llama-stack 0.4.3__py3-none-any.whl → 0.5.0rc1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- llama_stack/cli/stack/_list_deps.py +11 -7
- llama_stack/cli/stack/run.py +3 -25
- llama_stack/core/access_control/datatypes.py +78 -0
- llama_stack/core/configure.py +2 -2
- {llama_stack_api/internal → llama_stack/core/connectors}/__init__.py +2 -2
- llama_stack/core/connectors/connectors.py +162 -0
- llama_stack/core/conversations/conversations.py +61 -58
- llama_stack/core/datatypes.py +54 -8
- llama_stack/core/library_client.py +60 -13
- llama_stack/core/prompts/prompts.py +43 -42
- llama_stack/core/routers/datasets.py +20 -17
- llama_stack/core/routers/eval_scoring.py +143 -53
- llama_stack/core/routers/inference.py +20 -9
- llama_stack/core/routers/safety.py +30 -42
- llama_stack/core/routers/vector_io.py +15 -7
- llama_stack/core/routing_tables/models.py +42 -3
- llama_stack/core/routing_tables/scoring_functions.py +19 -19
- llama_stack/core/routing_tables/shields.py +20 -17
- llama_stack/core/routing_tables/vector_stores.py +8 -5
- llama_stack/core/server/auth.py +192 -17
- llama_stack/core/server/fastapi_router_registry.py +40 -5
- llama_stack/core/server/server.py +24 -5
- llama_stack/core/stack.py +54 -10
- llama_stack/core/storage/datatypes.py +9 -0
- llama_stack/core/store/registry.py +1 -1
- llama_stack/core/utils/exec.py +2 -2
- llama_stack/core/utils/type_inspection.py +16 -2
- llama_stack/distributions/dell/config.yaml +4 -1
- llama_stack/distributions/dell/doc_template.md +209 -0
- llama_stack/distributions/dell/run-with-safety.yaml +4 -1
- llama_stack/distributions/nvidia/config.yaml +4 -1
- llama_stack/distributions/nvidia/doc_template.md +170 -0
- llama_stack/distributions/nvidia/run-with-safety.yaml +4 -1
- llama_stack/distributions/oci/config.yaml +4 -1
- llama_stack/distributions/oci/doc_template.md +140 -0
- llama_stack/distributions/open-benchmark/config.yaml +9 -1
- llama_stack/distributions/postgres-demo/config.yaml +1 -1
- llama_stack/distributions/starter/build.yaml +62 -0
- llama_stack/distributions/starter/config.yaml +22 -3
- llama_stack/distributions/starter/run-with-postgres-store.yaml +22 -3
- llama_stack/distributions/starter/starter.py +13 -1
- llama_stack/distributions/starter-gpu/build.yaml +62 -0
- llama_stack/distributions/starter-gpu/config.yaml +22 -3
- llama_stack/distributions/starter-gpu/run-with-postgres-store.yaml +22 -3
- llama_stack/distributions/template.py +10 -2
- llama_stack/distributions/watsonx/config.yaml +4 -1
- llama_stack/log.py +1 -0
- llama_stack/models/llama/resources/dog.jpg +0 -0
- llama_stack/models/llama/resources/pasta.jpeg +0 -0
- llama_stack/models/llama/resources/small_dog.jpg +0 -0
- llama_stack/providers/inline/agents/meta_reference/__init__.py +1 -0
- llama_stack/providers/inline/agents/meta_reference/agents.py +57 -61
- llama_stack/providers/inline/agents/meta_reference/responses/openai_responses.py +183 -60
- llama_stack/providers/inline/agents/meta_reference/responses/streaming.py +94 -22
- llama_stack/providers/inline/agents/meta_reference/responses/types.py +2 -1
- llama_stack/providers/inline/agents/meta_reference/responses/utils.py +4 -1
- llama_stack/providers/inline/agents/meta_reference/safety.py +2 -2
- llama_stack/providers/inline/batches/reference/batches.py +2 -1
- llama_stack/providers/inline/eval/meta_reference/eval.py +40 -32
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl/LocalInference.h +9 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl/LocalInference.swift +189 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl/Parsing.swift +238 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl/PromptTemplate.swift +12 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl/SystemPrompts.swift +89 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl.xcodeproj/project.pbxproj +550 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl.xcodeproj/project.xcworkspace/contents.xcworkspacedata +7 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl.xcodeproj/project.xcworkspace/xcshareddata/IDEWorkspaceChecks.plist +8 -0
- llama_stack/providers/inline/post_training/huggingface/post_training.py +33 -38
- llama_stack/providers/inline/post_training/huggingface/utils.py +2 -5
- llama_stack/providers/inline/post_training/torchtune/post_training.py +28 -33
- llama_stack/providers/inline/post_training/torchtune/recipes/lora_finetuning_single_device.py +2 -4
- llama_stack/providers/inline/safety/code_scanner/code_scanner.py +12 -15
- llama_stack/providers/inline/safety/llama_guard/llama_guard.py +15 -18
- llama_stack/providers/inline/safety/prompt_guard/prompt_guard.py +11 -17
- llama_stack/providers/inline/scoring/basic/scoring.py +13 -17
- llama_stack/providers/inline/scoring/braintrust/braintrust.py +15 -15
- llama_stack/providers/inline/scoring/llm_as_judge/scoring.py +13 -17
- llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py +1 -1
- llama_stack/providers/registry/agents.py +1 -0
- llama_stack/providers/registry/inference.py +1 -9
- llama_stack/providers/registry/vector_io.py +136 -16
- llama_stack/providers/remote/datasetio/nvidia/README.md +74 -0
- llama_stack/providers/remote/eval/nvidia/README.md +134 -0
- llama_stack/providers/remote/eval/nvidia/eval.py +22 -21
- llama_stack/providers/remote/files/s3/README.md +266 -0
- llama_stack/providers/remote/files/s3/config.py +5 -3
- llama_stack/providers/remote/files/s3/files.py +2 -2
- llama_stack/providers/remote/inference/gemini/gemini.py +4 -0
- llama_stack/providers/remote/inference/nvidia/NVIDIA.md +203 -0
- llama_stack/providers/remote/inference/openai/openai.py +2 -0
- llama_stack/providers/remote/inference/together/together.py +4 -0
- llama_stack/providers/remote/inference/vertexai/config.py +3 -3
- llama_stack/providers/remote/inference/vertexai/vertexai.py +5 -2
- llama_stack/providers/remote/inference/vllm/config.py +37 -18
- llama_stack/providers/remote/inference/vllm/vllm.py +0 -3
- llama_stack/providers/remote/inference/watsonx/watsonx.py +4 -0
- llama_stack/providers/remote/post_training/nvidia/README.md +151 -0
- llama_stack/providers/remote/post_training/nvidia/post_training.py +31 -33
- llama_stack/providers/remote/safety/bedrock/bedrock.py +10 -27
- llama_stack/providers/remote/safety/nvidia/README.md +78 -0
- llama_stack/providers/remote/safety/nvidia/nvidia.py +9 -25
- llama_stack/providers/remote/safety/sambanova/sambanova.py +13 -11
- llama_stack/providers/remote/vector_io/elasticsearch/__init__.py +17 -0
- llama_stack/providers/remote/vector_io/elasticsearch/config.py +32 -0
- llama_stack/providers/remote/vector_io/elasticsearch/elasticsearch.py +463 -0
- llama_stack/providers/remote/vector_io/oci/__init__.py +22 -0
- llama_stack/providers/remote/vector_io/oci/config.py +41 -0
- llama_stack/providers/remote/vector_io/oci/oci26ai.py +595 -0
- llama_stack/providers/remote/vector_io/pgvector/config.py +69 -2
- llama_stack/providers/remote/vector_io/pgvector/pgvector.py +255 -6
- llama_stack/providers/remote/vector_io/qdrant/qdrant.py +62 -38
- llama_stack/providers/utils/bedrock/client.py +3 -3
- llama_stack/providers/utils/bedrock/config.py +7 -7
- llama_stack/providers/utils/inference/embedding_mixin.py +4 -0
- llama_stack/providers/utils/inference/http_client.py +239 -0
- llama_stack/providers/utils/inference/litellm_openai_mixin.py +5 -0
- llama_stack/providers/utils/inference/model_registry.py +148 -2
- llama_stack/providers/utils/inference/openai_compat.py +2 -1
- llama_stack/providers/utils/inference/openai_mixin.py +41 -2
- llama_stack/providers/utils/memory/openai_vector_store_mixin.py +92 -5
- llama_stack/providers/utils/memory/vector_store.py +46 -19
- llama_stack/providers/utils/responses/responses_store.py +40 -6
- llama_stack/providers/utils/safety.py +114 -0
- llama_stack/providers/utils/tools/mcp.py +44 -3
- llama_stack/testing/api_recorder.py +9 -3
- {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/METADATA +14 -2
- {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/RECORD +131 -275
- llama_stack-0.5.0rc1.dist-info/top_level.txt +1 -0
- llama_stack/distributions/meta-reference-gpu/__init__.py +0 -7
- llama_stack/distributions/meta-reference-gpu/config.yaml +0 -140
- llama_stack/distributions/meta-reference-gpu/meta_reference.py +0 -163
- llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml +0 -155
- llama_stack/models/llama/hadamard_utils.py +0 -88
- llama_stack/models/llama/llama3/args.py +0 -74
- llama_stack/models/llama/llama3/generation.py +0 -378
- llama_stack/models/llama/llama3/model.py +0 -304
- llama_stack/models/llama/llama3/multimodal/__init__.py +0 -12
- llama_stack/models/llama/llama3/multimodal/encoder_utils.py +0 -180
- llama_stack/models/llama/llama3/multimodal/image_transform.py +0 -409
- llama_stack/models/llama/llama3/multimodal/model.py +0 -1430
- llama_stack/models/llama/llama3/multimodal/utils.py +0 -26
- llama_stack/models/llama/llama3/quantization/__init__.py +0 -5
- llama_stack/models/llama/llama3/quantization/loader.py +0 -316
- llama_stack/models/llama/llama3_1/__init__.py +0 -12
- llama_stack/models/llama/llama3_1/prompt_format.md +0 -358
- llama_stack/models/llama/llama3_1/prompts.py +0 -258
- llama_stack/models/llama/llama3_2/__init__.py +0 -5
- llama_stack/models/llama/llama3_2/prompts_text.py +0 -229
- llama_stack/models/llama/llama3_2/prompts_vision.py +0 -126
- llama_stack/models/llama/llama3_2/text_prompt_format.md +0 -286
- llama_stack/models/llama/llama3_2/vision_prompt_format.md +0 -141
- llama_stack/models/llama/llama3_3/__init__.py +0 -5
- llama_stack/models/llama/llama3_3/prompts.py +0 -259
- llama_stack/models/llama/llama4/args.py +0 -107
- llama_stack/models/llama/llama4/ffn.py +0 -58
- llama_stack/models/llama/llama4/moe.py +0 -214
- llama_stack/models/llama/llama4/preprocess.py +0 -435
- llama_stack/models/llama/llama4/quantization/__init__.py +0 -5
- llama_stack/models/llama/llama4/quantization/loader.py +0 -226
- llama_stack/models/llama/llama4/vision/__init__.py +0 -5
- llama_stack/models/llama/llama4/vision/embedding.py +0 -210
- llama_stack/models/llama/llama4/vision/encoder.py +0 -412
- llama_stack/models/llama/quantize_impls.py +0 -316
- llama_stack/providers/inline/inference/meta_reference/__init__.py +0 -20
- llama_stack/providers/inline/inference/meta_reference/common.py +0 -24
- llama_stack/providers/inline/inference/meta_reference/config.py +0 -68
- llama_stack/providers/inline/inference/meta_reference/generators.py +0 -201
- llama_stack/providers/inline/inference/meta_reference/inference.py +0 -542
- llama_stack/providers/inline/inference/meta_reference/model_parallel.py +0 -77
- llama_stack/providers/inline/inference/meta_reference/parallel_utils.py +0 -353
- llama_stack-0.4.3.dist-info/top_level.txt +0 -2
- llama_stack_api/__init__.py +0 -945
- llama_stack_api/admin/__init__.py +0 -45
- llama_stack_api/admin/api.py +0 -72
- llama_stack_api/admin/fastapi_routes.py +0 -117
- llama_stack_api/admin/models.py +0 -113
- llama_stack_api/agents.py +0 -173
- llama_stack_api/batches/__init__.py +0 -40
- llama_stack_api/batches/api.py +0 -53
- llama_stack_api/batches/fastapi_routes.py +0 -113
- llama_stack_api/batches/models.py +0 -78
- llama_stack_api/benchmarks/__init__.py +0 -43
- llama_stack_api/benchmarks/api.py +0 -39
- llama_stack_api/benchmarks/fastapi_routes.py +0 -109
- llama_stack_api/benchmarks/models.py +0 -109
- llama_stack_api/common/__init__.py +0 -5
- llama_stack_api/common/content_types.py +0 -101
- llama_stack_api/common/errors.py +0 -95
- llama_stack_api/common/job_types.py +0 -38
- llama_stack_api/common/responses.py +0 -77
- llama_stack_api/common/training_types.py +0 -47
- llama_stack_api/common/type_system.py +0 -146
- llama_stack_api/connectors.py +0 -146
- llama_stack_api/conversations.py +0 -270
- llama_stack_api/datasetio.py +0 -55
- llama_stack_api/datasets/__init__.py +0 -61
- llama_stack_api/datasets/api.py +0 -35
- llama_stack_api/datasets/fastapi_routes.py +0 -104
- llama_stack_api/datasets/models.py +0 -152
- llama_stack_api/datatypes.py +0 -373
- llama_stack_api/eval.py +0 -137
- llama_stack_api/file_processors/__init__.py +0 -27
- llama_stack_api/file_processors/api.py +0 -64
- llama_stack_api/file_processors/fastapi_routes.py +0 -78
- llama_stack_api/file_processors/models.py +0 -42
- llama_stack_api/files/__init__.py +0 -35
- llama_stack_api/files/api.py +0 -51
- llama_stack_api/files/fastapi_routes.py +0 -124
- llama_stack_api/files/models.py +0 -107
- llama_stack_api/inference.py +0 -1169
- llama_stack_api/inspect_api/__init__.py +0 -37
- llama_stack_api/inspect_api/api.py +0 -25
- llama_stack_api/inspect_api/fastapi_routes.py +0 -76
- llama_stack_api/inspect_api/models.py +0 -28
- llama_stack_api/internal/kvstore.py +0 -28
- llama_stack_api/internal/sqlstore.py +0 -81
- llama_stack_api/llama_stack_api/__init__.py +0 -945
- llama_stack_api/llama_stack_api/admin/__init__.py +0 -45
- llama_stack_api/llama_stack_api/admin/api.py +0 -72
- llama_stack_api/llama_stack_api/admin/fastapi_routes.py +0 -117
- llama_stack_api/llama_stack_api/admin/models.py +0 -113
- llama_stack_api/llama_stack_api/agents.py +0 -173
- llama_stack_api/llama_stack_api/batches/__init__.py +0 -40
- llama_stack_api/llama_stack_api/batches/api.py +0 -53
- llama_stack_api/llama_stack_api/batches/fastapi_routes.py +0 -113
- llama_stack_api/llama_stack_api/batches/models.py +0 -78
- llama_stack_api/llama_stack_api/benchmarks/__init__.py +0 -43
- llama_stack_api/llama_stack_api/benchmarks/api.py +0 -39
- llama_stack_api/llama_stack_api/benchmarks/fastapi_routes.py +0 -109
- llama_stack_api/llama_stack_api/benchmarks/models.py +0 -109
- llama_stack_api/llama_stack_api/common/__init__.py +0 -5
- llama_stack_api/llama_stack_api/common/content_types.py +0 -101
- llama_stack_api/llama_stack_api/common/errors.py +0 -95
- llama_stack_api/llama_stack_api/common/job_types.py +0 -38
- llama_stack_api/llama_stack_api/common/responses.py +0 -77
- llama_stack_api/llama_stack_api/common/training_types.py +0 -47
- llama_stack_api/llama_stack_api/common/type_system.py +0 -146
- llama_stack_api/llama_stack_api/connectors.py +0 -146
- llama_stack_api/llama_stack_api/conversations.py +0 -270
- llama_stack_api/llama_stack_api/datasetio.py +0 -55
- llama_stack_api/llama_stack_api/datasets/__init__.py +0 -61
- llama_stack_api/llama_stack_api/datasets/api.py +0 -35
- llama_stack_api/llama_stack_api/datasets/fastapi_routes.py +0 -104
- llama_stack_api/llama_stack_api/datasets/models.py +0 -152
- llama_stack_api/llama_stack_api/datatypes.py +0 -373
- llama_stack_api/llama_stack_api/eval.py +0 -137
- llama_stack_api/llama_stack_api/file_processors/__init__.py +0 -27
- llama_stack_api/llama_stack_api/file_processors/api.py +0 -64
- llama_stack_api/llama_stack_api/file_processors/fastapi_routes.py +0 -78
- llama_stack_api/llama_stack_api/file_processors/models.py +0 -42
- llama_stack_api/llama_stack_api/files/__init__.py +0 -35
- llama_stack_api/llama_stack_api/files/api.py +0 -51
- llama_stack_api/llama_stack_api/files/fastapi_routes.py +0 -124
- llama_stack_api/llama_stack_api/files/models.py +0 -107
- llama_stack_api/llama_stack_api/inference.py +0 -1169
- llama_stack_api/llama_stack_api/inspect_api/__init__.py +0 -37
- llama_stack_api/llama_stack_api/inspect_api/api.py +0 -25
- llama_stack_api/llama_stack_api/inspect_api/fastapi_routes.py +0 -76
- llama_stack_api/llama_stack_api/inspect_api/models.py +0 -28
- llama_stack_api/llama_stack_api/internal/__init__.py +0 -9
- llama_stack_api/llama_stack_api/internal/kvstore.py +0 -28
- llama_stack_api/llama_stack_api/internal/sqlstore.py +0 -81
- llama_stack_api/llama_stack_api/models.py +0 -171
- llama_stack_api/llama_stack_api/openai_responses.py +0 -1468
- llama_stack_api/llama_stack_api/post_training.py +0 -370
- llama_stack_api/llama_stack_api/prompts.py +0 -203
- llama_stack_api/llama_stack_api/providers/__init__.py +0 -33
- llama_stack_api/llama_stack_api/providers/api.py +0 -16
- llama_stack_api/llama_stack_api/providers/fastapi_routes.py +0 -57
- llama_stack_api/llama_stack_api/providers/models.py +0 -24
- llama_stack_api/llama_stack_api/py.typed +0 -0
- llama_stack_api/llama_stack_api/rag_tool.py +0 -168
- llama_stack_api/llama_stack_api/resource.py +0 -37
- llama_stack_api/llama_stack_api/router_utils.py +0 -160
- llama_stack_api/llama_stack_api/safety.py +0 -132
- llama_stack_api/llama_stack_api/schema_utils.py +0 -208
- llama_stack_api/llama_stack_api/scoring.py +0 -93
- llama_stack_api/llama_stack_api/scoring_functions.py +0 -211
- llama_stack_api/llama_stack_api/shields.py +0 -93
- llama_stack_api/llama_stack_api/tools.py +0 -226
- llama_stack_api/llama_stack_api/vector_io.py +0 -941
- llama_stack_api/llama_stack_api/vector_stores.py +0 -53
- llama_stack_api/llama_stack_api/version.py +0 -9
- llama_stack_api/models.py +0 -171
- llama_stack_api/openai_responses.py +0 -1468
- llama_stack_api/post_training.py +0 -370
- llama_stack_api/prompts.py +0 -203
- llama_stack_api/providers/__init__.py +0 -33
- llama_stack_api/providers/api.py +0 -16
- llama_stack_api/providers/fastapi_routes.py +0 -57
- llama_stack_api/providers/models.py +0 -24
- llama_stack_api/py.typed +0 -0
- llama_stack_api/rag_tool.py +0 -168
- llama_stack_api/resource.py +0 -37
- llama_stack_api/router_utils.py +0 -160
- llama_stack_api/safety.py +0 -132
- llama_stack_api/schema_utils.py +0 -208
- llama_stack_api/scoring.py +0 -93
- llama_stack_api/scoring_functions.py +0 -211
- llama_stack_api/shields.py +0 -93
- llama_stack_api/tools.py +0 -226
- llama_stack_api/vector_io.py +0 -941
- llama_stack_api/vector_stores.py +0 -53
- llama_stack_api/version.py +0 -9
- {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/WHEEL +0 -0
- {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/entry_points.txt +0 -0
- {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,1430 +0,0 @@
|
|
|
1
|
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
-
# All rights reserved.
|
|
3
|
-
#
|
|
4
|
-
# This source code is licensed under the terms described in the LICENSE file in
|
|
5
|
-
# the root directory of this source tree.
|
|
6
|
-
import math
|
|
7
|
-
from collections.abc import Callable
|
|
8
|
-
from functools import partial
|
|
9
|
-
from typing import Any
|
|
10
|
-
|
|
11
|
-
import fairscale.nn.model_parallel.initialize as fs_init
|
|
12
|
-
import torch
|
|
13
|
-
import torch.nn.functional as F
|
|
14
|
-
from fairscale.nn.model_parallel.layers import (
|
|
15
|
-
ColumnParallelLinear,
|
|
16
|
-
RowParallelLinear,
|
|
17
|
-
VocabParallelEmbedding,
|
|
18
|
-
)
|
|
19
|
-
from PIL import Image as PIL_Image
|
|
20
|
-
from torch import Tensor, nn
|
|
21
|
-
from torch.distributed import _functional_collectives as funcol
|
|
22
|
-
|
|
23
|
-
from llama_stack.log import get_logger
|
|
24
|
-
|
|
25
|
-
from ..model import ModelArgs, RMSNorm, apply_rotary_emb, precompute_freqs_cis
|
|
26
|
-
from .encoder_utils import (
|
|
27
|
-
build_encoder_attention_mask,
|
|
28
|
-
contract_num_tokens_from_mult8,
|
|
29
|
-
expand_num_tokens_to_mult8,
|
|
30
|
-
initialize_global_position_embedding_from_local,
|
|
31
|
-
resize_global_position_embedding,
|
|
32
|
-
resize_local_position_embedding,
|
|
33
|
-
)
|
|
34
|
-
from .image_transform import VariableSizeImageTransform
|
|
35
|
-
from .utils import get_negative_inf_value, to_2tuple
|
|
36
|
-
|
|
37
|
-
MP_SCALE = 8
|
|
38
|
-
|
|
39
|
-
logger = get_logger(name=__name__, category="models::llama")
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
def reduce_from_tensor_model_parallel_region(input_):
|
|
43
|
-
"""All-reduce the input tensor across model parallel group."""
|
|
44
|
-
output = funcol.all_reduce(input_, "sum", group=fs_init.get_model_parallel_group())
|
|
45
|
-
output = funcol.wait_tensor(output)
|
|
46
|
-
return output
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
def gather_from_tensor_model_parallel_region(input_):
|
|
50
|
-
"""Gather tensors and concatenate along the last dimension."""
|
|
51
|
-
|
|
52
|
-
world_size = fs_init.get_model_parallel_world_size()
|
|
53
|
-
# Size and dimension.
|
|
54
|
-
last_dim = input_.dim() - 1
|
|
55
|
-
rank = fs_init.get_model_parallel_rank()
|
|
56
|
-
|
|
57
|
-
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
|
|
58
|
-
tensor_list[rank] = input_
|
|
59
|
-
output = funcol.all_gather_tensor(
|
|
60
|
-
input_,
|
|
61
|
-
gather_dim=last_dim,
|
|
62
|
-
group=fs_init.get_model_parallel_group(),
|
|
63
|
-
)
|
|
64
|
-
output = funcol.wait_tensor(output)
|
|
65
|
-
return output
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
def _get_full_row_masked_out_mask(
|
|
69
|
-
attn_bias,
|
|
70
|
-
negative_inf_value,
|
|
71
|
-
):
|
|
72
|
-
"""
|
|
73
|
-
attn_bias should be a 4D tensor of shape [B, H, S1, S2]
|
|
74
|
-
where B is the batch size, H is the number of heads,
|
|
75
|
-
and S1/S2 are the sequence lengths. This returns
|
|
76
|
-
a 4D tensor of shape [B, H, S1, 1] which stores boolean
|
|
77
|
-
values which are 0 if the a full row in the last dimension
|
|
78
|
-
contains negative infinity values, otherwise it's 1.
|
|
79
|
-
"""
|
|
80
|
-
return (attn_bias != negative_inf_value).any(dim=-1).type_as(attn_bias)[..., None]
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
# Image encoder for inference
|
|
84
|
-
class LayerNorm(nn.LayerNorm):
|
|
85
|
-
"""Subclass torch's LayerNorm to handle fp16."""
|
|
86
|
-
|
|
87
|
-
def forward(self, x: torch.Tensor):
|
|
88
|
-
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
|
89
|
-
return x
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
class ColumnParallelConv2dPatch(torch.nn.Module):
|
|
93
|
-
"""Conv2D Patching layer with model parallelism.
|
|
94
|
-
Column parallel over unfolded input.
|
|
95
|
-
Arguments:
|
|
96
|
-
in_channels: Input channels.
|
|
97
|
-
out_channels: Output channels.
|
|
98
|
-
kernel_size: Size of convolution kernel.
|
|
99
|
-
stride (default 1): Stride for convolution.
|
|
100
|
-
bias (default False): Use bias in Conv2d.
|
|
101
|
-
Input: (bsz, in_channels, width, height)
|
|
102
|
-
Output: (bsz, num_tokens, out_channels)
|
|
103
|
-
"""
|
|
104
|
-
|
|
105
|
-
def __init__(
|
|
106
|
-
self,
|
|
107
|
-
in_channels: int,
|
|
108
|
-
out_channels: int,
|
|
109
|
-
kernel_size: int | tuple[int, int],
|
|
110
|
-
stride: int | tuple[int, int],
|
|
111
|
-
bias: bool | None = False,
|
|
112
|
-
) -> None:
|
|
113
|
-
super().__init__()
|
|
114
|
-
if isinstance(kernel_size, int):
|
|
115
|
-
kernel_size = (kernel_size, kernel_size)
|
|
116
|
-
self._unfold = torch.nn.Unfold(kernel_size=kernel_size, stride=stride)
|
|
117
|
-
self._linear = ColumnParallelLinear(
|
|
118
|
-
in_channels * kernel_size[0] * kernel_size[1],
|
|
119
|
-
out_channels,
|
|
120
|
-
bias=bias,
|
|
121
|
-
)
|
|
122
|
-
|
|
123
|
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
124
|
-
x = self._unfold(x)
|
|
125
|
-
x = x.permute(0, 2, 1)
|
|
126
|
-
x = F.linear(x, self._linear.weight)
|
|
127
|
-
x = gather_from_tensor_model_parallel_region(x)
|
|
128
|
-
return x
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
class ImageFeedForward(torch.nn.Module):
|
|
132
|
-
def __init__(
|
|
133
|
-
self,
|
|
134
|
-
dim: int,
|
|
135
|
-
hidden_dim: int,
|
|
136
|
-
dropout: float,
|
|
137
|
-
act_layer: Callable = nn.GELU,
|
|
138
|
-
):
|
|
139
|
-
super().__init__()
|
|
140
|
-
# layers
|
|
141
|
-
self.c_fc = ColumnParallelLinear(
|
|
142
|
-
dim,
|
|
143
|
-
hidden_dim,
|
|
144
|
-
bias=True,
|
|
145
|
-
gather_output=False,
|
|
146
|
-
init_method=lambda x: x,
|
|
147
|
-
)
|
|
148
|
-
self.c_proj = RowParallelLinear(
|
|
149
|
-
hidden_dim,
|
|
150
|
-
dim,
|
|
151
|
-
bias=True,
|
|
152
|
-
input_is_parallel=True,
|
|
153
|
-
init_method=lambda x: x,
|
|
154
|
-
)
|
|
155
|
-
self.non_linearity = act_layer()
|
|
156
|
-
self.dropout = dropout
|
|
157
|
-
|
|
158
|
-
def forward(self, x):
|
|
159
|
-
hidden = F.linear(x, self.c_fc.weight, self.c_fc.bias)
|
|
160
|
-
hidden = self.non_linearity(hidden)
|
|
161
|
-
hidden = F.linear(hidden, self.c_proj.weight)
|
|
162
|
-
hidden = reduce_from_tensor_model_parallel_region(hidden)
|
|
163
|
-
hidden += self.c_proj.bias
|
|
164
|
-
return hidden
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
class ImageAttention(nn.Module):
|
|
168
|
-
def __init__(
|
|
169
|
-
self,
|
|
170
|
-
dim,
|
|
171
|
-
head_dim,
|
|
172
|
-
n_heads,
|
|
173
|
-
):
|
|
174
|
-
super().__init__()
|
|
175
|
-
world_size = fs_init.get_model_parallel_world_size()
|
|
176
|
-
qkvo_replication = 1
|
|
177
|
-
if world_size > 16:
|
|
178
|
-
qkvo_replication = world_size // 8
|
|
179
|
-
|
|
180
|
-
self.n_kv_heads = n_heads
|
|
181
|
-
self.n_local_heads = n_heads * qkvo_replication // world_size
|
|
182
|
-
self.n_local_kv_heads = self.n_kv_heads * qkvo_replication // world_size
|
|
183
|
-
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
|
184
|
-
self.head_dim = dim // n_heads
|
|
185
|
-
|
|
186
|
-
self.wq = ColumnParallelLinear(
|
|
187
|
-
dim,
|
|
188
|
-
qkvo_replication * n_heads * self.head_dim,
|
|
189
|
-
bias=False,
|
|
190
|
-
gather_output=False,
|
|
191
|
-
init_method=lambda x: x,
|
|
192
|
-
)
|
|
193
|
-
self.wk = ColumnParallelLinear(
|
|
194
|
-
dim,
|
|
195
|
-
qkvo_replication * self.n_kv_heads * self.head_dim,
|
|
196
|
-
bias=False,
|
|
197
|
-
gather_output=False,
|
|
198
|
-
init_method=lambda x: x,
|
|
199
|
-
)
|
|
200
|
-
self.wv = ColumnParallelLinear(
|
|
201
|
-
dim,
|
|
202
|
-
qkvo_replication * self.n_kv_heads * self.head_dim,
|
|
203
|
-
bias=False,
|
|
204
|
-
gather_output=False,
|
|
205
|
-
init_method=lambda x: x,
|
|
206
|
-
)
|
|
207
|
-
self.wo = RowParallelLinear(
|
|
208
|
-
qkvo_replication * n_heads * self.head_dim,
|
|
209
|
-
dim,
|
|
210
|
-
bias=False,
|
|
211
|
-
input_is_parallel=True,
|
|
212
|
-
init_method=lambda x: x,
|
|
213
|
-
)
|
|
214
|
-
self.qkvo_replication = qkvo_replication
|
|
215
|
-
|
|
216
|
-
def forward(
|
|
217
|
-
self,
|
|
218
|
-
x: torch.Tensor,
|
|
219
|
-
mask: torch.Tensor = None,
|
|
220
|
-
):
|
|
221
|
-
xq, xk, xv = [F.linear(x, w) for w in [self.wq.weight, self.wk.weight, self.wv.weight]]
|
|
222
|
-
|
|
223
|
-
bs, slen, _ = xq.shape
|
|
224
|
-
|
|
225
|
-
xq = xq.view(bs, slen, self.n_local_heads, self.head_dim)
|
|
226
|
-
xk = xk.view(bs, xk.shape[1], self.n_local_kv_heads, self.head_dim)
|
|
227
|
-
xv = xv.view(bs, xv.shape[1], self.n_local_kv_heads, self.head_dim)
|
|
228
|
-
|
|
229
|
-
xq, xk, xv = [tensor.transpose(1, 2) for tensor in (xq, xk, xv)]
|
|
230
|
-
|
|
231
|
-
xk = xk.repeat_interleave(self.n_rep, dim=1)
|
|
232
|
-
xv = xv.repeat_interleave(self.n_rep, dim=1)
|
|
233
|
-
|
|
234
|
-
attn_output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=mask, dropout_p=0.0)
|
|
235
|
-
|
|
236
|
-
attn_output = attn_output.transpose(1, 2).contiguous().reshape(bs, slen, -1)
|
|
237
|
-
|
|
238
|
-
out = F.linear(attn_output, self.wo.weight)
|
|
239
|
-
out = reduce_from_tensor_model_parallel_region(out)
|
|
240
|
-
out = out / self.qkvo_replication
|
|
241
|
-
return out
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
class ImageTransformerBlock(nn.Module):
|
|
245
|
-
def __init__(
|
|
246
|
-
self,
|
|
247
|
-
d_model: int,
|
|
248
|
-
n_head: int,
|
|
249
|
-
mlp_ratio: float = 4.0,
|
|
250
|
-
act_layer: Callable = nn.GELU,
|
|
251
|
-
gated: bool = False,
|
|
252
|
-
):
|
|
253
|
-
super().__init__()
|
|
254
|
-
assert d_model % n_head == 0
|
|
255
|
-
self.n_heads = n_head
|
|
256
|
-
self.head_dim = d_model // self.n_heads
|
|
257
|
-
self.attn = ImageAttention(
|
|
258
|
-
dim=d_model,
|
|
259
|
-
head_dim=self.head_dim,
|
|
260
|
-
n_heads=self.n_heads,
|
|
261
|
-
)
|
|
262
|
-
self.ln_1 = LayerNorm(d_model)
|
|
263
|
-
self.mlp = ImageFeedForward(
|
|
264
|
-
dim=d_model,
|
|
265
|
-
hidden_dim=int(mlp_ratio * d_model),
|
|
266
|
-
dropout=0.0,
|
|
267
|
-
act_layer=act_layer,
|
|
268
|
-
)
|
|
269
|
-
self.ln_2 = LayerNorm(d_model)
|
|
270
|
-
self.gated = gated
|
|
271
|
-
if gated:
|
|
272
|
-
self.gate_attn = nn.Parameter(torch.zeros(1))
|
|
273
|
-
self.gate_ffn = nn.Parameter(torch.zeros(1))
|
|
274
|
-
|
|
275
|
-
def forward(
|
|
276
|
-
self,
|
|
277
|
-
x: torch.Tensor,
|
|
278
|
-
mask: torch.Tensor = None,
|
|
279
|
-
):
|
|
280
|
-
_gate_attn = 1 if not self.gated else self.gate_attn.tanh()
|
|
281
|
-
_gate_ffn = 1 if not self.gated else self.gate_ffn.tanh()
|
|
282
|
-
x = x + _gate_attn * self.attn(self.ln_1(x), mask=mask)
|
|
283
|
-
x = x + _gate_ffn * self.mlp(self.ln_2(x))
|
|
284
|
-
return x
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
class ImageTransformer(nn.Module):
|
|
288
|
-
def __init__(
|
|
289
|
-
self,
|
|
290
|
-
width: int,
|
|
291
|
-
layers: int,
|
|
292
|
-
heads: int,
|
|
293
|
-
mlp_ratio: float = 4.0,
|
|
294
|
-
act_layer: Callable = nn.GELU,
|
|
295
|
-
gated: bool = False,
|
|
296
|
-
):
|
|
297
|
-
super().__init__()
|
|
298
|
-
self.width = width
|
|
299
|
-
self.layers = layers
|
|
300
|
-
self.resblocks = nn.ModuleList(
|
|
301
|
-
[
|
|
302
|
-
ImageTransformerBlock(
|
|
303
|
-
d_model=width,
|
|
304
|
-
n_head=heads,
|
|
305
|
-
mlp_ratio=mlp_ratio,
|
|
306
|
-
act_layer=act_layer,
|
|
307
|
-
gated=gated,
|
|
308
|
-
)
|
|
309
|
-
for _ in range(self.layers)
|
|
310
|
-
]
|
|
311
|
-
)
|
|
312
|
-
|
|
313
|
-
def forward(self, x: torch.Tensor, return_intermediate=None, mask=None):
|
|
314
|
-
out = []
|
|
315
|
-
for idx, r in enumerate(self.resblocks):
|
|
316
|
-
if return_intermediate is not None and idx in return_intermediate:
|
|
317
|
-
out.append(x)
|
|
318
|
-
x = r(x, mask=mask)
|
|
319
|
-
if return_intermediate is not None:
|
|
320
|
-
return x, torch.stack(out, dim=-1)
|
|
321
|
-
return x
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
class VisionEncoder(nn.Module):
|
|
325
|
-
def __init__(
|
|
326
|
-
self,
|
|
327
|
-
max_num_tiles: int,
|
|
328
|
-
ckpt_path: str = None,
|
|
329
|
-
image_size: int = 224,
|
|
330
|
-
patch_size: int = 14,
|
|
331
|
-
width: int = 1280,
|
|
332
|
-
layers: int = 32,
|
|
333
|
-
heads: int = 16,
|
|
334
|
-
mlp_ratio: float = 4.0,
|
|
335
|
-
act_layer: Callable = nn.GELU,
|
|
336
|
-
in_channels: int = 3,
|
|
337
|
-
load_ckpt: bool = False,
|
|
338
|
-
n_global_layers: int = 2,
|
|
339
|
-
global_model: bool = False,
|
|
340
|
-
return_intermediate=None,
|
|
341
|
-
):
|
|
342
|
-
super().__init__()
|
|
343
|
-
self.global_model = global_model
|
|
344
|
-
self.return_intermediate = return_intermediate
|
|
345
|
-
self.max_num_tiles = max_num_tiles
|
|
346
|
-
self.image_size = to_2tuple(image_size)
|
|
347
|
-
self.patch_size = to_2tuple(patch_size)
|
|
348
|
-
self.grid_size = (
|
|
349
|
-
self.image_size[0] // self.patch_size[0],
|
|
350
|
-
self.image_size[1] // self.patch_size[1],
|
|
351
|
-
)
|
|
352
|
-
self.conv1 = ColumnParallelConv2dPatch(
|
|
353
|
-
in_channels=in_channels,
|
|
354
|
-
out_channels=width,
|
|
355
|
-
kernel_size=patch_size,
|
|
356
|
-
stride=patch_size,
|
|
357
|
-
bias=False,
|
|
358
|
-
)
|
|
359
|
-
scale = width**-0.5
|
|
360
|
-
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
|
361
|
-
self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))
|
|
362
|
-
self.ln_post = LayerNorm(width)
|
|
363
|
-
self.ln_pre = LayerNorm(width)
|
|
364
|
-
self.transformer = ImageTransformer(width, layers, heads, mlp_ratio, act_layer=act_layer)
|
|
365
|
-
# pre and post tile position embedding
|
|
366
|
-
self.global_transformer = ImageTransformer(
|
|
367
|
-
width, n_global_layers, heads, mlp_ratio, act_layer=act_layer, gated=True
|
|
368
|
-
)
|
|
369
|
-
# pre and post tile position embedding
|
|
370
|
-
self.pre_tile_pos_embed = TilePositionEmbedding(
|
|
371
|
-
num_tiles=max_num_tiles,
|
|
372
|
-
width=width,
|
|
373
|
-
gated=True,
|
|
374
|
-
)
|
|
375
|
-
self.post_tile_pos_embed = TilePositionEmbedding(
|
|
376
|
-
num_tiles=max_num_tiles,
|
|
377
|
-
width=width,
|
|
378
|
-
gated=True,
|
|
379
|
-
)
|
|
380
|
-
self.gated_positional_embedding = nn.Parameter(
|
|
381
|
-
scale
|
|
382
|
-
* torch.randn(
|
|
383
|
-
max_num_tiles,
|
|
384
|
-
max_num_tiles,
|
|
385
|
-
self.grid_size[0] * self.grid_size[1] + 1,
|
|
386
|
-
width,
|
|
387
|
-
)
|
|
388
|
-
)
|
|
389
|
-
self.gated_positional_embedding_gate = nn.Parameter(torch.zeros(1))
|
|
390
|
-
|
|
391
|
-
self._register_load_state_dict_pre_hook(self.load_hook)
|
|
392
|
-
|
|
393
|
-
def load_hook(
|
|
394
|
-
self,
|
|
395
|
-
state_dict: dict[str, Any],
|
|
396
|
-
prefix: str,
|
|
397
|
-
local_metadata: dict[str, Any],
|
|
398
|
-
strict: bool = True,
|
|
399
|
-
missing_keys: list[str] = None,
|
|
400
|
-
unexpected_keys: list[str] = None,
|
|
401
|
-
error_msgs: list[str] = None,
|
|
402
|
-
return_state_dict: bool = False,
|
|
403
|
-
) -> None:
|
|
404
|
-
orig_pos_embed = state_dict.get(prefix + "positional_embedding")
|
|
405
|
-
if orig_pos_embed is not None:
|
|
406
|
-
new_pos_embed = resize_local_position_embedding(orig_pos_embed, self.grid_size)
|
|
407
|
-
state_dict[prefix + "positional_embedding"] = new_pos_embed
|
|
408
|
-
if hasattr(self, "gated_positional_embedding"):
|
|
409
|
-
if prefix + "gated_positional_embedding" not in state_dict:
|
|
410
|
-
# resize positional_embedding to fit the new grid size
|
|
411
|
-
global_pos_embed = initialize_global_position_embedding_from_local(
|
|
412
|
-
new_pos_embed,
|
|
413
|
-
self.grid_size,
|
|
414
|
-
self.max_num_tiles,
|
|
415
|
-
self.max_num_tiles,
|
|
416
|
-
)
|
|
417
|
-
state_dict[prefix + "gated_positional_embedding"] = global_pos_embed
|
|
418
|
-
state_dict[prefix + "gated_positional_embedding_gate"] = torch.zeros(1, dtype=global_pos_embed.dtype)
|
|
419
|
-
logger.info(f"Initialized global positional embedding with size {global_pos_embed.size()}")
|
|
420
|
-
else:
|
|
421
|
-
global_pos_embed = resize_global_position_embedding(
|
|
422
|
-
state_dict[prefix + "gated_positional_embedding"],
|
|
423
|
-
self.grid_size,
|
|
424
|
-
self.max_num_tiles,
|
|
425
|
-
self.max_num_tiles,
|
|
426
|
-
)
|
|
427
|
-
logger.info(
|
|
428
|
-
f"Resized global positional embedding from {state_dict[prefix + 'gated_positional_embedding'].size()} to {global_pos_embed.size()}"
|
|
429
|
-
)
|
|
430
|
-
state_dict[prefix + "gated_positional_embedding"] = global_pos_embed
|
|
431
|
-
if return_state_dict:
|
|
432
|
-
return state_dict
|
|
433
|
-
|
|
434
|
-
def apply_positional_embedding(self, x, ar):
|
|
435
|
-
# apply regular position embedding
|
|
436
|
-
bsz, num_chunks, num_tokens, dim = x.shape
|
|
437
|
-
x = x.view(bsz * num_chunks, num_tokens, dim)
|
|
438
|
-
x = x + self.positional_embedding * (1 - self.gated_positional_embedding_gate.tanh())
|
|
439
|
-
x = x.view(bsz, num_chunks, num_tokens, dim)
|
|
440
|
-
for idx, arx in enumerate(ar):
|
|
441
|
-
_pos_embed = self.gated_positional_embedding[: arx[0], : arx[1]]
|
|
442
|
-
_pos_embed = _pos_embed.reshape(arx[0] * arx[1], *_pos_embed.shape[2:])
|
|
443
|
-
x[idx, : arx[0] * arx[1]] += _pos_embed * self.gated_positional_embedding_gate.tanh()
|
|
444
|
-
return x
|
|
445
|
-
|
|
446
|
-
def apply_class_embedding(self, x):
|
|
447
|
-
x = torch.cat(
|
|
448
|
-
[
|
|
449
|
-
self.class_embedding.to(x.dtype)
|
|
450
|
-
+ torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
|
451
|
-
x,
|
|
452
|
-
],
|
|
453
|
-
dim=1,
|
|
454
|
-
) # shape = [*, grid ** 2 + 1, width]
|
|
455
|
-
return x
|
|
456
|
-
|
|
457
|
-
def forward(self, images: torch.Tensor, ar: torch.Tensor) -> torch.Tensor:
|
|
458
|
-
if images.ndim == 5:
|
|
459
|
-
num_concurrent_media = 1
|
|
460
|
-
bsz, num_chunks, nch, w, h = images.shape
|
|
461
|
-
else:
|
|
462
|
-
bsz, num_concurrent_media, num_chunks, nch, w, h = images.shape
|
|
463
|
-
|
|
464
|
-
images = images.reshape(bsz * num_concurrent_media * num_chunks, nch, w, h)
|
|
465
|
-
ar = ar.reshape(bsz * num_concurrent_media, 2)
|
|
466
|
-
|
|
467
|
-
# patch embedding
|
|
468
|
-
x = images.reshape(bsz * num_concurrent_media * num_chunks, nch, w, h)
|
|
469
|
-
x = self.conv1(x) # shape = [*, width, grid ** 2]
|
|
470
|
-
_, ntok, dim = x.shape
|
|
471
|
-
x = x.reshape(bsz * num_concurrent_media, num_chunks, ntok, dim)
|
|
472
|
-
|
|
473
|
-
# tile embeddings
|
|
474
|
-
x = self.pre_tile_pos_embed(x, ar)
|
|
475
|
-
x = x.reshape(bsz * num_concurrent_media * num_chunks, ntok, dim)
|
|
476
|
-
|
|
477
|
-
# apply cls token
|
|
478
|
-
x = self.apply_class_embedding(x)
|
|
479
|
-
ntok += 1
|
|
480
|
-
|
|
481
|
-
# apply position embeddings
|
|
482
|
-
x = x.reshape(bsz * num_concurrent_media, num_chunks, ntok, dim)
|
|
483
|
-
x = self.apply_positional_embedding(x, ar)
|
|
484
|
-
|
|
485
|
-
x = self.ln_pre(x)
|
|
486
|
-
npad, attn_mask = 0, None
|
|
487
|
-
x, npad = expand_num_tokens_to_mult8(x)
|
|
488
|
-
attn_mask = build_encoder_attention_mask(x, ar, ntok, num_chunks, 1)
|
|
489
|
-
x = x.view(bsz * num_concurrent_media, -1, dim)
|
|
490
|
-
x, int_x = self.transformer(x, return_intermediate=self.return_intermediate, mask=attn_mask)
|
|
491
|
-
|
|
492
|
-
x = self.ln_post(x)
|
|
493
|
-
x = x.reshape(bsz * num_concurrent_media, num_chunks, ntok + npad, dim)
|
|
494
|
-
x = self.post_tile_pos_embed(x, ar)
|
|
495
|
-
x = x.reshape(bsz * num_concurrent_media, num_chunks * (ntok + npad), dim)
|
|
496
|
-
x = self.global_transformer(x, mask=attn_mask)
|
|
497
|
-
x = x.reshape(bsz * num_concurrent_media, num_chunks, ntok + npad, dim)
|
|
498
|
-
x = contract_num_tokens_from_mult8(x, npad)
|
|
499
|
-
|
|
500
|
-
# adding back intermediate layer outputs
|
|
501
|
-
x = x.reshape(bsz, num_concurrent_media, num_chunks, ntok, dim)
|
|
502
|
-
int_x = int_x.reshape(bsz * num_concurrent_media, num_chunks, ntok + npad, -1)
|
|
503
|
-
int_x = contract_num_tokens_from_mult8(int_x, npad)
|
|
504
|
-
int_x = int_x.reshape(bsz, num_concurrent_media, num_chunks, ntok, -1)
|
|
505
|
-
x = torch.cat([x, int_x], dim=-1)
|
|
506
|
-
return x
|
|
507
|
-
|
|
508
|
-
|
|
509
|
-
class Attention(nn.Module):
|
|
510
|
-
"""Multi-head attention module."""
|
|
511
|
-
|
|
512
|
-
def __init__(self, args: ModelArgs):
|
|
513
|
-
"""
|
|
514
|
-
Initialize the Attention module.
|
|
515
|
-
Args:
|
|
516
|
-
args (ModelArgs): Model configuration parameters.
|
|
517
|
-
Attributes:
|
|
518
|
-
n_kv_heads (int): Number of key and value heads.
|
|
519
|
-
n_local_heads (int): Number of local query heads.
|
|
520
|
-
n_local_kv_heads (int): Number of local key and value heads.
|
|
521
|
-
n_rep (int): Number of repetitions for local heads.
|
|
522
|
-
head_dim (int): Dimension size of each attention head.
|
|
523
|
-
wq (ColumnParallelLinear): Linear transformation for queries.
|
|
524
|
-
wk (ColumnParallelLinear): Linear transformation for keys.
|
|
525
|
-
wv (ColumnParallelLinear): Linear transformation for values.
|
|
526
|
-
wo (RowParallelLinear): Linear transformation for output.
|
|
527
|
-
cache_k (torch.Tensor): Cached keys for attention.
|
|
528
|
-
cache_v (torch.Tensor): Cached values for attention.
|
|
529
|
-
"""
|
|
530
|
-
super().__init__()
|
|
531
|
-
world_size = fs_init.get_model_parallel_world_size()
|
|
532
|
-
replication_factor = 1
|
|
533
|
-
if world_size > 8:
|
|
534
|
-
replication_factor = world_size // MP_SCALE
|
|
535
|
-
|
|
536
|
-
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
|
537
|
-
self.n_kv_heads *= replication_factor
|
|
538
|
-
|
|
539
|
-
self.n_local_heads = args.n_heads // world_size
|
|
540
|
-
self.n_local_kv_heads = self.n_kv_heads // world_size
|
|
541
|
-
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
|
542
|
-
self.head_dim = args.dim // args.n_heads
|
|
543
|
-
self.max_seq_len = args.max_seq_len
|
|
544
|
-
|
|
545
|
-
self.wq = ColumnParallelLinear(
|
|
546
|
-
args.dim,
|
|
547
|
-
args.n_heads * self.head_dim,
|
|
548
|
-
bias=False,
|
|
549
|
-
gather_output=False,
|
|
550
|
-
init_method=lambda x: x,
|
|
551
|
-
)
|
|
552
|
-
self.wk = ColumnParallelLinear(
|
|
553
|
-
args.dim,
|
|
554
|
-
self.n_kv_heads * self.head_dim,
|
|
555
|
-
bias=False,
|
|
556
|
-
gather_output=False,
|
|
557
|
-
init_method=lambda x: x,
|
|
558
|
-
)
|
|
559
|
-
self.wv = ColumnParallelLinear(
|
|
560
|
-
args.dim,
|
|
561
|
-
self.n_kv_heads * self.head_dim,
|
|
562
|
-
bias=False,
|
|
563
|
-
gather_output=False,
|
|
564
|
-
init_method=lambda x: x,
|
|
565
|
-
)
|
|
566
|
-
self.wo = RowParallelLinear(
|
|
567
|
-
args.n_heads * self.head_dim,
|
|
568
|
-
args.dim,
|
|
569
|
-
bias=False,
|
|
570
|
-
input_is_parallel=True,
|
|
571
|
-
init_method=lambda x: x,
|
|
572
|
-
)
|
|
573
|
-
self.n_heads = args.n_heads
|
|
574
|
-
|
|
575
|
-
def setup_cache(self, max_batch_size: int, dtype: torch.dtype):
|
|
576
|
-
cache_shape = (
|
|
577
|
-
max_batch_size,
|
|
578
|
-
self.max_seq_len,
|
|
579
|
-
self.n_local_kv_heads,
|
|
580
|
-
self.head_dim,
|
|
581
|
-
)
|
|
582
|
-
self.register_buffer(
|
|
583
|
-
"key_cache",
|
|
584
|
-
torch.zeros(
|
|
585
|
-
cache_shape,
|
|
586
|
-
dtype=dtype,
|
|
587
|
-
),
|
|
588
|
-
persistent=False,
|
|
589
|
-
)
|
|
590
|
-
self.register_buffer(
|
|
591
|
-
"value_cache",
|
|
592
|
-
torch.zeros(
|
|
593
|
-
cache_shape,
|
|
594
|
-
dtype=dtype,
|
|
595
|
-
),
|
|
596
|
-
persistent=False,
|
|
597
|
-
)
|
|
598
|
-
|
|
599
|
-
def forward(
|
|
600
|
-
self,
|
|
601
|
-
x: torch.Tensor,
|
|
602
|
-
mask: torch.Tensor,
|
|
603
|
-
freqs_cis: torch.Tensor,
|
|
604
|
-
position_ids: torch.LongTensor,
|
|
605
|
-
):
|
|
606
|
-
self.key_cache = self.key_cache.to(x.device)
|
|
607
|
-
self.value_cache = self.value_cache.to(x.device)
|
|
608
|
-
|
|
609
|
-
xq, xk, xv = [F.linear(x, w) for w in [self.wq.weight, self.wk.weight, self.wv.weight]]
|
|
610
|
-
|
|
611
|
-
bs, slen, _ = xq.shape
|
|
612
|
-
|
|
613
|
-
xq = xq.view(bs, slen, self.n_local_heads, self.head_dim)
|
|
614
|
-
xk = xk.view(bs, xk.shape[1], self.n_local_kv_heads, self.head_dim)
|
|
615
|
-
xv = xv.view(bs, xv.shape[1], self.n_local_kv_heads, self.head_dim)
|
|
616
|
-
|
|
617
|
-
xq, xk = apply_rotary_emb(xq, xk, freqs_cis)
|
|
618
|
-
|
|
619
|
-
self.key_cache[:bs, position_ids, ...] = xk
|
|
620
|
-
self.value_cache[:bs, position_ids, ...] = xv
|
|
621
|
-
|
|
622
|
-
# TODO: we can avoid slicing on first dimension by always padding to max_batch_size()
|
|
623
|
-
xk = self.key_cache[:bs, ...]
|
|
624
|
-
xv = self.value_cache[:bs, ...]
|
|
625
|
-
|
|
626
|
-
xq, xk, xv = [tensor.transpose(1, 2) for tensor in (xq, xk, xv)]
|
|
627
|
-
|
|
628
|
-
xk = xk.repeat_interleave(self.n_rep, dim=1)
|
|
629
|
-
xv = xv.repeat_interleave(self.n_rep, dim=1)
|
|
630
|
-
|
|
631
|
-
attn_output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=mask, dropout_p=0.0)
|
|
632
|
-
|
|
633
|
-
attn_output = attn_output.transpose(1, 2).contiguous().reshape(bs, slen, -1)
|
|
634
|
-
|
|
635
|
-
out = F.linear(attn_output, self.wo.weight)
|
|
636
|
-
out = reduce_from_tensor_model_parallel_region(out)
|
|
637
|
-
return out
|
|
638
|
-
|
|
639
|
-
|
|
640
|
-
class FeedForward(nn.Module):
|
|
641
|
-
def __init__(
|
|
642
|
-
self,
|
|
643
|
-
dim: int,
|
|
644
|
-
hidden_dim: int,
|
|
645
|
-
multiple_of: int,
|
|
646
|
-
ffn_dim_multiplier: float | None,
|
|
647
|
-
):
|
|
648
|
-
"""
|
|
649
|
-
Initialize the FeedForward module.
|
|
650
|
-
Args:
|
|
651
|
-
dim (int): Input dimension.
|
|
652
|
-
hidden_dim (int): Hidden dimension of the feedforward layer.
|
|
653
|
-
multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
|
|
654
|
-
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
|
|
655
|
-
Attributes:
|
|
656
|
-
w1 (ColumnParallelLinear): Linear transformation for the first layer.
|
|
657
|
-
w2 (RowParallelLinear): Linear transformation for the second layer.
|
|
658
|
-
w3 (ColumnParallelLinear): Linear transformation for the third layer.
|
|
659
|
-
"""
|
|
660
|
-
super().__init__()
|
|
661
|
-
hidden_dim = int(2 * hidden_dim / 3)
|
|
662
|
-
# custom dim factor multiplier
|
|
663
|
-
if ffn_dim_multiplier is not None:
|
|
664
|
-
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
|
665
|
-
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
|
666
|
-
|
|
667
|
-
self.w1 = ColumnParallelLinear(dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x)
|
|
668
|
-
self.w2 = RowParallelLinear(hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x)
|
|
669
|
-
self.w3 = ColumnParallelLinear(dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x)
|
|
670
|
-
|
|
671
|
-
def forward(self, x):
|
|
672
|
-
x1, x3 = [F.linear(x, w) for w in [self.w1.weight, self.w3.weight]]
|
|
673
|
-
x1 = F.silu(x1)
|
|
674
|
-
x_in = x1 * x3
|
|
675
|
-
out = F.linear(x_in, self.w2.weight)
|
|
676
|
-
out = reduce_from_tensor_model_parallel_region(out)
|
|
677
|
-
return out
|
|
678
|
-
|
|
679
|
-
|
|
680
|
-
class TransformerBlock(nn.Module):
|
|
681
|
-
def __init__(self, layer_id: int, args: ModelArgs):
|
|
682
|
-
"""
|
|
683
|
-
Initialize a TransformerBlock.
|
|
684
|
-
Args:
|
|
685
|
-
layer_id (int): Identifier for the layer.
|
|
686
|
-
args (ModelArgs): Model configuration parameters.
|
|
687
|
-
Attributes:
|
|
688
|
-
n_heads (int): Number of attention heads.
|
|
689
|
-
dim (int): Dimension size of the model.
|
|
690
|
-
head_dim (int): Dimension size of each attention head.
|
|
691
|
-
attention (Attention): Attention module.
|
|
692
|
-
feed_forward (FeedForward): FeedForward module.
|
|
693
|
-
layer_id (int): Identifier for the layer.
|
|
694
|
-
attention_norm (RMSNorm): Layer normalization for attention output.
|
|
695
|
-
ffn_norm (RMSNorm): Layer normalization for feedforward output.
|
|
696
|
-
"""
|
|
697
|
-
super().__init__()
|
|
698
|
-
self.n_heads = args.n_heads
|
|
699
|
-
self.dim = args.dim
|
|
700
|
-
self.head_dim = args.dim // args.n_heads
|
|
701
|
-
self.attention = Attention(args)
|
|
702
|
-
self.feed_forward = FeedForward(
|
|
703
|
-
dim=args.dim,
|
|
704
|
-
hidden_dim=4 * args.dim,
|
|
705
|
-
multiple_of=args.multiple_of,
|
|
706
|
-
ffn_dim_multiplier=args.ffn_dim_multiplier,
|
|
707
|
-
)
|
|
708
|
-
self.layer_id = layer_id
|
|
709
|
-
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
|
710
|
-
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
|
711
|
-
|
|
712
|
-
def setup_cache(self, max_batch_size: int, dtype: torch.dtype):
|
|
713
|
-
self.attention.setup_cache(max_batch_size, dtype)
|
|
714
|
-
|
|
715
|
-
def forward(
|
|
716
|
-
self,
|
|
717
|
-
x: torch.Tensor,
|
|
718
|
-
freqs_cis: torch.Tensor,
|
|
719
|
-
mask: torch.Tensor,
|
|
720
|
-
position_ids: torch.LongTensor,
|
|
721
|
-
) -> torch.Tensor:
|
|
722
|
-
"""
|
|
723
|
-
Perform a forward pass through the TransformerBlock.
|
|
724
|
-
Args:
|
|
725
|
-
x (torch.Tensor): Input tensor.
|
|
726
|
-
start_pos (int): Starting position for attention caching.
|
|
727
|
-
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
|
|
728
|
-
mask (torch.Tensor, optional): Masking tensor for attention. Defaults to None.
|
|
729
|
-
Returns:
|
|
730
|
-
torch.Tensor: Output tensor after applying attention and feedforward layers.
|
|
731
|
-
"""
|
|
732
|
-
h = self.attention.forward(
|
|
733
|
-
x=self.attention_norm(x),
|
|
734
|
-
freqs_cis=freqs_cis,
|
|
735
|
-
mask=mask,
|
|
736
|
-
position_ids=position_ids,
|
|
737
|
-
)
|
|
738
|
-
h = h + x
|
|
739
|
-
out = h + self.feed_forward.forward(self.ffn_norm(h))
|
|
740
|
-
return out
|
|
741
|
-
|
|
742
|
-
|
|
743
|
-
class TilePositionEmbedding(nn.Module):
|
|
744
|
-
def __init__(
|
|
745
|
-
self,
|
|
746
|
-
num_tiles: int,
|
|
747
|
-
width: int,
|
|
748
|
-
gated: bool = False,
|
|
749
|
-
):
|
|
750
|
-
super().__init__()
|
|
751
|
-
self.num_tiles = num_tiles
|
|
752
|
-
self.width = width
|
|
753
|
-
self.embedding = nn.Parameter(torch.randn(num_tiles, num_tiles, 1, width) / math.sqrt(width))
|
|
754
|
-
self.gated = gated
|
|
755
|
-
if gated:
|
|
756
|
-
self.gate = nn.Parameter(torch.zeros(1))
|
|
757
|
-
|
|
758
|
-
self._register_load_state_dict_pre_hook(self.load_hook)
|
|
759
|
-
|
|
760
|
-
def load_hook(
|
|
761
|
-
self,
|
|
762
|
-
state_dict,
|
|
763
|
-
prefix,
|
|
764
|
-
local_metadata,
|
|
765
|
-
strict,
|
|
766
|
-
missing_keys,
|
|
767
|
-
unexpected_keys,
|
|
768
|
-
error_msgs,
|
|
769
|
-
):
|
|
770
|
-
# load the weights from the checkpoint
|
|
771
|
-
embed = state_dict.get(prefix + "embedding")
|
|
772
|
-
if embed is not None:
|
|
773
|
-
# reshape the weights to the correct shape
|
|
774
|
-
nt_old, nt_old, _, w = embed.shape
|
|
775
|
-
logger.info(f"Resizing tile embedding from {nt_old}x{nt_old} to {self.num_tiles}x{self.num_tiles}")
|
|
776
|
-
embed_new = TilePositionEmbedding._dynamic_resize(embed, self.num_tiles)
|
|
777
|
-
# assign the weights to the module
|
|
778
|
-
state_dict[prefix + "embedding"] = embed_new
|
|
779
|
-
|
|
780
|
-
@staticmethod
|
|
781
|
-
def _dynamic_resize(embed: torch.Tensor, num_tiles: int):
|
|
782
|
-
nt_old, nt_old, _, w = embed.shape
|
|
783
|
-
embed = embed.permute(2, 3, 0, 1)
|
|
784
|
-
|
|
785
|
-
embed_new = F.interpolate(
|
|
786
|
-
embed,
|
|
787
|
-
size=(num_tiles, num_tiles),
|
|
788
|
-
mode="bilinear",
|
|
789
|
-
align_corners=True,
|
|
790
|
-
)
|
|
791
|
-
# reshape the weights to the correct shape
|
|
792
|
-
embed_new = embed_new.permute(2, 3, 0, 1)
|
|
793
|
-
return embed_new
|
|
794
|
-
|
|
795
|
-
def forward(self, x: torch.Tensor, ar: torch.Tensor, num_tiles: int = None):
|
|
796
|
-
embed = self.embedding
|
|
797
|
-
if num_tiles is None:
|
|
798
|
-
num_tiles = self.num_tiles
|
|
799
|
-
elif num_tiles > self.num_tiles:
|
|
800
|
-
embed = TilePositionEmbedding._dynamic_resize(self.embedding, num_tiles)
|
|
801
|
-
out_pos_embed = torch.zeros(x.shape[0], num_tiles, 1, self.width, device=x.device, dtype=x.dtype)
|
|
802
|
-
for idx, arx in enumerate(ar):
|
|
803
|
-
h, w = arx
|
|
804
|
-
out_pos_embed[idx, : w * h] = embed[:h, :w].reshape(w * h, 1, self.width)
|
|
805
|
-
if self.gated:
|
|
806
|
-
out_pos_embed = out_pos_embed * self.gate.tanh()
|
|
807
|
-
x = x + out_pos_embed
|
|
808
|
-
return x
|
|
809
|
-
|
|
810
|
-
|
|
811
|
-
def _noinit(x):
|
|
812
|
-
return x
|
|
813
|
-
|
|
814
|
-
|
|
815
|
-
class CrossAttention(torch.nn.Module):
|
|
816
|
-
"""Cross attention layer with model-parallel attention layers."""
|
|
817
|
-
|
|
818
|
-
def __init__(
|
|
819
|
-
self,
|
|
820
|
-
dim: int,
|
|
821
|
-
head_dim: int,
|
|
822
|
-
n_heads: int,
|
|
823
|
-
n_kv_heads: int,
|
|
824
|
-
norm_eps: float,
|
|
825
|
-
):
|
|
826
|
-
super().__init__()
|
|
827
|
-
self.world_size = fs_init.get_model_parallel_world_size()
|
|
828
|
-
replication_factor = 1
|
|
829
|
-
if self.world_size > 8:
|
|
830
|
-
replication_factor = self.world_size // MP_SCALE
|
|
831
|
-
n_kv_heads *= replication_factor
|
|
832
|
-
|
|
833
|
-
assert n_heads % n_kv_heads == 0
|
|
834
|
-
|
|
835
|
-
self.wq = ColumnParallelLinear(
|
|
836
|
-
dim,
|
|
837
|
-
n_heads * head_dim,
|
|
838
|
-
bias=False,
|
|
839
|
-
gather_output=False,
|
|
840
|
-
init_method=_noinit,
|
|
841
|
-
)
|
|
842
|
-
|
|
843
|
-
self.wk = ColumnParallelLinear(
|
|
844
|
-
dim,
|
|
845
|
-
n_kv_heads * head_dim,
|
|
846
|
-
bias=False,
|
|
847
|
-
gather_output=False,
|
|
848
|
-
init_method=_noinit,
|
|
849
|
-
)
|
|
850
|
-
self.wv = ColumnParallelLinear(
|
|
851
|
-
dim,
|
|
852
|
-
n_kv_heads * head_dim,
|
|
853
|
-
bias=False,
|
|
854
|
-
gather_output=False,
|
|
855
|
-
init_method=_noinit,
|
|
856
|
-
)
|
|
857
|
-
self.wo = RowParallelLinear(
|
|
858
|
-
n_heads * head_dim,
|
|
859
|
-
dim,
|
|
860
|
-
bias=False,
|
|
861
|
-
input_is_parallel=True,
|
|
862
|
-
init_method=_noinit,
|
|
863
|
-
)
|
|
864
|
-
|
|
865
|
-
self.n_heads = n_heads
|
|
866
|
-
self.head_dim = head_dim
|
|
867
|
-
self.n_kv_heads = n_kv_heads
|
|
868
|
-
|
|
869
|
-
self.q_norm = RMSNorm(
|
|
870
|
-
self.head_dim,
|
|
871
|
-
eps=norm_eps,
|
|
872
|
-
)
|
|
873
|
-
self.k_norm = RMSNorm(
|
|
874
|
-
self.head_dim,
|
|
875
|
-
eps=norm_eps,
|
|
876
|
-
)
|
|
877
|
-
|
|
878
|
-
# cross-attention heads are model parallel similar to
|
|
879
|
-
# self-attention, and we also use the identical KV head
|
|
880
|
-
# combination to ensure parity with the corresponding
|
|
881
|
-
# trunk LLM (i.e., group query attention) -- @dubeya
|
|
882
|
-
# local heads
|
|
883
|
-
assert self.n_heads % self.n_kv_heads == 0
|
|
884
|
-
assert self.n_heads % self.world_size == 0
|
|
885
|
-
assert self.n_kv_heads % self.world_size == 0
|
|
886
|
-
self.n_local_heads = self.n_heads // self.world_size
|
|
887
|
-
self.n_local_kv_heads = self.n_kv_heads // self.world_size
|
|
888
|
-
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
|
889
|
-
|
|
890
|
-
def _compute_xattn_kv_cache(self, xattn_tokens: torch.Tensor) -> torch.Tensor:
|
|
891
|
-
bsz = xattn_tokens.shape[0]
|
|
892
|
-
xk = self.wk(xattn_tokens)
|
|
893
|
-
xv = self.wv(xattn_tokens)
|
|
894
|
-
|
|
895
|
-
_, seqlen_y, _ = xk.shape
|
|
896
|
-
|
|
897
|
-
xk = xk.view(bsz, seqlen_y, self.n_local_kv_heads, self.head_dim)
|
|
898
|
-
xv = xv.view(bsz, seqlen_y, self.n_local_kv_heads, self.head_dim)
|
|
899
|
-
|
|
900
|
-
xk, xv = [tensor.transpose(1, 2) for tensor in (xk, xv)]
|
|
901
|
-
|
|
902
|
-
# repeat k/v heads if n_kv_heads < n_heads
|
|
903
|
-
xk = xk.repeat_interleave(self.n_rep, dim=1)
|
|
904
|
-
xv = xv.repeat_interleave(self.n_rep, dim=1)
|
|
905
|
-
|
|
906
|
-
xk = self.k_norm(xk)
|
|
907
|
-
|
|
908
|
-
return torch.stack([xk, xv])
|
|
909
|
-
|
|
910
|
-
def compute_xattn_kv_cache(self, xattn_tokens: torch.Tensor) -> torch.Tensor:
|
|
911
|
-
return self._compute_xattn_kv_cache(xattn_tokens)
|
|
912
|
-
|
|
913
|
-
def forward(
|
|
914
|
-
self,
|
|
915
|
-
x: torch.Tensor,
|
|
916
|
-
xattn_mask: torch.Tensor,
|
|
917
|
-
full_text_row_masked_out_mask: torch.Tensor,
|
|
918
|
-
xattn_cache: torch.Tensor,
|
|
919
|
-
) -> torch.Tensor:
|
|
920
|
-
xq = F.linear(x, self.wq.weight)
|
|
921
|
-
bsz, seqlen, _ = x.shape
|
|
922
|
-
|
|
923
|
-
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
|
924
|
-
xq = self.q_norm(xq)
|
|
925
|
-
xq = xq.transpose(1, 2)
|
|
926
|
-
|
|
927
|
-
xk, xv = xattn_cache
|
|
928
|
-
|
|
929
|
-
output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=xattn_mask, dropout_p=0.0)
|
|
930
|
-
output = output * full_text_row_masked_out_mask
|
|
931
|
-
output = output.transpose(1, 2).contiguous().reshape(bsz, seqlen, -1)
|
|
932
|
-
|
|
933
|
-
out = F.linear(output, self.wo.weight)
|
|
934
|
-
out = reduce_from_tensor_model_parallel_region(out)
|
|
935
|
-
return out
|
|
936
|
-
|
|
937
|
-
|
|
938
|
-
class CrossAttentionTransformerBlock(torch.nn.Module):
|
|
939
|
-
"""Cross-attention transformer block with tanh-gated attention and feedforward."""
|
|
940
|
-
|
|
941
|
-
def __init__(
|
|
942
|
-
self,
|
|
943
|
-
args: ModelArgs,
|
|
944
|
-
layer_id: int,
|
|
945
|
-
no_ffn: bool = False,
|
|
946
|
-
) -> None:
|
|
947
|
-
super().__init__()
|
|
948
|
-
self.layer_id = layer_id
|
|
949
|
-
self.n_heads = args.n_heads
|
|
950
|
-
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
|
951
|
-
self.dim = args.dim
|
|
952
|
-
self.head_dim = args.dim // args.n_heads
|
|
953
|
-
self.attention = CrossAttention(
|
|
954
|
-
dim=args.dim,
|
|
955
|
-
head_dim=self.head_dim,
|
|
956
|
-
n_heads=self.n_heads,
|
|
957
|
-
n_kv_heads=self.n_kv_heads,
|
|
958
|
-
norm_eps=args.norm_eps,
|
|
959
|
-
)
|
|
960
|
-
|
|
961
|
-
self.attention_norm = RMSNorm(
|
|
962
|
-
args.dim,
|
|
963
|
-
eps=args.norm_eps,
|
|
964
|
-
)
|
|
965
|
-
self.gate_attn = torch.nn.Parameter(torch.zeros(1))
|
|
966
|
-
|
|
967
|
-
self.feed_forward = FeedForward(
|
|
968
|
-
dim=args.dim,
|
|
969
|
-
hidden_dim=4 * args.dim,
|
|
970
|
-
ffn_dim_multiplier=args.ffn_dim_multiplier,
|
|
971
|
-
multiple_of=args.multiple_of,
|
|
972
|
-
)
|
|
973
|
-
self.ffn_norm = RMSNorm(
|
|
974
|
-
args.dim,
|
|
975
|
-
eps=args.norm_eps,
|
|
976
|
-
)
|
|
977
|
-
self.gate_ffwd = torch.nn.Parameter(torch.zeros(1))
|
|
978
|
-
|
|
979
|
-
self.no_ffn = no_ffn
|
|
980
|
-
|
|
981
|
-
def compute_xattn_kv_cache(self, xattn_tokens: torch.Tensor) -> torch.Tensor:
|
|
982
|
-
return self.attention.compute_xattn_kv_cache(xattn_tokens)
|
|
983
|
-
|
|
984
|
-
def forward(
|
|
985
|
-
self,
|
|
986
|
-
x: torch.Tensor,
|
|
987
|
-
xattn_mask: torch.Tensor,
|
|
988
|
-
full_text_row_masked_out_mask: tuple[torch.Tensor, torch.Tensor],
|
|
989
|
-
xattn_cache: torch.Tensor,
|
|
990
|
-
) -> torch.Tensor:
|
|
991
|
-
_attn_out = self.attention(
|
|
992
|
-
x=self.attention_norm(x),
|
|
993
|
-
xattn_mask=xattn_mask,
|
|
994
|
-
xattn_cache=xattn_cache,
|
|
995
|
-
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
|
996
|
-
)
|
|
997
|
-
h = x + self.gate_attn.tanh() * _attn_out
|
|
998
|
-
_ffn = self.feed_forward(self.ffn_norm(h))
|
|
999
|
-
_ffn = full_text_row_masked_out_mask[:, 0] * _ffn # type: ignore
|
|
1000
|
-
h = h + self.gate_ffwd.tanh() * _ffn * float(not self.no_ffn)
|
|
1001
|
-
return h
|
|
1002
|
-
|
|
1003
|
-
|
|
1004
|
-
class DummyCrossAttentionTransformerBlock:
|
|
1005
|
-
"""Dummy cross-attention transformer block with tanh-gated attention and feedforward."""
|
|
1006
|
-
|
|
1007
|
-
def __call__(
|
|
1008
|
-
self,
|
|
1009
|
-
x: torch.Tensor,
|
|
1010
|
-
*args,
|
|
1011
|
-
**kwargs,
|
|
1012
|
-
) -> torch.Tensor:
|
|
1013
|
-
return x
|
|
1014
|
-
|
|
1015
|
-
|
|
1016
|
-
class DummySelfAttentionTransformerBlock:
|
|
1017
|
-
"""Dummy self-attention transformer block"""
|
|
1018
|
-
|
|
1019
|
-
def __call__(
|
|
1020
|
-
self,
|
|
1021
|
-
x: torch.Tensor,
|
|
1022
|
-
*args,
|
|
1023
|
-
**kwargs,
|
|
1024
|
-
) -> torch.Tensor:
|
|
1025
|
-
return x
|
|
1026
|
-
|
|
1027
|
-
|
|
1028
|
-
class CrossAttentionTransformerVision(torch.nn.Module):
|
|
1029
|
-
def __init__(self, args: ModelArgs) -> None:
|
|
1030
|
-
super().__init__()
|
|
1031
|
-
return_intermediate = "3,7,15,23,30"
|
|
1032
|
-
self.vision_input_dim = 1280
|
|
1033
|
-
self.image_res = args.vision_chunk_size
|
|
1034
|
-
self.max_num_chunks = args.vision_max_num_chunks
|
|
1035
|
-
if return_intermediate is not None:
|
|
1036
|
-
return_intermediate = [int(layer) for layer in return_intermediate.split(",")]
|
|
1037
|
-
self.vision_input_dim = (len(return_intermediate) + 1) * self.vision_input_dim
|
|
1038
|
-
self.patch_size = 14
|
|
1039
|
-
self.vision_encoder = VisionEncoder(
|
|
1040
|
-
max_num_tiles=4,
|
|
1041
|
-
image_size=args.vision_chunk_size,
|
|
1042
|
-
patch_size=self.patch_size,
|
|
1043
|
-
n_global_layers=8,
|
|
1044
|
-
global_model=True,
|
|
1045
|
-
return_intermediate=return_intermediate,
|
|
1046
|
-
)
|
|
1047
|
-
# vision token projection
|
|
1048
|
-
self.vision_projection = ColumnParallelLinear(
|
|
1049
|
-
self.vision_input_dim,
|
|
1050
|
-
args.dim,
|
|
1051
|
-
bias=True,
|
|
1052
|
-
init_method=lambda x: x,
|
|
1053
|
-
)
|
|
1054
|
-
|
|
1055
|
-
def forward(self, images: torch.Tensor, aspect_ratios: torch.Tensor) -> torch.Tensor:
|
|
1056
|
-
# vision_tokens: (B, T, D)
|
|
1057
|
-
# aspect_ratios: (B, T)
|
|
1058
|
-
# h: (B, T, D)
|
|
1059
|
-
vision_tokens = self.vision_encoder(images.to(dtype=torch.get_default_dtype()), aspect_ratios)
|
|
1060
|
-
|
|
1061
|
-
vision_tokens = F.linear(vision_tokens, self.vision_projection.weight, self.vision_projection.bias)
|
|
1062
|
-
vision_tokens = gather_from_tensor_model_parallel_region(vision_tokens)
|
|
1063
|
-
return vision_tokens
|
|
1064
|
-
|
|
1065
|
-
|
|
1066
|
-
class CrossAttentionTransformerText(torch.nn.Module):
|
|
1067
|
-
INFERENCE_IMAGE_TOKEN_ID = 128010
|
|
1068
|
-
|
|
1069
|
-
def __init__(self, args: ModelArgs) -> None:
|
|
1070
|
-
super().__init__()
|
|
1071
|
-
self.world_size = fs_init.get_model_parallel_world_size()
|
|
1072
|
-
assert args.vocab_size > 0
|
|
1073
|
-
self.vocab_size = args.vocab_size
|
|
1074
|
-
self.n_layers = args.n_layers
|
|
1075
|
-
self.dim = args.dim
|
|
1076
|
-
self.head_dim = args.dim // args.n_heads
|
|
1077
|
-
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
|
1078
|
-
self.n_local_kv_heads = self.n_kv_heads // self.world_size
|
|
1079
|
-
assert self.vocab_size % self.world_size == 0
|
|
1080
|
-
self.tok_embeddings = VocabParallelEmbedding(args.vocab_size, args.dim, init_method=lambda x: x)
|
|
1081
|
-
self.pos_embeddings = None
|
|
1082
|
-
# final norm layer (not necessary for post-norm)
|
|
1083
|
-
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
|
|
1084
|
-
|
|
1085
|
-
# output layer
|
|
1086
|
-
self.output = ColumnParallelLinear(args.dim, args.vocab_size, bias=False, init_method=lambda x: x)
|
|
1087
|
-
|
|
1088
|
-
self.n_llama_layers = args.n_layers
|
|
1089
|
-
self.model_dim = args.dim
|
|
1090
|
-
|
|
1091
|
-
# BLOCKS
|
|
1092
|
-
|
|
1093
|
-
self.fusion_schedule = self._init_fusion_schedule(args.vision_num_cross_attention_layers)
|
|
1094
|
-
self.learnable_embedding = VocabParallelEmbedding(
|
|
1095
|
-
max(fs_init.get_model_parallel_world_size(), 8),
|
|
1096
|
-
args.dim,
|
|
1097
|
-
init_method=lambda x: x,
|
|
1098
|
-
)
|
|
1099
|
-
self.num_frozen_embeddings = self.tok_embeddings.num_embeddings
|
|
1100
|
-
self._thresh = self.num_frozen_embeddings - 1
|
|
1101
|
-
|
|
1102
|
-
# transformer blocks
|
|
1103
|
-
self.layers = torch.nn.ModuleList()
|
|
1104
|
-
self.cross_attention_layers = torch.nn.ModuleList()
|
|
1105
|
-
for i in range(args.n_layers):
|
|
1106
|
-
layer_id = i
|
|
1107
|
-
block = TransformerBlock(args=args, layer_id=layer_id)
|
|
1108
|
-
self.layers.append(block)
|
|
1109
|
-
if layer_id in self.fusion_schedule:
|
|
1110
|
-
xa_layer_id = self.fusion_schedule.index(layer_id) + args.n_layers
|
|
1111
|
-
block = CrossAttentionTransformerBlock(
|
|
1112
|
-
args,
|
|
1113
|
-
layer_id=xa_layer_id,
|
|
1114
|
-
)
|
|
1115
|
-
self.cross_attention_layers.append(block)
|
|
1116
|
-
|
|
1117
|
-
# add xattn and dummy layers to avoid conditionals in forward()
|
|
1118
|
-
self.text_and_xattn_layers = []
|
|
1119
|
-
|
|
1120
|
-
for idx, layer in enumerate(self.layers):
|
|
1121
|
-
if idx in self.fusion_schedule:
|
|
1122
|
-
xattn_layer_idx = self.fusion_schedule.index(idx)
|
|
1123
|
-
xattn_layer = self.cross_attention_layers[xattn_layer_idx]
|
|
1124
|
-
else:
|
|
1125
|
-
xattn_layer_idx = 0
|
|
1126
|
-
xattn_layer = DummyCrossAttentionTransformerBlock()
|
|
1127
|
-
|
|
1128
|
-
self.text_and_xattn_layers.append(
|
|
1129
|
-
(
|
|
1130
|
-
layer,
|
|
1131
|
-
xattn_layer,
|
|
1132
|
-
xattn_layer_idx,
|
|
1133
|
-
)
|
|
1134
|
-
)
|
|
1135
|
-
self.freqs_cis = precompute_freqs_cis(
|
|
1136
|
-
args.dim // args.n_heads,
|
|
1137
|
-
args.max_seq_len * 2,
|
|
1138
|
-
args.rope_theta,
|
|
1139
|
-
args.use_scaled_rope,
|
|
1140
|
-
)
|
|
1141
|
-
|
|
1142
|
-
self.args = args
|
|
1143
|
-
self.cache_is_setup = False
|
|
1144
|
-
self.max_seq_len = args.max_seq_len
|
|
1145
|
-
|
|
1146
|
-
def _init_fusion_schedule(
|
|
1147
|
-
self,
|
|
1148
|
-
num_layers: int,
|
|
1149
|
-
) -> list[int]:
|
|
1150
|
-
llama_layers = list(range(self.n_llama_layers))
|
|
1151
|
-
|
|
1152
|
-
# uniformly spread the layers
|
|
1153
|
-
k = math.ceil(len(llama_layers) / num_layers)
|
|
1154
|
-
return llama_layers[::-1][::k][:num_layers][::-1]
|
|
1155
|
-
|
|
1156
|
-
def get_partially_trainable_embedding(self, x):
|
|
1157
|
-
xz = torch.zeros_like(x, device=x.device)
|
|
1158
|
-
oz = torch.ones_like(x, device=x.device)
|
|
1159
|
-
x_orig = torch.minimum(x, torch.tensor(self._thresh, device=x.device))
|
|
1160
|
-
x_new = torch.maximum(x, torch.tensor(self._thresh + 1, device=x.device)) - self.num_frozen_embeddings
|
|
1161
|
-
|
|
1162
|
-
mask_orig = torch.where(x >= self.num_frozen_embeddings, xz, oz).unsqueeze(-1)
|
|
1163
|
-
mask_new = torch.where(x < self.num_frozen_embeddings, xz, oz).unsqueeze(-1)
|
|
1164
|
-
|
|
1165
|
-
x_orig = self.tok_embeddings(x_orig)
|
|
1166
|
-
x_new = self.learnable_embedding(x_new).type_as(x_orig)
|
|
1167
|
-
return x_orig * mask_orig.type_as(x_orig) + x_new * mask_new.type_as(x_new)
|
|
1168
|
-
|
|
1169
|
-
def forward(
|
|
1170
|
-
self,
|
|
1171
|
-
position_ids: torch.LongTensor,
|
|
1172
|
-
h: torch.Tensor,
|
|
1173
|
-
xattn_mask: torch.Tensor,
|
|
1174
|
-
full_text_row_masked_out_mask: torch.Tensor,
|
|
1175
|
-
xattn_caches: torch.Tensor,
|
|
1176
|
-
text_only_inference: bool = False,
|
|
1177
|
-
):
|
|
1178
|
-
assert self.cache_is_setup, "Please set up cache before calling forward"
|
|
1179
|
-
self.mask_cache = self.mask_cache.to(h.device)
|
|
1180
|
-
self.freqs_cis = self.freqs_cis.to(h.device)
|
|
1181
|
-
mask = self.mask_cache.index_select(2, position_ids)
|
|
1182
|
-
freqs_cis = self.freqs_cis.index_select(0, position_ids)
|
|
1183
|
-
|
|
1184
|
-
for (
|
|
1185
|
-
layer,
|
|
1186
|
-
xattn_layer,
|
|
1187
|
-
xattn_layer_idx,
|
|
1188
|
-
) in self.text_and_xattn_layers:
|
|
1189
|
-
if not text_only_inference:
|
|
1190
|
-
h = xattn_layer(
|
|
1191
|
-
x=h,
|
|
1192
|
-
xattn_mask=xattn_mask,
|
|
1193
|
-
xattn_cache=xattn_caches[xattn_layer_idx],
|
|
1194
|
-
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
|
1195
|
-
)
|
|
1196
|
-
h = layer(
|
|
1197
|
-
x=h,
|
|
1198
|
-
mask=mask,
|
|
1199
|
-
freqs_cis=freqs_cis,
|
|
1200
|
-
position_ids=position_ids,
|
|
1201
|
-
)
|
|
1202
|
-
|
|
1203
|
-
h = self.norm(h)
|
|
1204
|
-
|
|
1205
|
-
output = F.linear(h, self.output.weight)
|
|
1206
|
-
output = gather_from_tensor_model_parallel_region(output)
|
|
1207
|
-
return output.float()
|
|
1208
|
-
|
|
1209
|
-
def setup_cache(self, max_batch_size: int, device: torch.device, dtype=torch.bfloat16):
|
|
1210
|
-
# Set up the text kv caches
|
|
1211
|
-
ones = torch.ones(
|
|
1212
|
-
(self.max_seq_len, self.max_seq_len),
|
|
1213
|
-
dtype=torch.bool,
|
|
1214
|
-
device=device,
|
|
1215
|
-
)
|
|
1216
|
-
self.register_buffer(
|
|
1217
|
-
"mask_cache",
|
|
1218
|
-
torch.tril(
|
|
1219
|
-
ones,
|
|
1220
|
-
)
|
|
1221
|
-
.unsqueeze(0)
|
|
1222
|
-
.unsqueeze(0),
|
|
1223
|
-
persistent=False,
|
|
1224
|
-
)
|
|
1225
|
-
for layer in self.layers:
|
|
1226
|
-
layer.setup_cache(max_batch_size, dtype=dtype)
|
|
1227
|
-
self.cache_is_setup = True
|
|
1228
|
-
|
|
1229
|
-
def _get_xattn_mask(
|
|
1230
|
-
self,
|
|
1231
|
-
num_tokens,
|
|
1232
|
-
text_device,
|
|
1233
|
-
text_dtype,
|
|
1234
|
-
vision_tokens,
|
|
1235
|
-
cross_attention_masks,
|
|
1236
|
-
) -> tuple[Tensor, Tensor]:
|
|
1237
|
-
assert vision_tokens is not None, "Vision tokens must be provided"
|
|
1238
|
-
vision_seqlen = vision_tokens.shape[3]
|
|
1239
|
-
assert vision_tokens.shape[1] == cross_attention_masks.shape[2], (
|
|
1240
|
-
f"Mismatch in number of images given and number of masks given {vision_tokens.shape} {cross_attention_masks.shape}"
|
|
1241
|
-
)
|
|
1242
|
-
assert vision_tokens.shape[2] == cross_attention_masks.shape[3], (
|
|
1243
|
-
f"Vision tokens shape {vision_tokens.shape} mismatch with xattn shape {cross_attention_masks.shape}"
|
|
1244
|
-
)
|
|
1245
|
-
assert num_tokens == cross_attention_masks.shape[1], (
|
|
1246
|
-
f"Mismatch in text sequence length and cross attention mask sequence length {num_tokens} {cross_attention_masks.shape}"
|
|
1247
|
-
)
|
|
1248
|
-
_, _, _, num_image_tokens, image_token_dim = tuple(vision_tokens.shape)
|
|
1249
|
-
bsz, ntext, nimg, nchunks = cross_attention_masks.shape
|
|
1250
|
-
cross_attention_masks = (
|
|
1251
|
-
cross_attention_masks.repeat_interleave(vision_seqlen, dim=3).view(bsz, ntext, -1).unsqueeze(1)
|
|
1252
|
-
)
|
|
1253
|
-
full_text_row_masked_out_mask = _get_full_row_masked_out_mask(
|
|
1254
|
-
cross_attention_masks,
|
|
1255
|
-
get_negative_inf_value(cross_attention_masks.dtype),
|
|
1256
|
-
)
|
|
1257
|
-
cross_attention_masks *= full_text_row_masked_out_mask
|
|
1258
|
-
|
|
1259
|
-
return (
|
|
1260
|
-
cross_attention_masks.to(device=text_device, dtype=text_dtype),
|
|
1261
|
-
full_text_row_masked_out_mask.to(device=text_device),
|
|
1262
|
-
)
|
|
1263
|
-
|
|
1264
|
-
|
|
1265
|
-
class CrossAttentionTransformer(torch.nn.Module):
|
|
1266
|
-
def __init__(self, args: ModelArgs) -> None:
|
|
1267
|
-
super().__init__()
|
|
1268
|
-
self.params = args
|
|
1269
|
-
|
|
1270
|
-
self.model_dim = args.dim
|
|
1271
|
-
self.vision_model = CrossAttentionTransformerVision(args)
|
|
1272
|
-
self.text_model = CrossAttentionTransformerText(args)
|
|
1273
|
-
self.image_res = args.vision_chunk_size
|
|
1274
|
-
self.max_num_chunks = args.vision_max_num_chunks
|
|
1275
|
-
self.image_transform = partial(
|
|
1276
|
-
VariableSizeImageTransform(size=args.vision_chunk_size),
|
|
1277
|
-
max_num_chunks=args.vision_max_num_chunks,
|
|
1278
|
-
)
|
|
1279
|
-
|
|
1280
|
-
def setup_cache(self, max_batch_size: int, device: torch.device, dtype: torch.dtype):
|
|
1281
|
-
self.text_model.setup_cache(max_batch_size, device, dtype)
|
|
1282
|
-
|
|
1283
|
-
def compute_vision_tokens_masks(
|
|
1284
|
-
self,
|
|
1285
|
-
batch_images: list[list[PIL_Image.Image]],
|
|
1286
|
-
batch_masks: list[list[list[int]]],
|
|
1287
|
-
total_len: int,
|
|
1288
|
-
device: torch.device,
|
|
1289
|
-
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
1290
|
-
skip_vision_encoder = False
|
|
1291
|
-
|
|
1292
|
-
assert len(batch_images) == len(batch_masks), "Images and masks must have the same length"
|
|
1293
|
-
|
|
1294
|
-
max_num_images = max(len(x) for x in batch_images)
|
|
1295
|
-
bsz = len(batch_images)
|
|
1296
|
-
|
|
1297
|
-
if max_num_images == 0:
|
|
1298
|
-
num_chunks = [[self.max_num_chunks] for _ in batch_images]
|
|
1299
|
-
skip_vision_encoder = True
|
|
1300
|
-
else:
|
|
1301
|
-
images_and_aspect_ratios = [[self.image_transform(im) for im in row] for row in batch_images]
|
|
1302
|
-
transformed_images = [[x[0] for x in row] for row in images_and_aspect_ratios]
|
|
1303
|
-
|
|
1304
|
-
aspect_ratios = torch.ones(bsz, max_num_images, 2, dtype=torch.int64)
|
|
1305
|
-
for i, row in enumerate(images_and_aspect_ratios):
|
|
1306
|
-
if len(row) > 0:
|
|
1307
|
-
aspect_ratios[i, : len(row)] = torch.stack([torch.tensor(x[1]) for x in row])
|
|
1308
|
-
|
|
1309
|
-
stacked_images, num_chunks = _stack_images(
|
|
1310
|
-
transformed_images,
|
|
1311
|
-
max_num_chunks=self.max_num_chunks,
|
|
1312
|
-
image_res=self.params.vision_chunk_size,
|
|
1313
|
-
max_num_images=max_num_images,
|
|
1314
|
-
)
|
|
1315
|
-
stacked_images = stacked_images.to(device=device)
|
|
1316
|
-
|
|
1317
|
-
if skip_vision_encoder:
|
|
1318
|
-
vision_tokens = torch.zeros(
|
|
1319
|
-
(
|
|
1320
|
-
bsz,
|
|
1321
|
-
max_num_images,
|
|
1322
|
-
self.max_num_chunks,
|
|
1323
|
-
int((self.vision_model.image_res / self.vision_model.patch_size) ** 2 + 1),
|
|
1324
|
-
self.model_dim,
|
|
1325
|
-
),
|
|
1326
|
-
)
|
|
1327
|
-
else:
|
|
1328
|
-
vision_tokens = self.vision_model(stacked_images, aspect_ratios).to(device=device)
|
|
1329
|
-
|
|
1330
|
-
bsz, nimg, nchunk, ntok, image_token_dim = tuple(vision_tokens.shape)
|
|
1331
|
-
xattn_caches = torch.stack(
|
|
1332
|
-
[
|
|
1333
|
-
layer.compute_xattn_kv_cache(vision_tokens.view(bsz, -1, image_token_dim))
|
|
1334
|
-
for layer in self.text_model.cross_attention_layers
|
|
1335
|
-
]
|
|
1336
|
-
)
|
|
1337
|
-
padded_masks = _pad_masks(
|
|
1338
|
-
batch_masks,
|
|
1339
|
-
num_chunks,
|
|
1340
|
-
total_len,
|
|
1341
|
-
self.max_num_chunks,
|
|
1342
|
-
)
|
|
1343
|
-
|
|
1344
|
-
cross_attention_masks, full_text_row_masked_out_mask = self.text_model._get_xattn_mask(
|
|
1345
|
-
num_tokens=total_len,
|
|
1346
|
-
text_device=vision_tokens.device.type,
|
|
1347
|
-
text_dtype=next(self.text_model.parameters()).dtype,
|
|
1348
|
-
vision_tokens=vision_tokens,
|
|
1349
|
-
cross_attention_masks=padded_masks,
|
|
1350
|
-
)
|
|
1351
|
-
|
|
1352
|
-
return (xattn_caches, cross_attention_masks, full_text_row_masked_out_mask)
|
|
1353
|
-
|
|
1354
|
-
def forward(
|
|
1355
|
-
self,
|
|
1356
|
-
position_ids: torch.Tensor,
|
|
1357
|
-
tokens: torch.Tensor,
|
|
1358
|
-
cross_attention_masks: torch.Tensor,
|
|
1359
|
-
full_text_row_masked_out_mask: torch.Tensor,
|
|
1360
|
-
xattn_caches: torch.Tensor,
|
|
1361
|
-
text_only_inference: bool = False,
|
|
1362
|
-
) -> torch.Tensor:
|
|
1363
|
-
h = self.text_model.get_partially_trainable_embedding(tokens[:, position_ids])
|
|
1364
|
-
logits = self.text_model.forward(
|
|
1365
|
-
position_ids=position_ids,
|
|
1366
|
-
h=h,
|
|
1367
|
-
xattn_mask=cross_attention_masks[:, :, position_ids],
|
|
1368
|
-
full_text_row_masked_out_mask=full_text_row_masked_out_mask[:, :, position_ids],
|
|
1369
|
-
xattn_caches=xattn_caches,
|
|
1370
|
-
text_only_inference=text_only_inference,
|
|
1371
|
-
)
|
|
1372
|
-
return logits
|
|
1373
|
-
|
|
1374
|
-
|
|
1375
|
-
def _stack_images(
|
|
1376
|
-
images: list[list[PIL_Image.Image]],
|
|
1377
|
-
max_num_chunks: int,
|
|
1378
|
-
image_res: int,
|
|
1379
|
-
max_num_images: int,
|
|
1380
|
-
) -> tuple[torch.Tensor, list[int]]:
|
|
1381
|
-
"""
|
|
1382
|
-
Takes a list of list of images and stacks them into a tensor.
|
|
1383
|
-
This function is needed since images can be of completely
|
|
1384
|
-
different resolutions and aspect ratios.
|
|
1385
|
-
"""
|
|
1386
|
-
out_images, out_num_chunks = [], []
|
|
1387
|
-
for imgs_sample in images:
|
|
1388
|
-
out_images_i = torch.zeros(
|
|
1389
|
-
max_num_images,
|
|
1390
|
-
max_num_chunks,
|
|
1391
|
-
3,
|
|
1392
|
-
image_res,
|
|
1393
|
-
image_res,
|
|
1394
|
-
)
|
|
1395
|
-
_num_chunks = []
|
|
1396
|
-
for j, chunks_image in enumerate(imgs_sample):
|
|
1397
|
-
out_images_i[j, : chunks_image.shape[0]] = chunks_image
|
|
1398
|
-
_num_chunks.append(chunks_image.shape[0])
|
|
1399
|
-
out_images.append(out_images_i)
|
|
1400
|
-
out_num_chunks.append(_num_chunks)
|
|
1401
|
-
return torch.stack(out_images), out_num_chunks
|
|
1402
|
-
|
|
1403
|
-
|
|
1404
|
-
def _pad_masks(
|
|
1405
|
-
all_masks: list[list[list[int]]],
|
|
1406
|
-
all_num_chunks: list[list[int]],
|
|
1407
|
-
total_len: int,
|
|
1408
|
-
max_num_chunks: int,
|
|
1409
|
-
) -> torch.Tensor:
|
|
1410
|
-
dtype = torch.get_default_dtype()
|
|
1411
|
-
inf_value = get_negative_inf_value(dtype)
|
|
1412
|
-
|
|
1413
|
-
bsz = len(all_masks)
|
|
1414
|
-
max_num_media = max([len(m) for m in all_masks])
|
|
1415
|
-
|
|
1416
|
-
out_masks = torch.full(
|
|
1417
|
-
(bsz, total_len, max_num_media, max_num_chunks),
|
|
1418
|
-
inf_value,
|
|
1419
|
-
dtype=dtype,
|
|
1420
|
-
)
|
|
1421
|
-
|
|
1422
|
-
for idx, (mask, num_chunks) in enumerate(zip(all_masks, all_num_chunks, strict=False)):
|
|
1423
|
-
for mask_idx, (mask_elem, mask_num_chunks) in enumerate(zip(mask, num_chunks, strict=False)):
|
|
1424
|
-
if len(mask_elem) == 2:
|
|
1425
|
-
mask_elem[1] = min(mask_elem[1], total_len)
|
|
1426
|
-
if mask_elem[1] == -1:
|
|
1427
|
-
mask_elem[1] = total_len
|
|
1428
|
-
out_masks[idx, mask_elem[0] : mask_elem[1], mask_idx, :mask_num_chunks].fill_(0.0)
|
|
1429
|
-
|
|
1430
|
-
return out_masks
|