_stack/testing/api_recorder.py +9 -3
  126. {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/METADATA +14 -2
  127. {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/RECORD +131 -275
  128. llama_stack-0.5.0rc1.dist-info/top_level.txt +1 -0
  129. llama_stack/distributions/meta-reference-gpu/__init__.py +0 -7
  130. llama_stack/distributions/meta-reference-gpu/config.yaml +0 -140
  131. llama_stack/distributions/meta-reference-gpu/meta_reference.py +0 -163
  132. llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml +0 -155
  133. llama_stack/models/llama/hadamard_utils.py +0 -88
  134. llama_stack/models/llama/llama3/args.py +0 -74
  135. llama_stack/models/llama/llama3/generation.py +0 -378
  136. llama_stack/models/llama/llama3/model.py +0 -304
  137. llama_stack/models/llama/llama3/multimodal/__init__.py +0 -12
  138. llama_stack/models/llama/llama3/multimodal/encoder_utils.py +0 -180
  139. llama_stack/models/llama/llama3/multimodal/image_transform.py +0 -409
  140. llama_stack/models/llama/llama3/multimodal/model.py +0 -1430
  141. llama_stack/models/llama/llama3/multimodal/utils.py +0 -26
  142. llama_stack/models/llama/llama3/quantization/__init__.py +0 -5
  143. llama_stack/models/llama/llama3/quantization/loader.py +0 -316
  144. llama_stack/models/llama/llama3_1/__init__.py +0 -12
  145. llama_stack/models/llama/llama3_1/prompt_format.md +0 -358
  146. llama_stack/models/llama/llama3_1/prompts.py +0 -258
  147. llama_stack/models/llama/llama3_2/__init__.py +0 -5
  148. llama_stack/models/llama/llama3_2/prompts_text.py +0 -229
  149. llama_stack/models/llama/llama3_2/prompts_vision.py +0 -126
  150. llama_stack/models/llama/llama3_2/text_prompt_format.md +0 -286
  151. llama_stack/models/llama/llama3_2/vision_prompt_format.md +0 -141
  152. llama_stack/models/llama/llama3_3/__init__.py +0 -5
  153. llama_stack/models/llama/llama3_3/prompts.py +0 -259
  154. llama_stack/models/llama/llama4/args.py +0 -107
  155. llama_stack/models/llama/llama4/ffn.py +0 -58
  156. llama_stack/models/llama/llama4/moe.py +0 -214
  157. llama_stack/models/llama/llama4/preprocess.py +0 -435
  158. llama_stack/models/llama/llama4/quantization/__init__.py +0 -5
  159. llama_stack/models/llama/llama4/quantization/loader.py +0 -226
  160. llama_stack/models/llama/llama4/vision/__init__.py +0 -5
  161. llama_stack/models/llama/llama4/vision/embedding.py +0 -210
  162. llama_stack/models/llama/llama4/vision/encoder.py +0 -412
  163. llama_stack/models/llama/quantize_impls.py +0 -316
  164. llama_stack/providers/inline/inference/meta_reference/__init__.py +0 -20
  165. llama_stack/providers/inline/inference/meta_reference/common.py +0 -24
  166. llama_stack/providers/inline/inference/meta_reference/config.py +0 -68
  167. llama_stack/providers/inline/inference/meta_reference/generators.py +0 -201
  168. llama_stack/providers/inline/inference/meta_reference/inference.py +0 -542
  169. llama_stack/providers/inline/inference/meta_reference/model_parallel.py +0 -77
  170. llama_stack/providers/inline/inference/meta_reference/parallel_utils.py +0 -353
  171. llama_stack-0.4.3.dist-info/top_level.txt +0 -2
  172. llama_stack_api/__init__.py +0 -945
  173. llama_stack_api/admin/__init__.py +0 -45
  174. llama_stack_api/admin/api.py +0 -72
  175. llama_stack_api/admin/fastapi_routes.py +0 -117
  176. llama_stack_api/admin/models.py +0 -113
  177. llama_stack_api/agents.py +0 -173
  178. llama_stack_api/batches/__init__.py +0 -40
  179. llama_stack_api/batches/api.py +0 -53
  180. llama_stack_api/batches/fastapi_routes.py +0 -113
  181. llama_stack_api/batches/models.py +0 -78
  182. llama_stack_api/benchmarks/__init__.py +0 -43
  183. llama_stack_api/benchmarks/api.py +0 -39
  184. llama_stack_api/benchmarks/fastapi_routes.py +0 -109
  185. llama_stack_api/benchmarks/models.py +0 -109
  186. llama_stack_api/common/__init__.py +0 -5
  187. llama_stack_api/common/content_types.py +0 -101
  188. llama_stack_api/common/errors.py +0 -95
  189. llama_stack_api/common/job_types.py +0 -38
  190. llama_stack_api/common/responses.py +0 -77
  191. llama_stack_api/common/training_types.py +0 -47
  192. llama_stack_api/common/type_system.py +0 -146
  193. llama_stack_api/connectors.py +0 -146
  194. llama_stack_api/conversations.py +0 -270
  195. llama_stack_api/datasetio.py +0 -55
  196. llama_stack_api/datasets/__init__.py +0 -61
  197. llama_stack_api/datasets/api.py +0 -35
  198. llama_stack_api/datasets/fastapi_routes.py +0 -104
  199. llama_stack_api/datasets/models.py +0 -152
  200. llama_stack_api/datatypes.py +0 -373
  201. llama_stack_api/eval.py +0 -137
  202. llama_stack_api/file_processors/__init__.py +0 -27
  203. llama_stack_api/file_processors/api.py +0 -64
  204. llama_stack_api/file_processors/fastapi_routes.py +0 -78
  205. llama_stack_api/file_processors/models.py +0 -42
  206. llama_stack_api/files/__init__.py +0 -35
  207. llama_stack_api/files/api.py +0 -51
  208. llama_stack_api/files/fastapi_routes.py +0 -124
  209. llama_stack_api/files/models.py +0 -107
  210. llama_stack_api/inference.py +0 -1169
  211. llama_stack_api/inspect_api/__init__.py +0 -37
  212. llama_stack_api/inspect_api/api.py +0 -25
  213. llama_stack_api/inspect_api/fastapi_routes.py +0 -76
  214. llama_stack_api/inspect_api/models.py +0 -28
  215. llama_stack_api/internal/kvstore.py +0 -28
  216. llama_stack_api/internal/sqlstore.py +0 -81
  217. llama_stack_api/llama_stack_api/__init__.py +0 -945
  218. llama_stack_api/llama_stack_api/admin/__init__.py +0 -45
  219. llama_stack_api/llama_stack_api/admin/api.py +0 -72
  220. llama_stack_api/llama_stack_api/admin/fastapi_routes.py +0 -117
  221. llama_stack_api/llama_stack_api/admin/models.py +0 -113
  222. llama_stack_api/llama_stack_api/agents.py +0 -173
  223. llama_stack_api/llama_stack_api/batches/__init__.py +0 -40
  224. llama_stack_api/llama_stack_api/batches/api.py +0 -53
  225. llama_stack_api/llama_stack_api/batches/fastapi_routes.py +0 -113
  226. llama_stack_api/llama_stack_api/batches/models.py +0 -78
  227. llama_stack_api/llama_stack_api/benchmarks/__init__.py +0 -43
  228. llama_stack_api/llama_stack_api/benchmarks/api.py +0 -39
  229. llama_stack_api/llama_stack_api/benchmarks/fastapi_routes.py +0 -109
  230. llama_stack_api/llama_stack_api/benchmarks/models.py +0 -109
  231. llama_stack_api/llama_stack_api/common/__init__.py +0 -5
  232. llama_stack_api/llama_stack_api/common/content_types.py +0 -101
  233. llama_stack_api/llama_stack_api/common/errors.py +0 -95
  234. llama_stack_api/llama_stack_api/common/job_types.py +0 -38
  235. llama_stack_api/llama_stack_api/common/responses.py +0 -77
  236. llama_stack_api/llama_stack_api/common/training_types.py +0 -47
  237. llama_stack_api/llama_stack_api/common/type_system.py +0 -146
  238. llama_stack_api/llama_stack_api/connectors.py +0 -146
  239. llama_stack_api/llama_stack_api/conversations.py +0 -270
  240. llama_stack_api/llama_stack_api/datasetio.py +0 -55
  241. llama_stack_api/llama_stack_api/datasets/__init__.py +0 -61
  242. llama_stack_api/llama_stack_api/datasets/api.py +0 -35
  243. llama_stack_api/llama_stack_api/datasets/fastapi_routes.py +0 -104
  244. llama_stack_api/llama_stack_api/datasets/models.py +0 -152
  245. llama_stack_api/llama_stack_api/datatypes.py +0 -373
  246. llama_stack_api/llama_stack_api/eval.py +0 -137
  247. llama_stack_api/llama_stack_api/file_processors/__init__.py +0 -27
  248. llama_stack_api/llama_stack_api/file_processors/api.py +0 -64
  249. llama_stack_api/llama_stack_api/file_processors/fastapi_routes.py +0 -78
  250. llama_stack_api/llama_stack_api/file_processors/models.py +0 -42
  251. llama_stack_api/llama_stack_api/files/__init__.py +0 -35
  252. llama_stack_api/llama_stack_api/files/api.py +0 -51
  253. llama_stack_api/llama_stack_api/files/fastapi_routes.py +0 -124
  254. llama_stack_api/llama_stack_api/files/models.py +0 -107
  255. llama_stack_api/llama_stack_api/inference.py +0 -1169
  256. llama_stack_api/llama_stack_api/inspect_api/__init__.py +0 -37
  257. llama_stack_api/llama_stack_api/inspect_api/api.py +0 -25
  258. llama_stack_api/llama_stack_api/inspect_api/fastapi_routes.py +0 -76
  259. llama_stack_api/llama_stack_api/inspect_api/models.py +0 -28
  260. llama_stack_api/llama_stack_api/internal/__init__.py +0 -9
  261. llama_stack_api/llama_stack_api/internal/kvstore.py +0 -28
  262. llama_stack_api/llama_stack_api/internal/sqlstore.py +0 -81
  263. llama_stack_api/llama_stack_api/models.py +0 -171
  264. llama_stack_api/llama_stack_api/openai_responses.py +0 -1468
  265. llama_stack_api/llama_stack_api/post_training.py +0 -370
  266. llama_stack_api/llama_stack_api/prompts.py +0 -203
  267. llama_stack_api/llama_stack_api/providers/__init__.py +0 -33
  268. llama_stack_api/llama_stack_api/providers/api.py +0 -16
  269. llama_stack_api/llama_stack_api/providers/fastapi_routes.py +0 -57
  270. llama_stack_api/llama_stack_api/providers/models.py +0 -24
  271. llama_stack_api/llama_stack_api/py.typed +0 -0
  272. llama_stack_api/llama_stack_api/rag_tool.py +0 -168
  273. llama_stack_api/llama_stack_api/resource.py +0 -37
  274. llama_stack_api/llama_stack_api/router_utils.py +0 -160
  275. llama_stack_api/llama_stack_api/safety.py +0 -132
  276. llama_stack_api/llama_stack_api/schema_utils.py +0 -208
  277. llama_stack_api/llama_stack_api/scoring.py +0 -93
  278. llama_stack_api/llama_stack_api/scoring_functions.py +0 -211
  279. llama_stack_api/llama_stack_api/shields.py +0 -93
  280. llama_stack_api/llama_stack_api/tools.py +0 -226
  281. llama_stack_api/llama_stack_api/vector_io.py +0 -941
  282. llama_stack_api/llama_stack_api/vector_stores.py +0 -53
  283. llama_stack_api/llama_stack_api/version.py +0 -9
  284. llama_stack_api/models.py +0 -171
  285. llama_stack_api/openai_responses.py +0 -1468
  286. llama_stack_api/post_training.py +0 -370
  287. llama_stack_api/prompts.py +0 -203
  288. llama_stack_api/providers/__init__.py +0 -33
  289. llama_stack_api/providers/api.py +0 -16
  290. llama_stack_api/providers/fastapi_routes.py +0 -57
  291. llama_stack_api/providers/models.py +0 -24
  292. llama_stack_api/py.typed +0 -0
  293. llama_stack_api/rag_tool.py +0 -168
  294. llama_stack_api/resource.py +0 -37
  295. llama_stack_api/router_utils.py +0 -160
  296. llama_stack_api/safety.py +0 -132
  297. llama_stack_api/schema_utils.py +0 -208
  298. llama_stack_api/scoring.py +0 -93
  299. llama_stack_api/scoring_functions.py +0 -211
  300. llama_stack_api/shields.py +0 -93
  301. llama_stack_api/tools.py +0 -226
  302. llama_stack_api/vector_io.py +0 -941
  303. llama_stack_api/vector_stores.py +0 -53
  304. llama_stack_api/version.py +0 -9
  305. {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/WHEEL +0 -0
  306. {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/entry_points.txt +0 -0
  307. {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/licenses/LICENSE +0 -0
@@ -1,226 +0,0 @@
1
- # Copyright (c) Meta Platforms, Inc. and affiliates.
2
- # All rights reserved.
3
- #
4
- # This source code is licensed under the terms described in the LICENSE file in
5
- # the root directory of this source tree.
6
-
7
- import os
8
- from collections.abc import Callable
9
-
10
- import torch
11
- from fairscale.nn.model_parallel.initialize import get_model_parallel_rank
12
- from torch import Tensor, nn
13
- from torch.nn import functional as F
14
-
15
- from llama_stack.log import get_logger
16
-
17
- from ...datatypes import QuantizationMode
18
- from ..model import Transformer, TransformerBlock
19
- from ..moe import MoE
20
-
21
- log = get_logger(name=__name__, category="models::llama")
22
-
23
-
24
- def swiglu_wrapper_no_reduce(
25
- self,
26
- x: Tensor,
27
- ):
28
- from ...quantize_impls import ffn_swiglu
29
-
30
- return ffn_swiglu(x, self.w1.weight, self.w3.weight, self.w2.weight)
31
-
32
-
33
- def experts_batched_swiglu_wrapper(
34
- self,
35
- x: Tensor, # (e, g, D)
36
- w1: Tensor, # (e, D, F)
37
- w3: Tensor, # (e, D, F)
38
- w2: Tensor, # (e, F, D)
39
- ) -> torch.Tensor:
40
- from ...quantize_impls import bmm_nt
41
-
42
- middle_out_egF = F.silu(bmm_nt(x, w1)) * bmm_nt(x, w3) # noqa: N806
43
- return bmm_nt(middle_out_egF, w2)
44
-
45
-
46
- def convert_to_quantized_model(
47
- model: Transformer,
48
- checkpoint_dir: str,
49
- quantization_mode: str | None = None,
50
- fp8_activation_scale_ub: float | None = 1200.0,
51
- use_rich_progress: bool = True,
52
- ) -> Transformer:
53
- from ...quantize_impls import (
54
- Fp8ScaledWeights,
55
- Int4ScaledWeights,
56
- load_fp8,
57
- load_int4,
58
- quantize_fp8,
59
- quantize_int4,
60
- )
61
-
62
- rank = get_model_parallel_rank()
63
-
64
- def should_quantize_block(block: nn.Module) -> bool:
65
- if not isinstance(block, TransformerBlock):
66
- return False
67
-
68
- is_moe = isinstance(block.feed_forward, MoE)
69
- if quantization_mode == QuantizationMode.fp8_mixed:
70
- # skip quantization on first and last layers
71
- return is_moe and not (block.layer_id == 0 or block.layer_id == (model.n_layers - 1))
72
-
73
- return is_moe
74
-
75
- use_rich_progress = use_rich_progress and rank == 0
76
- progress, log_status, update_status = logging_callbacks(use_rich_progress, rank, model, should_quantize_block)
77
- if quantization_mode == QuantizationMode.int4_mixed:
78
- int4_scales_path = os.path.join(checkpoint_dir, f"int4_scales_{rank}.pt")
79
- if os.path.isfile(int4_scales_path):
80
- log_status(f"Rank {rank}: Loading int4 scales")
81
- int4_scales = torch.load(int4_scales_path, weights_only=True)
82
-
83
- def apply_quantization(key, weight):
84
- scale = int4_scales[key]
85
- return load_int4(
86
- weight,
87
- scale,
88
- output_device=torch.device("cuda"),
89
- )
90
-
91
- else:
92
- log_status(f"Rank {rank}: Quantizing int4 weights from bf16")
93
-
94
- def apply_quantization(_, weight):
95
- return quantize_int4(weight, output_device=torch.device("cuda"))
96
-
97
- else:
98
- fp8_scales_path = os.path.join(checkpoint_dir, f"fp8_scales_{rank}.pt")
99
- if os.path.isfile(fp8_scales_path):
100
- log_status(f"Rank {rank}: Loading fp8 scales")
101
- fp8_scales = torch.load(fp8_scales_path, weights_only=True)
102
-
103
- def apply_quantization(key, weight):
104
- scale = fp8_scales[key]
105
- return load_fp8(
106
- weight,
107
- scale,
108
- fp8_activation_scale_ub,
109
- output_device=torch.device("cuda"),
110
- )
111
-
112
- else:
113
- log_status(f"Rank {rank}: Quantizing fp8 weights from bf16")
114
-
115
- def apply_quantization(_, weight):
116
- return quantize_fp8(weight, fp8_activation_scale_ub, output_device=torch.device("cuda"))
117
-
118
- processed_blocks = 0
119
- try:
120
- if use_rich_progress:
121
- progress.start()
122
-
123
- for _, block in model.named_modules():
124
- if not should_quantize_block(block):
125
- continue
126
-
127
- update_status(f"Rank {rank} - Layer {block.layer_id}")
128
-
129
- # Quantize only routed experts, not shared
130
- prefix = f"layers.{block.layer_id}.feed_forward"
131
- moe = block.feed_forward
132
- moe.experts.batched_swiglu = experts_batched_swiglu_wrapper.__get__(moe.experts)
133
-
134
- for key in ("w1", "w3", "w2"):
135
- param = getattr(moe.experts, key)
136
- update_status(f"Rank {rank} - Layer {block.layer_id} - MoE {key}")
137
- setattr(
138
- moe.experts,
139
- key,
140
- apply_quantization(
141
- f"{prefix}.experts.{key}",
142
- param.transpose(1, 2).contiguous(),
143
- ),
144
- )
145
-
146
- if quantization_mode == QuantizationMode.int4_mixed:
147
- # Quantize shared experts
148
- moe.shared_expert.forward = swiglu_wrapper_no_reduce.__get__(moe.shared_expert)
149
- for key in ("w1", "w3", "w2"):
150
- param = getattr(moe.shared_expert, key)
151
- update_status(f"Rank {rank} - Layer {block.layer_id} - MoE shared expert {key}")
152
- param.weight = apply_quantization(f"{prefix}.shared_expert.{key}", param.weight)
153
-
154
- processed_blocks += 1
155
- update_status(message=None, completed=processed_blocks)
156
-
157
- update_status(f"Rank {rank} - Moving parameters to CUDA")
158
-
159
- param_count = 0
160
- for _, parameter in model.named_parameters():
161
- if not isinstance(parameter, Fp8ScaledWeights) and not isinstance(parameter, Int4ScaledWeights):
162
- parameter.data = parameter.to(device="cuda")
163
- param_count += 1
164
-
165
- update_status(f"Rank {rank} - Completed - moved {param_count} parameters to CUDA")
166
- finally:
167
- if use_rich_progress:
168
- progress.stop()
169
-
170
- return model
171
-
172
-
173
- # fp8/int4 loading can be very slow so we add progress bars to make life slightly better
174
- def logging_callbacks(
175
- use_rich_progress: bool,
176
- rank: int,
177
- model: Transformer,
178
- should_quantize_block: Callable[[nn.Module], bool],
179
- ):
180
- console = None
181
- if use_rich_progress:
182
- from rich.console import Console
183
-
184
- console = Console(highlight=False)
185
-
186
- def log_status(message: str) -> None:
187
- if use_rich_progress:
188
- console.print(message)
189
- elif rank == 0: # Only log from rank 0 for non-rich logging
190
- log.info(message)
191
-
192
- total_blocks = sum(1 for _, block in model.named_modules() if should_quantize_block(block))
193
- progress = None
194
- if use_rich_progress:
195
- from rich.progress import (
196
- BarColumn,
197
- Progress,
198
- SpinnerColumn,
199
- TextColumn,
200
- TimeElapsedColumn,
201
- TimeRemainingColumn,
202
- )
203
-
204
- progress = Progress(
205
- SpinnerColumn(),
206
- BarColumn(complete_style="green", finished_style="bright_green"),
207
- TextColumn("[progress.percentage]{task.percentage:>3.0f}%"),
208
- TimeElapsedColumn(),
209
- TextColumn("ETA:"),
210
- TimeRemainingColumn(),
211
- TextColumn("[bold]{task.fields[status]}"),
212
- console=console,
213
- expand=True,
214
- )
215
- task_id = progress.add_task("[blue]Converting layers...", total=total_blocks, status="Starting")
216
-
217
- def update_status(message: str | None, completed: int | None = None) -> None:
218
- if use_rich_progress:
219
- if message is not None:
220
- progress.update(task_id, status=message)
221
- if completed is not None:
222
- progress.update(task_id, completed=completed)
223
- elif rank == 0 and completed and completed % 10 == 0:
224
- log.info(f"Rank {rank}: {completed}/{total_blocks} blocks completed")
225
-
226
- return progress, log_status, update_status
@@ -1,5 +0,0 @@
1
- # Copyright (c) Meta Platforms, Inc. and affiliates.
2
- # All rights reserved.
3
- #
4
- # This source code is licensed under the terms described in the LICENSE file in
5
- # the root directory of this source tree.
@@ -1,210 +0,0 @@
1
- # Copyright (c) Meta Platforms, Inc. and affiliates.
2
- # All rights reserved.
3
- #
4
- # This source code is licensed under the terms described in the LICENSE file in
5
- # the root directory of this source tree.
6
-
7
- import math
8
- from collections.abc import Callable
9
- from typing import Any
10
-
11
- import torch
12
- import torch.nn as nn
13
- import torch.nn.functional as F
14
- from fairscale.nn.model_parallel.layers import ColumnParallelLinear, RowParallelLinear
15
-
16
- from ..args import VisionArgs
17
- from .encoder import VisionEncoder
18
-
19
-
20
- class PixelShuffle(nn.Module):
21
- def __init__(self, ps_ratio):
22
- super().__init__()
23
- self.ps_ratio = ps_ratio
24
-
25
- def forward(self, x):
26
- # x: [B, N, C], N = number of patches
27
- assert self.ps_ratio is not None, "ps_ratio is required for pixel shuffle"
28
- assert x.dim() == 3, "pixel shuffle requires encoded patches [B, N, C]"
29
- hh = ww = int(math.sqrt(x.shape[1]))
30
- x = x.reshape(x.shape[0], hh, ww, -1)
31
- x = pixel_shuffle_op(x, ps_ratio=self.ps_ratio)
32
- pixel_shuffle_patches = x.reshape(x.shape[0], -1, x.shape[-1])
33
- return pixel_shuffle_patches
34
-
35
-
36
- def pixel_shuffle_op(input_x, ps_ratio):
37
- n, w, h, c = input_x.size()
38
- input_x = input_x.view(n, w, int(h * ps_ratio), int(c / ps_ratio))
39
- input_x = input_x.permute(0, 2, 1, 3).contiguous()
40
- input_x = input_x.view(
41
- n,
42
- int(h * ps_ratio),
43
- int(w * ps_ratio),
44
- int(c / (ps_ratio * ps_ratio)),
45
- )
46
- input_x = input_x.permute(0, 2, 1, 3).contiguous()
47
- return input_x
48
-
49
-
50
- class SimpleMLP(torch.nn.Module):
51
- def __init__(
52
- self,
53
- dim: int,
54
- hidden_dim: int,
55
- bias: bool = True,
56
- dropout: float = 0.0,
57
- act_layer: Callable = nn.GELU,
58
- ):
59
- super().__init__()
60
- # layers
61
- self.c_fc = ColumnParallelLinear(
62
- dim,
63
- hidden_dim,
64
- bias=bias,
65
- gather_output=False,
66
- )
67
- self.c_proj = RowParallelLinear(
68
- hidden_dim,
69
- hidden_dim,
70
- bias=bias,
71
- input_is_parallel=True,
72
- )
73
- self.non_linearity = act_layer()
74
- self.dropout = dropout
75
-
76
- def forward(self, x):
77
- hidden = self.c_fc(x)
78
- hidden = self.non_linearity(hidden)
79
- hidden = F.dropout(hidden, p=self.dropout, training=self.training)
80
- return self.non_linearity(self.c_proj(hidden))
81
-
82
-
83
- class PixelShuffleMLP(torch.nn.Module):
84
- def __init__(
85
- self,
86
- ps_ratio: float,
87
- input_dim: int,
88
- output_dim: int = 4096,
89
- add_fc: bool = False,
90
- ):
91
- super().__init__()
92
- self.pixel_shuffle = PixelShuffle(ps_ratio)
93
- self.mlp = SimpleMLP(
94
- int(input_dim // (ps_ratio**2)),
95
- output_dim,
96
- bias=False,
97
- dropout=0.0,
98
- act_layer=nn.GELU,
99
- )
100
- self.fc = nn.Identity()
101
- if add_fc:
102
- self.fc = ColumnParallelLinear(
103
- output_dim,
104
- output_dim,
105
- bias=False,
106
- )
107
-
108
- def forward(self, encoded_patches: torch.Tensor) -> torch.Tensor:
109
- encoded_patches = self.pixel_shuffle(encoded_patches)
110
- return self.fc(self.mlp(encoded_patches))
111
-
112
-
113
- class VisionEmbeddings(torch.nn.Module):
114
- def __init__(self, args: VisionArgs):
115
- super().__init__()
116
- self.args = args
117
-
118
- image_size = args.image_size
119
- patch_size = args.patch_size
120
- self.vision_encoder = VisionEncoder(
121
- image_size=(image_size.height, image_size.width),
122
- patch_size=(patch_size.height, patch_size.width),
123
- dim=args.dim,
124
- layers=args.n_layers,
125
- heads=args.n_heads,
126
- mlp_ratio=args.mlp_ratio,
127
- )
128
- self.vision_encoder = self.vision_encoder.to(torch.bfloat16)
129
- self.vision_adapter = PixelShuffleMLP(
130
- ps_ratio=args.pixel_shuffle_ratio,
131
- input_dim=args.dim,
132
- output_dim=args.output_dim,
133
- )
134
-
135
- self.output_dim = args.output_dim
136
- self._register_load_state_dict_pre_hook(self.load_hook)
137
-
138
- def load_hook(
139
- self,
140
- state_dict: dict[str, Any],
141
- prefix: str,
142
- local_metadata: dict[str, Any],
143
- strict: bool = True,
144
- missing_keys: list[str] = None,
145
- unexpected_keys: list[str] = None,
146
- error_msgs: list[str] = None,
147
- return_state_dict: bool = False,
148
- ) -> None:
149
- original_sd = self.state_dict()
150
- for k in state_dict:
151
- if k.startswith(prefix) and len(state_dict[k].shape) == 1 and state_dict[k].shape[0] == 0:
152
- state_dict[k] = state_dict[k].reshape(original_sd[k[len(prefix) :]].shape)
153
-
154
- def _get_empty_sequence(self, h):
155
- return torch.zeros(
156
- h.shape[0],
157
- h.shape[1],
158
- self.output_dim,
159
- device=h.device,
160
- dtype=h.dtype,
161
- )
162
-
163
- # x_images is batched; each batch sample contains a list of images. so this is List[List[torch.Tensor]]
164
- # each image is a tensor of shape [num_tiles, C, H, W]
165
- def forward(
166
- self,
167
- image_batch: list[list[torch.Tensor]],
168
- image_mask: torch.Tensor,
169
- h_ref: torch.Tensor,
170
- ) -> torch.Tensor:
171
- images_flattened = [image for sample in image_batch for image in sample]
172
- images_flattened = torch.vstack(images_flattened).unsqueeze(1).to(h_ref.dtype).to(h_ref.device)
173
- embedding = self.vision_encoder(images_flattened)
174
- projected_embedding = self.vision_adapter(embedding)
175
-
176
- h_image = self._get_empty_sequence(h_ref)
177
- return scatter_embeddings(image_batch, image_mask, h_image, projected_embedding)
178
-
179
-
180
- def scatter_embeddings(image_batch, image_mask, h_image, encoded_patches_proj):
181
- # If dynamic transform is used and the batch contains 2 images (where image_1 has 2 chunks and image_2 has 3 chunks),
182
- # `num_images_per_sequence` now records the number of chunks per image as `[2, 3]`.
183
- # `encoded_patches_proj.split` will then split the image chunks into 2 groups: `[image_1_chunks, image_2_chunks]`.
184
- num_images_per_sequence = [sum(image.size(0) for image in sample_images) for sample_images in image_batch]
185
-
186
- assert not torch.isnan(encoded_patches_proj).any()
187
- assert sum(num_images_per_sequence) == encoded_patches_proj.size(0), (
188
- f"{sum(num_images_per_sequence)=} != {encoded_patches_proj.shape=}"
189
- )
190
-
191
- encoded_patches_list = encoded_patches_proj.split(num_images_per_sequence, dim=0)
192
- for index in range(h_image.size(0)):
193
- encoded_patches_per_sample = encoded_patches_list[index]
194
- sample_image_mask = image_mask[index]
195
-
196
- if encoded_patches_per_sample.numel() == 0:
197
- continue
198
- encoded_patches_per_sample = encoded_patches_per_sample.contiguous().view(
199
- -1, encoded_patches_per_sample.size(-1)
200
- )
201
-
202
- n_tokens_to_fill = sample_image_mask.sum()
203
- assert n_tokens_to_fill <= encoded_patches_per_sample.size(0)
204
-
205
- h_image[index].masked_scatter_(
206
- sample_image_mask.expand(-1, h_image.size(-1)),
207
- encoded_patches_per_sample[:n_tokens_to_fill],
208
- )
209
-
210
- return h_image