liger-kernel 0.6.4__py3-none-any.whl → 0.6.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/cosine_similarity_loss.py +7 -1
- liger_kernel/chunked_loss/fused_linear_distillation.py +10 -3
- liger_kernel/chunked_loss/jsd_loss.py +21 -6
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +492 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +61 -0
- liger_kernel/ops/backends/_ascend/ops/embedding.py +214 -0
- liger_kernel/ops/backends/_ascend/ops/geglu.py +191 -0
- liger_kernel/ops/backends/_ascend/ops/llama4_rope.py +298 -0
- liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +275 -0
- liger_kernel/ops/backends/_ascend/ops/rope.py +265 -0
- liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
- liger_kernel/ops/backends/_ascend/ops/tvd.py +223 -0
- liger_kernel/ops/backends/_ascend/ub_manager.py +367 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +14 -4
- liger_kernel/ops/dyt.py +5 -2
- liger_kernel/ops/fused_add_rms_norm.py +21 -23
- liger_kernel/ops/fused_linear_cross_entropy.py +2 -1
- liger_kernel/ops/geglu.py +5 -3
- liger_kernel/ops/group_norm.py +12 -8
- liger_kernel/ops/kl_div.py +8 -11
- liger_kernel/ops/layer_norm.py +17 -16
- liger_kernel/ops/poly_norm.py +19 -21
- liger_kernel/ops/rms_norm.py +149 -71
- liger_kernel/ops/utils.py +25 -0
- liger_kernel/transformers/__init__.py +6 -0
- liger_kernel/transformers/auto_model.py +21 -0
- liger_kernel/transformers/cross_entropy.py +1 -1
- liger_kernel/transformers/dyt.py +1 -1
- liger_kernel/transformers/experimental/embedding.py +1 -1
- liger_kernel/transformers/functional.py +20 -20
- liger_kernel/transformers/fused_add_rms_norm.py +1 -1
- liger_kernel/transformers/fused_linear_cross_entropy.py +1 -1
- liger_kernel/transformers/fused_linear_jsd.py +1 -1
- liger_kernel/transformers/fused_neighborhood_attention.py +1 -1
- liger_kernel/transformers/geglu.py +1 -1
- liger_kernel/transformers/group_norm.py +1 -1
- liger_kernel/transformers/grpo_loss.py +1 -1
- liger_kernel/transformers/jsd.py +1 -1
- liger_kernel/transformers/kl_div.py +1 -1
- liger_kernel/transformers/layer_norm.py +1 -1
- liger_kernel/transformers/llama4_rope.py +1 -1
- liger_kernel/transformers/model/exaone4.py +136 -0
- liger_kernel/transformers/model/gemma2.py +3 -3
- liger_kernel/transformers/model/gemma3.py +11 -5
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/loss_utils.py +6 -0
- liger_kernel/transformers/model/paligemma.py +1 -0
- liger_kernel/transformers/monkey_patch.py +196 -39
- liger_kernel/transformers/multi_token_attention.py +1 -1
- liger_kernel/transformers/poly_norm.py +1 -1
- liger_kernel/transformers/qwen2vl_mrope.py +1 -1
- liger_kernel/transformers/rms_norm.py +8 -3
- liger_kernel/transformers/rope.py +28 -27
- liger_kernel/transformers/softmax.py +1 -1
- liger_kernel/transformers/sparsemax.py +1 -1
- liger_kernel/transformers/swiglu.py +1 -1
- liger_kernel/transformers/tiled_mlp.py +5 -13
- liger_kernel/transformers/tvd.py +1 -1
- liger_kernel/utils.py +54 -0
- {liger_kernel-0.6.4.dist-info → liger_kernel-0.6.5.dist-info}/METADATA +11 -4
- liger_kernel-0.6.5.dist-info/RECORD +134 -0
- {liger_kernel-0.6.4.dist-info → liger_kernel-0.6.5.dist-info}/WHEEL +1 -1
- liger_kernel-0.6.4.dist-info/RECORD +0 -118
- {liger_kernel-0.6.4.dist-info → liger_kernel-0.6.5.dist-info}/licenses/LICENSE +0 -0
- {liger_kernel-0.6.4.dist-info → liger_kernel-0.6.5.dist-info}/licenses/NOTICE +0 -0
- {liger_kernel-0.6.4.dist-info → liger_kernel-0.6.5.dist-info}/top_level.txt +0 -0
|
@@ -2,7 +2,7 @@ from typing import Optional
|
|
|
2
2
|
|
|
3
3
|
import torch
|
|
4
4
|
|
|
5
|
-
from liger_kernel.ops
|
|
5
|
+
from liger_kernel.ops import LigerFusedLinearCrossEntropyFunction
|
|
6
6
|
from liger_kernel.transformers.functional import CrossEntropyOutput
|
|
7
7
|
|
|
8
8
|
|
|
@@ -5,7 +5,7 @@ from typing import Optional
|
|
|
5
5
|
import torch
|
|
6
6
|
import torch.nn as nn
|
|
7
7
|
|
|
8
|
-
from liger_kernel.ops
|
|
8
|
+
from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
class LigerFusedNeighborhoodAttention(nn.Module):
|
liger_kernel/transformers/jsd.py
CHANGED
|
@@ -5,7 +5,7 @@ Supports both text and vision RoPE variants with fused operations for optimal pe
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from liger_kernel.ops
|
|
8
|
+
from liger_kernel.ops import LigerLlama4RopeFunction
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
def liger_llama4_text_rotary_pos_emb(
|
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Union
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
8
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
9
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def lce_forward(
|
|
13
|
+
self,
|
|
14
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
15
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
16
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
17
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
18
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
19
|
+
labels: Optional[torch.LongTensor] = None,
|
|
20
|
+
use_cache: Optional[bool] = None,
|
|
21
|
+
output_attentions: Optional[bool] = None,
|
|
22
|
+
output_hidden_states: Optional[bool] = None,
|
|
23
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
24
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
25
|
+
skip_logits: Optional[bool] = None,
|
|
26
|
+
return_dict: Optional[bool] = None,
|
|
27
|
+
**kwargs,
|
|
28
|
+
) -> LigerCausalLMOutputWithPast:
|
|
29
|
+
r"""
|
|
30
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
31
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
32
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
33
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
34
|
+
|
|
35
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
36
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
37
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
38
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
39
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
40
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
41
|
+
|
|
42
|
+
Returns:
|
|
43
|
+
|
|
44
|
+
Example:
|
|
45
|
+
|
|
46
|
+
````python
|
|
47
|
+
>>> from transformers import AutoTokenizer, Exaone4ForCausalLM
|
|
48
|
+
|
|
49
|
+
>>> model = Exaone4ForCausalLM.from_pretrained("LGAI-EXAONE/EXAONE-4.0-1.2B")
|
|
50
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-4.0-1.2B")
|
|
51
|
+
|
|
52
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
53
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
54
|
+
|
|
55
|
+
>>> # Generate
|
|
56
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
57
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
58
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
59
|
+
```"""
|
|
60
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
61
|
+
output_hidden_states = (
|
|
62
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
63
|
+
)
|
|
64
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
65
|
+
|
|
66
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
67
|
+
outputs = self.model(
|
|
68
|
+
input_ids=input_ids,
|
|
69
|
+
attention_mask=attention_mask,
|
|
70
|
+
position_ids=position_ids,
|
|
71
|
+
past_key_values=past_key_values,
|
|
72
|
+
inputs_embeds=inputs_embeds,
|
|
73
|
+
use_cache=use_cache,
|
|
74
|
+
output_attentions=output_attentions,
|
|
75
|
+
output_hidden_states=output_hidden_states,
|
|
76
|
+
cache_position=cache_position,
|
|
77
|
+
**kwargs,
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
hidden_states = outputs[0]
|
|
81
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
82
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
83
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
84
|
+
|
|
85
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
86
|
+
# Remove output-control parameters that shouldn't be passed to loss functions
|
|
87
|
+
kwargs.pop("return_dict", None)
|
|
88
|
+
logits = None
|
|
89
|
+
loss = None
|
|
90
|
+
token_accuracy = None
|
|
91
|
+
|
|
92
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
93
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
94
|
+
|
|
95
|
+
if skip_logits is None:
|
|
96
|
+
# By default, if in training mode, don't materialize logits
|
|
97
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
98
|
+
|
|
99
|
+
# Compute loss
|
|
100
|
+
if skip_logits:
|
|
101
|
+
result = LigerForCausalLMLoss(
|
|
102
|
+
hidden_states=kept_hidden_states,
|
|
103
|
+
lm_head_weight=self.lm_head.weight,
|
|
104
|
+
labels=labels,
|
|
105
|
+
shift_labels=shift_labels,
|
|
106
|
+
hidden_size=self.config.hidden_size,
|
|
107
|
+
**kwargs,
|
|
108
|
+
)
|
|
109
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
110
|
+
|
|
111
|
+
else:
|
|
112
|
+
logits = self.lm_head(kept_hidden_states)
|
|
113
|
+
if labels is not None or shift_labels is not None:
|
|
114
|
+
loss = self.loss_function(
|
|
115
|
+
logits=logits,
|
|
116
|
+
labels=labels,
|
|
117
|
+
shift_labels=shift_labels,
|
|
118
|
+
vocab_size=self.config.vocab_size,
|
|
119
|
+
**kwargs,
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
if not return_dict:
|
|
123
|
+
output = (logits,) + outputs[1:]
|
|
124
|
+
output = ((loss,) + output) if loss is not None else output
|
|
125
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
126
|
+
return output
|
|
127
|
+
|
|
128
|
+
# Return custom output class with accuracy field
|
|
129
|
+
return LigerCausalLMOutputWithPast(
|
|
130
|
+
loss=loss,
|
|
131
|
+
logits=logits,
|
|
132
|
+
past_key_values=outputs.past_key_values,
|
|
133
|
+
hidden_states=outputs.hidden_states,
|
|
134
|
+
attentions=outputs.attentions,
|
|
135
|
+
token_accuracy=token_accuracy,
|
|
136
|
+
)
|
|
@@ -7,7 +7,7 @@ from typing import Union
|
|
|
7
7
|
import torch
|
|
8
8
|
|
|
9
9
|
from torch.nn import CrossEntropyLoss
|
|
10
|
-
from transformers.cache_utils import
|
|
10
|
+
from transformers.cache_utils import Cache
|
|
11
11
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
12
12
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
13
13
|
|
|
@@ -24,7 +24,7 @@ def lce_forward_deprecated(
|
|
|
24
24
|
input_ids: torch.LongTensor = None,
|
|
25
25
|
attention_mask: Optional[torch.Tensor] = None,
|
|
26
26
|
position_ids: Optional[torch.LongTensor] = None,
|
|
27
|
-
past_key_values: Optional[
|
|
27
|
+
past_key_values: Optional[Cache] = None,
|
|
28
28
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
29
29
|
labels: Optional[torch.LongTensor] = None,
|
|
30
30
|
use_cache: Optional[bool] = None,
|
|
@@ -149,7 +149,7 @@ def lce_forward(
|
|
|
149
149
|
input_ids: torch.LongTensor = None,
|
|
150
150
|
attention_mask: Optional[torch.Tensor] = None,
|
|
151
151
|
position_ids: Optional[torch.LongTensor] = None,
|
|
152
|
-
past_key_values: Optional[
|
|
152
|
+
past_key_values: Optional[Cache] = None,
|
|
153
153
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
154
154
|
labels: Optional[torch.LongTensor] = None,
|
|
155
155
|
use_cache: Optional[bool] = None,
|
|
@@ -6,10 +6,8 @@ import torch
|
|
|
6
6
|
import torch.nn as nn
|
|
7
7
|
|
|
8
8
|
from transformers.cache_utils import Cache
|
|
9
|
-
from transformers.cache_utils import HybridCache
|
|
10
9
|
from transformers.utils import logging
|
|
11
10
|
|
|
12
|
-
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
13
11
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
14
12
|
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
15
13
|
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
@@ -23,7 +21,7 @@ def causal_forward(
|
|
|
23
21
|
input_ids: torch.LongTensor = None,
|
|
24
22
|
attention_mask: Optional[torch.Tensor] = None,
|
|
25
23
|
position_ids: Optional[torch.LongTensor] = None,
|
|
26
|
-
past_key_values: Optional[
|
|
24
|
+
past_key_values: Optional[Cache] = None,
|
|
27
25
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
28
26
|
labels: Optional[torch.LongTensor] = None,
|
|
29
27
|
use_cache: Optional[bool] = None,
|
|
@@ -235,6 +233,7 @@ def multimodal_forward(
|
|
|
235
233
|
**lm_kwargs,
|
|
236
234
|
)
|
|
237
235
|
|
|
236
|
+
shift_labels = lm_kwargs.pop("shift_labels", None)
|
|
238
237
|
hidden_states = outputs[0]
|
|
239
238
|
|
|
240
239
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
@@ -268,8 +267,15 @@ def multimodal_forward(
|
|
|
268
267
|
shift_hidden_states = shift_hidden_states.view(-1, self.config.text_config.hidden_size)
|
|
269
268
|
shift_labels = shift_labels.view(-1).to(hidden_device)
|
|
270
269
|
|
|
271
|
-
|
|
272
|
-
|
|
270
|
+
result = LigerForCausalLMLoss(
|
|
271
|
+
hidden_states=shift_hidden_states,
|
|
272
|
+
lm_head_weight=self.lm_head.weight,
|
|
273
|
+
labels=shift_labels,
|
|
274
|
+
hidden_size=self.config.text_config.hidden_size,
|
|
275
|
+
shift_labels=shift_labels,
|
|
276
|
+
final_logit_softcapping=getattr(self.config.text_config, "final_logit_softcapping", None),
|
|
277
|
+
**lm_kwargs,
|
|
278
|
+
)
|
|
273
279
|
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
274
280
|
|
|
275
281
|
else:
|
|
@@ -0,0 +1,211 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Union
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from transformers.modeling_outputs import MoeModelOutputWithPast
|
|
8
|
+
from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func
|
|
9
|
+
|
|
10
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerMoeCausalLMOutputWithPast
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def lce_forward(
|
|
16
|
+
self,
|
|
17
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
18
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
19
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
20
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
21
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
22
|
+
labels: Optional[torch.LongTensor] = None,
|
|
23
|
+
use_cache: Optional[bool] = None,
|
|
24
|
+
output_attentions: Optional[bool] = None,
|
|
25
|
+
output_hidden_states: Optional[bool] = None,
|
|
26
|
+
output_router_logits: Optional[bool] = None,
|
|
27
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
28
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
29
|
+
skip_logits: Optional[bool] = None,
|
|
30
|
+
**kwargs,
|
|
31
|
+
) -> LigerMoeCausalLMOutputWithPast:
|
|
32
|
+
r"""
|
|
33
|
+
Forward pass for causal language modeling with Mixture of Experts (MoE) architecture using Liger Kernel optimizations.
|
|
34
|
+
|
|
35
|
+
Args:
|
|
36
|
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
37
|
+
Indices of input sequence tokens in the vocabulary. Indices can be obtained using tokenizers.
|
|
38
|
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
39
|
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
40
|
+
- 1 for tokens that are **not masked**,
|
|
41
|
+
- 0 for tokens that are **masked**.
|
|
42
|
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
43
|
+
Indices of positions of each input sequence tokens in the position embeddings.
|
|
44
|
+
past_key_values (`List[torch.FloatTensor]` or `Cache`, *optional*):
|
|
45
|
+
Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up
|
|
46
|
+
sequential decoding. See `past_key_values` input for more details.
|
|
47
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
48
|
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
|
49
|
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
|
50
|
+
than the model's internal embedding lookup matrix.
|
|
51
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
52
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
53
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
54
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
55
|
+
use_cache (`bool`, *optional*):
|
|
56
|
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
|
57
|
+
(see `past_key_values`).
|
|
58
|
+
output_attentions (`bool`, *optional*):
|
|
59
|
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
60
|
+
tensors for more detail.
|
|
61
|
+
output_hidden_states (`bool`, *optional*):
|
|
62
|
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
63
|
+
more detail.
|
|
64
|
+
output_router_logits (`bool`, *optional*):
|
|
65
|
+
Whether or not to return the router logits of all MoE layers. See `router_logits` under returned tensors
|
|
66
|
+
for more detail.
|
|
67
|
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
|
68
|
+
Indices depicting the position of the input sequence tokens in the sequence.
|
|
69
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*, defaults to 0):
|
|
70
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
71
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
72
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
73
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
74
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
75
|
+
skip_logits (`bool`, *optional*):
|
|
76
|
+
Whether to skip logit computation and directly compute loss. If `None`, defaults to `True` during training
|
|
77
|
+
when labels are provided (to save memory), and `False` during inference.
|
|
78
|
+
|
|
79
|
+
Returns:
|
|
80
|
+
`LigerMoeCausalLMOutputWithPast`: An output object containing:
|
|
81
|
+
- loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
|
82
|
+
Language modeling loss (for next-token prediction), including the auxiliary load balancing loss.
|
|
83
|
+
- aux_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
|
|
84
|
+
Auxiliary load balancing loss for the sparse MoE modules.
|
|
85
|
+
- logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*):
|
|
86
|
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
87
|
+
Note: logits are `None` during training when `skip_logits=True` to save memory.
|
|
88
|
+
- past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed):
|
|
89
|
+
Cached key and value projection states for faster sequential decoding.
|
|
90
|
+
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`):
|
|
91
|
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for each layer) of shape
|
|
92
|
+
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer.
|
|
93
|
+
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True`):
|
|
94
|
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
95
|
+
sequence_length)`. Attentions weights after the attention softmax.
|
|
96
|
+
- router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_logits=True`):
|
|
97
|
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
|
|
98
|
+
Router logits of the MoE layers, useful to compute the auxiliary loss and z_loss.
|
|
99
|
+
- token_accuracy (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
|
|
100
|
+
Token-level prediction accuracy.
|
|
101
|
+
|
|
102
|
+
Example:
|
|
103
|
+
|
|
104
|
+
```python
|
|
105
|
+
>>> from transformers import AutoTokenizer, GptOssForCausalLM
|
|
106
|
+
>>> from liger_kernel.transformers import apply_liger_kernel_to_gpt_oss
|
|
107
|
+
|
|
108
|
+
>>> # Apply Liger Kernel patches for optimized performance
|
|
109
|
+
>>> apply_liger_kernel_to_gpt_oss()
|
|
110
|
+
|
|
111
|
+
>>> model = GptOssForCausalLM.from_pretrained("openai/gpt-oss-20b")
|
|
112
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b")
|
|
113
|
+
|
|
114
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
115
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
116
|
+
|
|
117
|
+
>>> # Inference: Forward pass returns logits
|
|
118
|
+
>>> outputs = model(**inputs)
|
|
119
|
+
>>> outputs.logits.shape
|
|
120
|
+
torch.Size([1, 12, 201088])
|
|
121
|
+
|
|
122
|
+
>>> # Get next token prediction
|
|
123
|
+
>>> next_token_logits = outputs.logits[:, -1, :]
|
|
124
|
+
>>> predicted_token_id = next_token_logits.argmax(dim=-1)
|
|
125
|
+
|
|
126
|
+
>>> # Training: Forward pass with labels returns loss
|
|
127
|
+
>>> labels = inputs.input_ids.clone()
|
|
128
|
+
>>> outputs = model(**inputs, labels=labels)
|
|
129
|
+
>>> outputs.loss
|
|
130
|
+
tensor(2.6454)
|
|
131
|
+
```"""
|
|
132
|
+
|
|
133
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
134
|
+
output_router_logits = (
|
|
135
|
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
|
136
|
+
)
|
|
137
|
+
|
|
138
|
+
output_hidden_states = (
|
|
139
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
143
|
+
outputs: MoeModelOutputWithPast = self.model(
|
|
144
|
+
input_ids=input_ids,
|
|
145
|
+
attention_mask=attention_mask,
|
|
146
|
+
position_ids=position_ids,
|
|
147
|
+
past_key_values=past_key_values,
|
|
148
|
+
inputs_embeds=inputs_embeds,
|
|
149
|
+
use_cache=use_cache,
|
|
150
|
+
output_attentions=output_attentions,
|
|
151
|
+
output_hidden_states=output_hidden_states,
|
|
152
|
+
output_router_logits=output_router_logits,
|
|
153
|
+
cache_position=cache_position,
|
|
154
|
+
**kwargs,
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
hidden_states = outputs.last_hidden_state
|
|
158
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
159
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
160
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
161
|
+
|
|
162
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
163
|
+
logits = None
|
|
164
|
+
loss = None
|
|
165
|
+
token_accuracy = None
|
|
166
|
+
|
|
167
|
+
if skip_logits is None:
|
|
168
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
169
|
+
|
|
170
|
+
if skip_logits:
|
|
171
|
+
result = LigerForCausalLMLoss(
|
|
172
|
+
hidden_states=kept_hidden_states,
|
|
173
|
+
lm_head_weight=self.lm_head.weight,
|
|
174
|
+
labels=labels,
|
|
175
|
+
shift_labels=shift_labels,
|
|
176
|
+
hidden_size=self.config.hidden_size,
|
|
177
|
+
**kwargs,
|
|
178
|
+
)
|
|
179
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
180
|
+
else: # if in inference model materialize logits
|
|
181
|
+
logits = self.lm_head(kept_hidden_states)
|
|
182
|
+
if labels is not None or shift_labels is not None:
|
|
183
|
+
loss = self.loss_function(
|
|
184
|
+
logits=logits,
|
|
185
|
+
labels=labels,
|
|
186
|
+
shift_labels=shift_labels,
|
|
187
|
+
vocab_size=self.vocab_size,
|
|
188
|
+
**kwargs,
|
|
189
|
+
)
|
|
190
|
+
|
|
191
|
+
aux_loss = None
|
|
192
|
+
if output_router_logits:
|
|
193
|
+
aux_loss = load_balancing_loss_func(
|
|
194
|
+
outputs.router_logits,
|
|
195
|
+
self.num_experts,
|
|
196
|
+
self.num_experts_per_tok,
|
|
197
|
+
attention_mask,
|
|
198
|
+
)
|
|
199
|
+
if labels is not None:
|
|
200
|
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
|
201
|
+
|
|
202
|
+
return LigerMoeCausalLMOutputWithPast(
|
|
203
|
+
loss=loss,
|
|
204
|
+
aux_loss=aux_loss,
|
|
205
|
+
logits=logits,
|
|
206
|
+
past_key_values=outputs.past_key_values,
|
|
207
|
+
hidden_states=outputs.hidden_states,
|
|
208
|
+
attentions=outputs.attentions,
|
|
209
|
+
router_logits=outputs.router_logits,
|
|
210
|
+
token_accuracy=token_accuracy,
|
|
211
|
+
)
|
|
@@ -1,3 +1,5 @@
|
|
|
1
|
+
import inspect
|
|
2
|
+
|
|
1
3
|
from typing import Optional
|
|
2
4
|
from typing import Tuple
|
|
3
5
|
|
|
@@ -71,6 +73,10 @@ def LigerForCausalLMLoss(
|
|
|
71
73
|
return_token_accuracy: bool = False,
|
|
72
74
|
**kwargs,
|
|
73
75
|
):
|
|
76
|
+
# Filter out inapplicable kwargs to liger_fused_linear_cross_entropy
|
|
77
|
+
applicable_params = inspect.signature(F.liger_fused_linear_cross_entropy).parameters
|
|
78
|
+
kwargs = {k: v for k, v in kwargs.items() if k in applicable_params}
|
|
79
|
+
|
|
74
80
|
# Skip upcast since intermediate values for the loss are all fp32 in kernel
|
|
75
81
|
if shift_labels is None:
|
|
76
82
|
# Shift so that token < n predict n
|