liger-kernel 0.6.4__py3-none-any.whl → 0.6.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (71) hide show
  1. liger_kernel/chunked_loss/cosine_similarity_loss.py +7 -1
  2. liger_kernel/chunked_loss/fused_linear_distillation.py +10 -3
  3. liger_kernel/chunked_loss/jsd_loss.py +21 -6
  4. liger_kernel/ops/__init__.py +141 -0
  5. liger_kernel/ops/backends/README.md +151 -0
  6. liger_kernel/ops/backends/__init__.py +13 -0
  7. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  8. liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +492 -0
  9. liger_kernel/ops/backends/_ascend/ops/__init__.py +61 -0
  10. liger_kernel/ops/backends/_ascend/ops/embedding.py +214 -0
  11. liger_kernel/ops/backends/_ascend/ops/geglu.py +191 -0
  12. liger_kernel/ops/backends/_ascend/ops/llama4_rope.py +298 -0
  13. liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +275 -0
  14. liger_kernel/ops/backends/_ascend/ops/rope.py +265 -0
  15. liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
  16. liger_kernel/ops/backends/_ascend/ops/tvd.py +223 -0
  17. liger_kernel/ops/backends/_ascend/ub_manager.py +367 -0
  18. liger_kernel/ops/backends/registry.py +61 -0
  19. liger_kernel/ops/cross_entropy.py +14 -4
  20. liger_kernel/ops/dyt.py +5 -2
  21. liger_kernel/ops/fused_add_rms_norm.py +21 -23
  22. liger_kernel/ops/fused_linear_cross_entropy.py +2 -1
  23. liger_kernel/ops/geglu.py +5 -3
  24. liger_kernel/ops/group_norm.py +12 -8
  25. liger_kernel/ops/kl_div.py +8 -11
  26. liger_kernel/ops/layer_norm.py +17 -16
  27. liger_kernel/ops/poly_norm.py +19 -21
  28. liger_kernel/ops/rms_norm.py +149 -71
  29. liger_kernel/ops/utils.py +25 -0
  30. liger_kernel/transformers/__init__.py +6 -0
  31. liger_kernel/transformers/auto_model.py +21 -0
  32. liger_kernel/transformers/cross_entropy.py +1 -1
  33. liger_kernel/transformers/dyt.py +1 -1
  34. liger_kernel/transformers/experimental/embedding.py +1 -1
  35. liger_kernel/transformers/functional.py +20 -20
  36. liger_kernel/transformers/fused_add_rms_norm.py +1 -1
  37. liger_kernel/transformers/fused_linear_cross_entropy.py +1 -1
  38. liger_kernel/transformers/fused_linear_jsd.py +1 -1
  39. liger_kernel/transformers/fused_neighborhood_attention.py +1 -1
  40. liger_kernel/transformers/geglu.py +1 -1
  41. liger_kernel/transformers/group_norm.py +1 -1
  42. liger_kernel/transformers/grpo_loss.py +1 -1
  43. liger_kernel/transformers/jsd.py +1 -1
  44. liger_kernel/transformers/kl_div.py +1 -1
  45. liger_kernel/transformers/layer_norm.py +1 -1
  46. liger_kernel/transformers/llama4_rope.py +1 -1
  47. liger_kernel/transformers/model/exaone4.py +136 -0
  48. liger_kernel/transformers/model/gemma2.py +3 -3
  49. liger_kernel/transformers/model/gemma3.py +11 -5
  50. liger_kernel/transformers/model/gpt_oss.py +211 -0
  51. liger_kernel/transformers/model/loss_utils.py +6 -0
  52. liger_kernel/transformers/model/paligemma.py +1 -0
  53. liger_kernel/transformers/monkey_patch.py +196 -39
  54. liger_kernel/transformers/multi_token_attention.py +1 -1
  55. liger_kernel/transformers/poly_norm.py +1 -1
  56. liger_kernel/transformers/qwen2vl_mrope.py +1 -1
  57. liger_kernel/transformers/rms_norm.py +8 -3
  58. liger_kernel/transformers/rope.py +28 -27
  59. liger_kernel/transformers/softmax.py +1 -1
  60. liger_kernel/transformers/sparsemax.py +1 -1
  61. liger_kernel/transformers/swiglu.py +1 -1
  62. liger_kernel/transformers/tiled_mlp.py +5 -13
  63. liger_kernel/transformers/tvd.py +1 -1
  64. liger_kernel/utils.py +54 -0
  65. {liger_kernel-0.6.4.dist-info → liger_kernel-0.6.5.dist-info}/METADATA +11 -4
  66. liger_kernel-0.6.5.dist-info/RECORD +134 -0
  67. {liger_kernel-0.6.4.dist-info → liger_kernel-0.6.5.dist-info}/WHEEL +1 -1
  68. liger_kernel-0.6.4.dist-info/RECORD +0 -118
  69. {liger_kernel-0.6.4.dist-info → liger_kernel-0.6.5.dist-info}/licenses/LICENSE +0 -0
  70. {liger_kernel-0.6.4.dist-info → liger_kernel-0.6.5.dist-info}/licenses/NOTICE +0 -0
  71. {liger_kernel-0.6.4.dist-info → liger_kernel-0.6.5.dist-info}/top_level.txt +0 -0
@@ -20,6 +20,7 @@ from liger_kernel.transformers.model.gemma import lce_forward as gemma_lce_forwa
20
20
  from liger_kernel.transformers.model.gemma import lce_forward_deprecated as gemma_lce_forward_deprecated
21
21
  from liger_kernel.transformers.model.gemma2 import lce_forward as gemma2_lce_forward
22
22
  from liger_kernel.transformers.model.gemma2 import lce_forward_deprecated as gemma2_lce_forward_deprected
23
+ from liger_kernel.transformers.model.gpt_oss import lce_forward as gpt_oss_lce_forward
23
24
  from liger_kernel.transformers.model.llama import lce_forward as llama_lce_forward
24
25
  from liger_kernel.transformers.model.llama import lce_forward_deprecated as llama_lce_forward_deprecated
25
26
  from liger_kernel.transformers.model.llava import lce_forward as llava_lce_forward
@@ -34,8 +35,7 @@ from liger_kernel.transformers.model.smollm3 import lce_forward as smollm3_lce_f
34
35
  from liger_kernel.transformers.qwen2vl_mrope import liger_multimodal_rotary_pos_emb
35
36
  from liger_kernel.transformers.rms_norm import LigerRMSNorm
36
37
  from liger_kernel.transformers.rope import liger_rotary_pos_emb
37
- from liger_kernel.transformers.rope import liger_rotary_pos_emb_with_cast
38
- from liger_kernel.transformers.rope import liger_rotary_pos_emb_with_cast_and_leading_batch
38
+ from liger_kernel.transformers.rope import liger_rotary_pos_emb_vision
39
39
  from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP
40
40
  from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP
41
41
  from liger_kernel.transformers.swiglu import LigerSwiGLUMLP
@@ -430,7 +430,7 @@ def apply_liger_kernel_to_llava(
430
430
  f"These parameters are not supported by {text_model_name}. Enter the remaining {list(text_kwargs.keys())} except for {list(remain_params)}\n"
431
431
  f"Parameters accepted by {text_model_name}: {list(accept_params.keys())}"
432
432
  )
433
- text_kwargs["model"] = model.language_model
433
+ text_kwargs["model"] = model.model.language_model
434
434
  text_liger_fn(**text_kwargs)
435
435
  elif text_model_name not in MODEL_TYPE_TO_APPLY_LIGER_FN:
436
436
  logger.warning(f"{text_model_name} is not supported by Liger kernel.")
@@ -445,7 +445,7 @@ def apply_liger_kernel_to_llava(
445
445
  f"These parameters are not supported by {vision_model_name}. Enter the remaining {list(vision_kwargs.keys())} except for {list(remain_params)}\n"
446
446
  f"Parameters accepted by {vision_model_name}: {list(accept_params.keys())}"
447
447
  )
448
- vision_kwargs["model"] = model.vision_tower
448
+ vision_kwargs["model"] = model.model.vision_tower
449
449
  vision_liger_fn(**vision_kwargs)
450
450
  elif vision_model_name not in MODEL_TYPE_TO_APPLY_LIGER_FN:
451
451
  logger.warning(f"{vision_model_name} is not supported by Liger kernel.")
@@ -615,8 +615,8 @@ def apply_liger_kernel_to_mllama(
615
615
  # instance variables that reference already-instantiated modules
616
616
 
617
617
  if isinstance(model, MllamaForConditionalGeneration):
618
- language_model: MllamaForCausalLM = model.language_model
619
- vision_model: MllamaVisionModel = model.vision_model
618
+ language_model: MllamaForCausalLM = model.model.language_model
619
+ vision_model: MllamaVisionModel = model.model.vision_model
620
620
  if isinstance(language_model, MllamaForCausalLM):
621
621
  text_model: MllamaTextModel = language_model.model
622
622
  else:
@@ -1118,8 +1118,8 @@ def apply_liger_kernel_to_gemma3(
1118
1118
  # instance variables that reference already-instantiated modules
1119
1119
 
1120
1120
  if isinstance(model, Gemma3ForConditionalGeneration):
1121
- if isinstance(model.vision_tower, SiglipVisionModel):
1122
- vision_tower = model.vision_tower
1121
+ if isinstance(model.model.vision_tower, SiglipVisionModel):
1122
+ vision_tower = model.model.vision_tower
1123
1123
 
1124
1124
  _patch_layer_norm_module(vision_tower.vision_model.post_layernorm)
1125
1125
 
@@ -1132,7 +1132,7 @@ def apply_liger_kernel_to_gemma3(
1132
1132
  raise TypeError("The vision tower must be SiglipVisionModel")
1133
1133
 
1134
1134
  if rms_norm:
1135
- _patch_rms_norm_module_for_gemma3(model.multi_modal_projector.mm_soft_emb_norm)
1135
+ _patch_rms_norm_module_for_gemma3(model.model.multi_modal_projector.mm_soft_emb_norm)
1136
1136
 
1137
1137
  apply_liger_kernel_to_gemma3_text(
1138
1138
  rope=rope,
@@ -1140,7 +1140,7 @@ def apply_liger_kernel_to_gemma3(
1140
1140
  fused_linear_cross_entropy=False,
1141
1141
  rms_norm=rms_norm,
1142
1142
  geglu=geglu,
1143
- model=model.language_model,
1143
+ model=model.model.language_model,
1144
1144
  )
1145
1145
 
1146
1146
  else:
@@ -1228,7 +1228,7 @@ def apply_liger_kernel_to_paligemma(
1228
1228
  if not isinstance(model, PaliGemmaForConditionalGeneration):
1229
1229
  raise TypeError("model have to be of type PaliGemmaForConditionalGeneration")
1230
1230
 
1231
- vision_tower: SiglipVisionModel = model.vision_tower
1231
+ vision_tower: SiglipVisionModel = model.model.vision_tower
1232
1232
 
1233
1233
  _patch_layer_norm_module(vision_tower.vision_model.post_layernorm)
1234
1234
 
@@ -1238,7 +1238,7 @@ def apply_liger_kernel_to_paligemma(
1238
1238
  _patch_layer_norm_module(layer.layer_norm1)
1239
1239
  _patch_layer_norm_module(layer.layer_norm2)
1240
1240
 
1241
- language_model = model.language_model
1241
+ language_model = model.model.language_model
1242
1242
 
1243
1243
  if isinstance(language_model, (GemmaForCausalLM, GemmaModel)):
1244
1244
  apply_liger_kernel_to_gemma(
@@ -1459,6 +1459,79 @@ def apply_liger_kernel_to_qwen3_moe(
1459
1459
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
1460
1460
 
1461
1461
 
1462
+ def apply_liger_kernel_to_gpt_oss(
1463
+ rope: bool = True,
1464
+ cross_entropy: bool = False,
1465
+ fused_linear_cross_entropy: bool = True,
1466
+ rms_norm: bool = True,
1467
+ swiglu: bool = False, # Set to False by default since GPT-OSS has custom expert implementation
1468
+ model: PreTrainedModel = None,
1469
+ ) -> None:
1470
+ """
1471
+ Apply Liger kernels to replace original implementation in HuggingFace GPT-OSS models.
1472
+ NOTE: GPT-OSS is supported in transformers >= 4.55.0
1473
+ NOTE: SwiGLU patching is disabled by default for GPT-OSS as it uses a custom expert
1474
+ implementation with clamping and MXFP4 quantization.
1475
+
1476
+ Args:
1477
+ rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
1478
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
1479
+ fused_linear_cross_entropy (bool):
1480
+ Whether to apply Liger's fused linear cross entropy loss. Default is True.
1481
+ `cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
1482
+ If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
1483
+ rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
1484
+ swiglu (bool): Whether to apply Liger's SwiGLU MLP. Default is False.
1485
+ Note: GPT-OSS uses a custom expert implementation, so SwiGLU patching is disabled by default.
1486
+ model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
1487
+ loaded. Default is None.
1488
+ """
1489
+ if version.parse(transformers.__version__) < version.parse("4.55.0"):
1490
+ logger.warning("GPT-OSS support requires transformers >= 4.55.0")
1491
+ return
1492
+
1493
+ assert not (cross_entropy and fused_linear_cross_entropy), (
1494
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
1495
+ )
1496
+
1497
+ from transformers.models.gpt_oss import modeling_gpt_oss
1498
+ from transformers.models.gpt_oss.modeling_gpt_oss import GptOssModel
1499
+
1500
+ if rope:
1501
+ modeling_gpt_oss.apply_rotary_pos_emb = liger_rotary_pos_emb
1502
+
1503
+ if rms_norm:
1504
+ modeling_gpt_oss.GptOssRMSNorm = LigerRMSNorm
1505
+
1506
+ if cross_entropy:
1507
+ from transformers.loss.loss_utils import nn
1508
+
1509
+ nn.functional.cross_entropy = liger_cross_entropy
1510
+
1511
+ if fused_linear_cross_entropy:
1512
+ if model is not None:
1513
+ model.forward = MethodType(gpt_oss_lce_forward, model)
1514
+ else:
1515
+ modeling_gpt_oss.GptOssForCausalLM.forward = gpt_oss_lce_forward
1516
+
1517
+ # Note: SwiGLU patching is not implemented for GPT-OSS due to custom expert implementation
1518
+ # with clamping (swiglu_limit=7.0) and MXFP4 quantization
1519
+
1520
+ if model is not None:
1521
+ # The model instance already exists, so we need to additionally patch the
1522
+ # instance variables that reference already-instantiated modules
1523
+
1524
+ # get the base model from the model instance
1525
+ base_model: GptOssModel = getattr(model, model.base_model_prefix, model)
1526
+
1527
+ if rms_norm:
1528
+ _patch_rms_norm_module(base_model.norm)
1529
+ for decoder_layer in base_model.layers:
1530
+ if rms_norm:
1531
+ _patch_rms_norm_module(decoder_layer.input_layernorm)
1532
+ _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
1533
+
1534
+
1462
1535
  def apply_liger_kernel_to_qwen2_vl(
1463
1536
  rope: bool = True,
1464
1537
  cross_entropy: bool = False,
@@ -1520,11 +1593,10 @@ def apply_liger_kernel_to_qwen2_vl(
1520
1593
  if model is not None:
1521
1594
  # The model instance already exists, so we need to additionally patch the
1522
1595
  # instance variables that reference already-instantiated modules
1523
-
1524
- if isinstance(model, (Qwen2VLForConditionalGeneration, Qwen2VLModel)):
1525
- # Note: language_model and visual properties can be accessed throught conditional class for BC.
1526
- # Not sure if it is subject to changes in the future.
1527
- # Reference: https://github.com/huggingface/transformers/blob/v4.52.4/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py#L1698
1596
+ if isinstance(model, Qwen2VLForConditionalGeneration):
1597
+ text_model: Qwen2VLTextModel = model.model.language_model
1598
+ vision_model: Qwen2VisionTransformerPretrainedModel = model.model.visual
1599
+ elif isinstance(model, Qwen2VLModel):
1528
1600
  text_model: Qwen2VLTextModel = model.language_model
1529
1601
  vision_model: Qwen2VisionTransformerPretrainedModel = model.visual
1530
1602
  elif isinstance(model, Qwen2VLTextModel):
@@ -1611,11 +1683,10 @@ def apply_liger_kernel_to_qwen2_5_vl(
1611
1683
  if model is not None:
1612
1684
  # The model instance already exists, so we need to additionally patch the
1613
1685
  # instance variables that reference already-instantiated modules
1614
-
1615
- if isinstance(model, (Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLModel)):
1616
- # Note: language_model and visual properties can be accessed throught conditional class for BC.
1617
- # Not sure if it is subject to changes in the future.
1618
- # Reference: https://github.com/huggingface/transformers/blob/v4.52.4/src/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py#L1823
1686
+ if isinstance(model, Qwen2_5_VLForConditionalGeneration):
1687
+ text_model: Qwen2_5_VLTextModel = model.model.language_model
1688
+ vision_model: Qwen2_5_VisionTransformerPretrainedModel = model.model.visual
1689
+ elif isinstance(model, Qwen2_5_VLModel):
1619
1690
  text_model: Qwen2_5_VLTextModel = model.language_model
1620
1691
  vision_model: Qwen2_5_VisionTransformerPretrainedModel = model.visual
1621
1692
  elif isinstance(model, Qwen2_5_VLTextModel):
@@ -1629,7 +1700,7 @@ def apply_liger_kernel_to_qwen2_5_vl(
1629
1700
 
1630
1701
  if vision_model is not None:
1631
1702
  # Patch Qwen2_5_VisionTransformerPretrainedModel
1632
- for vision_block in model.visual.blocks:
1703
+ for vision_block in vision_model.blocks:
1633
1704
  if rms_norm:
1634
1705
  _patch_rms_norm_module(vision_block.norm1)
1635
1706
  _patch_rms_norm_module(vision_block.norm2)
@@ -1680,8 +1751,8 @@ def apply_liger_kernel_to_qwen3_vl(
1680
1751
  from liger_kernel.transformers.model.qwen3_vl import lce_forward as qwen3_vl_lce_forward
1681
1752
 
1682
1753
  if rope:
1683
- modeling_qwen3_vl.apply_rotary_pos_emb = liger_rotary_pos_emb_with_cast
1684
- modeling_qwen3_vl.apply_rotary_pos_emb_vision = liger_rotary_pos_emb_with_cast_and_leading_batch
1754
+ modeling_qwen3_vl.apply_rotary_pos_emb = liger_rotary_pos_emb
1755
+ modeling_qwen3_vl.apply_rotary_pos_emb_vision = liger_rotary_pos_emb_vision
1685
1756
 
1686
1757
  if rms_norm:
1687
1758
  modeling_qwen3_vl.Qwen3VLTextRMSNorm = LigerRMSNorm
@@ -1698,7 +1769,9 @@ def apply_liger_kernel_to_qwen3_vl(
1698
1769
  modeling_qwen3_vl.Qwen3VLForConditionalGeneration.forward = qwen3_vl_lce_forward
1699
1770
 
1700
1771
  if model is not None and rms_norm:
1701
- if isinstance(model, (Qwen3VLForConditionalGeneration, Qwen3VLModel)):
1772
+ if isinstance(model, Qwen3VLForConditionalGeneration):
1773
+ text_model: Qwen3VLTextModel = model.model.language_model
1774
+ elif isinstance(model, Qwen3VLModel):
1702
1775
  text_model: Qwen3VLTextModel = model.language_model
1703
1776
  elif isinstance(model, Qwen3VLTextModel):
1704
1777
  text_model = model
@@ -1755,8 +1828,8 @@ def apply_liger_kernel_to_qwen3_vl_moe(
1755
1828
  from liger_kernel.transformers.model.qwen3_vl_moe import lce_forward as qwen3_vl_moe_lce_forward
1756
1829
 
1757
1830
  if rope:
1758
- modeling_qwen3_vl_moe.apply_rotary_pos_emb = liger_rotary_pos_emb_with_cast
1759
- modeling_qwen3_vl_moe.apply_rotary_pos_emb_vision = liger_rotary_pos_emb_with_cast_and_leading_batch
1831
+ modeling_qwen3_vl_moe.apply_rotary_pos_emb = liger_rotary_pos_emb
1832
+ modeling_qwen3_vl_moe.apply_rotary_pos_emb_vision = liger_rotary_pos_emb_vision
1760
1833
 
1761
1834
  if rms_norm:
1762
1835
  modeling_qwen3_vl_moe.Qwen3VLMoeTextRMSNorm = LigerRMSNorm
@@ -1773,7 +1846,9 @@ def apply_liger_kernel_to_qwen3_vl_moe(
1773
1846
  modeling_qwen3_vl_moe.Qwen3VLMoeForConditionalGeneration.forward = qwen3_vl_moe_lce_forward
1774
1847
 
1775
1848
  if model is not None and rms_norm:
1776
- if isinstance(model, (Qwen3VLMoeForConditionalGeneration, Qwen3VLMoeModel)):
1849
+ if isinstance(model, Qwen3VLMoeForConditionalGeneration):
1850
+ text_model: Qwen3VLMoeTextModel = model.model.language_model
1851
+ elif isinstance(model, Qwen3VLMoeModel):
1777
1852
  text_model: Qwen3VLMoeTextModel = model.language_model
1778
1853
  elif isinstance(model, Qwen3VLMoeTextModel):
1779
1854
  text_model = model
@@ -2118,10 +2193,10 @@ def apply_liger_kernel_to_glm4v(
2118
2193
  if model is not None:
2119
2194
  # The model instance already exists, so we need to additionally patch the
2120
2195
  # instance variables that reference already-instantiated modules
2121
- if isinstance(model, (Glm4vForConditionalGeneration, Glm4vModel)):
2122
- # Note: language_model and visual properties can be accessed throught conditional class for BC.
2123
- # Not sure if it is subject to changes in the future.
2124
- # Reference: https://github.com/huggingface/transformers/blob/main/src/transformers/models/glm4v/modeling_glm4v.py#L1305
2196
+ if isinstance(model, Glm4vForConditionalGeneration):
2197
+ text_model: Glm4vTextModel = model.model.language_model
2198
+ vision_model: Glm4vVisionModel = model.model.visual
2199
+ elif isinstance(model, Glm4vModel):
2125
2200
  text_model: Glm4vTextModel = model.language_model
2126
2201
  vision_model: Glm4vVisionModel = model.visual
2127
2202
  elif isinstance(model, Glm4vTextModel):
@@ -2208,10 +2283,11 @@ def apply_liger_kernel_to_glm4v_moe(
2208
2283
  if model is not None:
2209
2284
  # The model instance already exists, so we need to additionally patch the
2210
2285
  # instance variables that reference already-instantiated modules
2211
- if isinstance(model, (Glm4vMoeForConditionalGeneration, Glm4vMoeModel)):
2212
- # Note: language_model and visual properties can be accessed throught conditional class for BC.
2213
- # Not sure if it is subject to changes in the future.
2214
- # Reference: https://github.com/huggingface/transformers/blob/main/src/transformers/models/glm4v_moe/modeling_glm4v_moe.py#L337
2286
+ if isinstance(model, Glm4vMoeForConditionalGeneration):
2287
+ text_model: Glm4vMoeTextModel = model.model.language_model
2288
+ vision_model: Glm4vMoeVisionModel = model.model.visual
2289
+ Glm4vMoeTextMoE = modeling_glm4v_moe.Glm4vMoeTextMoE
2290
+ elif isinstance(model, Glm4vMoeModel):
2215
2291
  text_model: Glm4vMoeTextModel = model.language_model
2216
2292
  vision_model: Glm4vMoeVisionModel = model.visual
2217
2293
  Glm4vMoeTextMoE = modeling_glm4v_moe.Glm4vMoeTextMoE
@@ -2314,8 +2390,10 @@ def apply_liger_kernel_to_internvl(
2314
2390
  if model is not None:
2315
2391
  # The model instance already exists, so we need to additionally patch the
2316
2392
  # instance variables that reference already-instantiated modules
2317
- if isinstance(model, (InternVLForConditionalGeneration, InternVLModel)):
2318
- # NOTE: language_model and visual properties can be accessed throught conditional class.
2393
+ if isinstance(model, InternVLForConditionalGeneration):
2394
+ text_model = model.model.language_model
2395
+ vision_model: InternVLVisionModel = model.model.vision_tower
2396
+ elif isinstance(model, InternVLModel):
2319
2397
  text_model = model.language_model
2320
2398
  vision_model: InternVLVisionModel = model.vision_tower
2321
2399
  else:
@@ -2743,6 +2821,83 @@ def apply_liger_kernel_to_hunyuan_v1_moe(
2743
2821
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
2744
2822
 
2745
2823
 
2824
+ def apply_liger_kernel_to_exaone4(
2825
+ rope: bool = True,
2826
+ cross_entropy: bool = False,
2827
+ fused_linear_cross_entropy: bool = True,
2828
+ rms_norm: bool = True,
2829
+ swiglu: bool = True,
2830
+ model: PreTrainedModel = None,
2831
+ ) -> None:
2832
+ """
2833
+ Apply Liger kernels to replace original implementation in HuggingFace EXAONE4 models.
2834
+
2835
+ Args:
2836
+ rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
2837
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
2838
+ fused_linear_cross_entropy (bool):
2839
+ Whether to apply Liger's fused linear cross entropy loss. Default is True.
2840
+ `cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
2841
+ If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
2842
+ rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
2843
+ swiglu (bool): Whether to apply Liger's SwiGLU MLP. Default is True.
2844
+ model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
2845
+ loaded. Default is None.
2846
+ """
2847
+ assert not (cross_entropy and fused_linear_cross_entropy), (
2848
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
2849
+ )
2850
+
2851
+ from transformers.models.exaone4 import modeling_exaone4
2852
+ from transformers.models.exaone4.modeling_exaone4 import Exaone4Model
2853
+
2854
+ from liger_kernel.transformers.model.exaone4 import lce_forward as exaone4_lce_forward
2855
+
2856
+ if rope:
2857
+ modeling_exaone4.apply_rotary_pos_emb = liger_rotary_pos_emb
2858
+
2859
+ if rms_norm:
2860
+ # EXAONE4 requires in_place=False to avoid gradient issues
2861
+ class Exaone4LigerRMSNorm(LigerRMSNorm):
2862
+ def __init__(self, hidden_size, eps=1e-6, **kwargs):
2863
+ super().__init__(hidden_size, eps, **kwargs)
2864
+ self.in_place = False
2865
+
2866
+ modeling_exaone4.Exaone4RMSNorm = Exaone4LigerRMSNorm
2867
+
2868
+ if cross_entropy:
2869
+ from transformers.loss.loss_utils import nn
2870
+
2871
+ nn.functional.cross_entropy = liger_cross_entropy
2872
+
2873
+ if fused_linear_cross_entropy:
2874
+ if model is not None:
2875
+ model.forward = MethodType(exaone4_lce_forward, model)
2876
+ else:
2877
+ modeling_exaone4.Exaone4ForCausalLM.forward = exaone4_lce_forward
2878
+
2879
+ if swiglu:
2880
+ modeling_exaone4.Exaone4MLP = LigerSwiGLUMLP
2881
+
2882
+ if model is not None:
2883
+ # The model instance already exists, so we need to additionally patch the
2884
+ # instance variables that reference already-instantiated modules
2885
+
2886
+ # get the base model from the model instance
2887
+ base_model: Exaone4Model = getattr(model, model.base_model_prefix, model)
2888
+
2889
+ if rms_norm:
2890
+ _patch_rms_norm_module(base_model.norm, in_place=False)
2891
+ for decoder_layer in base_model.layers:
2892
+ if swiglu:
2893
+ _bind_method_to_module(decoder_layer.mlp, "forward", LigerSwiGLUMLP.forward)
2894
+ if rms_norm:
2895
+ _patch_rms_norm_module(decoder_layer.post_attention_layernorm, in_place=False)
2896
+ _patch_rms_norm_module(decoder_layer.post_feedforward_layernorm, in_place=False)
2897
+ _patch_rms_norm_module(decoder_layer.self_attn.q_norm, in_place=False)
2898
+ _patch_rms_norm_module(decoder_layer.self_attn.k_norm, in_place=False)
2899
+
2900
+
2746
2901
  # Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
2747
2902
  MODEL_TYPE_TO_APPLY_LIGER_FN = {
2748
2903
  "gemma": apply_liger_kernel_to_gemma,
@@ -2752,6 +2907,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
2752
2907
  "glm4": apply_liger_kernel_to_glm4,
2753
2908
  "glm4v": apply_liger_kernel_to_glm4v,
2754
2909
  "glm4v_moe": apply_liger_kernel_to_glm4v_moe,
2910
+ "gpt_oss": apply_liger_kernel_to_gpt_oss,
2755
2911
  "internvl": apply_liger_kernel_to_internvl,
2756
2912
  "llama": apply_liger_kernel_to_llama,
2757
2913
  "llama4_text": apply_liger_kernel_to_llama4,
@@ -2783,6 +2939,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
2783
2939
  "smolvlm": apply_liger_kernel_to_smolvlm,
2784
2940
  "hunyuan_v1_dense": apply_liger_kernel_to_hunyuan_v1_dense,
2785
2941
  "hunyuan_v1_moe": apply_liger_kernel_to_hunyuan_v1_moe,
2942
+ "exaone4": apply_liger_kernel_to_exaone4,
2786
2943
  }
2787
2944
 
2788
2945
 
@@ -5,7 +5,7 @@ import torch.nn as nn
5
5
 
6
6
  from torch.nn.modules.utils import _pair
7
7
 
8
- from liger_kernel.ops.multi_token_attention import LigerMultiTokenAttentionFunction
8
+ from liger_kernel.ops import LigerMultiTokenAttentionFunction
9
9
 
10
10
 
11
11
  class LigerMultiTokenAttention(nn.Module):
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
3
 
4
- from liger_kernel.ops.poly_norm import LigerPolyNormFunction
4
+ from liger_kernel.ops import LigerPolyNormFunction
5
5
 
6
6
 
7
7
  class LigerPolyNorm(nn.Module):
@@ -1,4 +1,4 @@
1
- from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
1
+ from liger_kernel.ops import LigerQwen2VLMRopeFunction
2
2
 
3
3
 
4
4
  def liger_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
3
 
4
- from liger_kernel.ops.rms_norm import LigerRMSNormFunction
4
+ from liger_kernel.ops import LigerRMSNormFunction
5
5
 
6
6
 
7
7
  class LigerRMSNorm(nn.Module):
@@ -14,13 +14,18 @@ class LigerRMSNorm(nn.Module):
14
14
  init_fn="ones",
15
15
  in_place=True,
16
16
  row_mode=None,
17
+ elementwise_affine=True,
17
18
  ):
18
19
  super().__init__()
19
20
  assert init_fn in [
20
21
  "ones",
21
22
  "zeros",
22
23
  ], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
23
- self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
24
+ self.elementwise_affine = elementwise_affine
25
+ if self.elementwise_affine:
26
+ self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
27
+ else:
28
+ self.register_parameter("weight", None)
24
29
  self.variance_epsilon, self.offset, self.casting_mode, self.in_place, self.row_mode = (
25
30
  eps,
26
31
  offset,
@@ -41,7 +46,7 @@ class LigerRMSNorm(nn.Module):
41
46
  )
42
47
 
43
48
  def extra_repr(self):
44
- return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}, row_mode={self.row_mode}"
49
+ return f"weight_shape={tuple(self.weight.shape) if self.weight is not None else None}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}, row_mode={self.row_mode}"
45
50
 
46
51
 
47
52
  class LigerRMSNormForGemma(LigerRMSNorm):
@@ -1,9 +1,8 @@
1
- from typing import Optional
2
1
  from typing import Tuple
3
2
 
4
3
  import torch
5
4
 
6
- from liger_kernel.ops.rope import LigerRopeFunction
5
+ from liger_kernel.ops import LigerRopeFunction
7
6
 
8
7
 
9
8
  def liger_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
@@ -25,39 +24,41 @@ def liger_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
25
24
  return LigerRopeFunction.apply(q, k, cos, sin, position_ids, unsqueeze_dim)
26
25
 
27
26
 
28
- def liger_rotary_pos_emb_with_cast(
27
+ def liger_rotary_pos_emb_vision(
29
28
  q: torch.Tensor,
30
29
  k: torch.Tensor,
31
30
  cos: torch.Tensor,
32
31
  sin: torch.Tensor,
33
- position_ids: Optional[torch.Tensor] = None,
34
- unsqueeze_dim: int = 1,
35
32
  ) -> Tuple[torch.Tensor, torch.Tensor]:
33
+ """
34
+ Modified version of liger_rotary_pos_emb for qwen3_vl's apply_rotary_pos_emb_vision function.
35
+ Manually tranposed the input and output to match the expected shape for liger_rotary_pos_emb.
36
+ Reference: https://https://github.com/huggingface/transformers/blob/v5.0.0rc0/src/transformers/models/qwen3_vl/modeling_qwen3_vl.py#L116
37
+
38
+ Args:
39
+ q (torch.Tensor): The query tensor of shape (seq_length, num_heads, head_dim),
40
+ with stride (num_heads * head_dim, head_dim, 1).
41
+ k (torch.Tensor): The query tensor of shape (seq_length, num_heads, head_dim),
42
+ with stride (num_heads * head_dim, head_dim, 1). Same as q.
43
+ cos (torch.Tensor): The cosine tensor of shape (seq_length, head_dim).
44
+ sin (torch.Tensor): The sine tensor of shape (seq_length, head_dim).
45
+
46
+ Returns:
47
+ Tuple[torch.Tensor, torch.Tensor]: The query and key tensors with the same shape and stride as inputs.
48
+ """
36
49
  orig_q_dtype, orig_k_dtype = q.dtype, k.dtype
37
50
 
38
- q32 = q.to(torch.float32)
39
- k32 = k.to(torch.float32)
51
+ # tranpose to (1, num_heads, seq_length, head_dim) and cast to float32 to match liger_rotary_pos_emb input shape
52
+ # also unsqueeze for batch dim
53
+ q32 = q.to(torch.float32).unsqueeze(0).transpose(1, 2)
54
+ k32 = k.to(torch.float32).unsqueeze(0).transpose(1, 2)
40
55
  cos32 = cos.to(torch.float32)
41
56
  sin32 = sin.to(torch.float32)
42
57
 
43
- q_out, k_out = liger_rotary_pos_emb(q32, k32, cos32, sin32, position_ids=position_ids, unsqueeze_dim=unsqueeze_dim)
44
- return q_out.to(orig_q_dtype), k_out.to(orig_k_dtype)
45
-
46
-
47
- def liger_rotary_pos_emb_with_cast_and_leading_batch(
48
- q: torch.Tensor,
49
- k: torch.Tensor,
50
- cos: torch.Tensor,
51
- sin: torch.Tensor,
52
- position_ids: Optional[torch.Tensor] = None,
53
- unsqueeze_dim: int = 1,
54
- ) -> Tuple[torch.Tensor, torch.Tensor]:
55
- orig_q_dtype, orig_k_dtype = q.dtype, k.dtype
56
-
57
- q32 = q.to(torch.float32).unsqueeze(0)
58
- k32 = k.to(torch.float32).unsqueeze(0)
59
- cos32 = cos.to(torch.float32).unsqueeze(0)
60
- sin32 = sin.to(torch.float32).unsqueeze(0)
58
+ q_out, k_out = liger_rotary_pos_emb(q32, k32, cos32, sin32)
61
59
 
62
- q_out, k_out = liger_rotary_pos_emb(q32, k32, cos32, sin32, position_ids=position_ids, unsqueeze_dim=unsqueeze_dim)
63
- return q_out.to(orig_q_dtype).squeeze(0), k_out.to(orig_k_dtype).squeeze(0)
60
+ # transpose back to (seq_length, num_heads, head_dim) and cast back to original dtype
61
+ # also squeeze out batch dim
62
+ q_out = q_out.transpose(1, 2).squeeze(0).to(orig_q_dtype)
63
+ k_out = k_out.transpose(1, 2).squeeze(0).to(orig_k_dtype)
64
+ return q_out, k_out
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
3
 
4
- from liger_kernel.ops.softmax import LigerSoftmaxFunction
4
+ from liger_kernel.ops import LigerSoftmaxFunction
5
5
 
6
6
 
7
7
  class LigerSoftmax(nn.Module):
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
3
 
4
- from liger_kernel.ops.sparsemax import LigerSparsemaxFunction
4
+ from liger_kernel.ops import LigerSparsemaxFunction
5
5
 
6
6
 
7
7
  class LigerSparsemax(nn.Module):
@@ -1,6 +1,6 @@
1
1
  import torch.nn as nn
2
2
 
3
- from liger_kernel.ops.swiglu import LigerSiLUMulFunction
3
+ from liger_kernel.ops import LigerSiLUMulFunction
4
4
 
5
5
 
6
6
  class LigerSwiGLUMLP(nn.Module):
@@ -2,9 +2,9 @@ from typing import Optional
2
2
 
3
3
  import torch.nn as nn
4
4
 
5
- from liger_kernel.ops.geglu import LigerGELUMulFunction
6
- from liger_kernel.ops.swiglu import LigerSiLUMulFunction
7
- from liger_kernel.ops.tiled_mlp import apply_tiled_mlp
5
+ from liger_kernel.ops import LigerGELUMulFunction
6
+ from liger_kernel.ops import LigerSiLUMulFunction
7
+ from liger_kernel.ops import apply_tiled_mlp
8
8
 
9
9
 
10
10
  class LigerTiledGEGLUMLP(nn.Module):
@@ -57,11 +57,7 @@ class LigerTiledGEGLUMLP(nn.Module):
57
57
  Returns:
58
58
  Output tensor of the same shape as input
59
59
  """
60
- compute_params = [
61
- self.gate_proj.weight,
62
- self.up_proj.weight,
63
- self.down_proj.weight,
64
- ]
60
+ compute_params = [p for p in self.parameters() if p.requires_grad]
65
61
 
66
62
  return apply_tiled_mlp(
67
63
  fn=self._mlp_forward,
@@ -118,11 +114,7 @@ class LigerTiledSwiGLUMLP(nn.Module):
118
114
  Returns:
119
115
  Output tensor of the same shape as input
120
116
  """
121
- compute_params = [
122
- self.gate_proj.weight,
123
- self.up_proj.weight,
124
- self.down_proj.weight,
125
- ]
117
+ compute_params = [p for p in self.parameters() if p.requires_grad]
126
118
 
127
119
  return apply_tiled_mlp(
128
120
  fn=self._mlp_forward,
@@ -1,6 +1,6 @@
1
1
  import torch.nn as nn
2
2
 
3
- from liger_kernel.ops.tvd import LigerTVDLossFunction
3
+ from liger_kernel.ops import LigerTVDLossFunction
4
4
 
5
5
 
6
6
  class LigerTVDLoss(nn.Module):