liger-kernel 0.6.2__py3-none-any.whl → 0.6.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. liger_kernel/chunked_loss/cosine_similarity_loss.py +13 -4
  2. liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
  3. liger_kernel/chunked_loss/fused_linear_ppo.py +25 -5
  4. liger_kernel/chunked_loss/grpo_loss.py +46 -9
  5. liger_kernel/chunked_loss/jsd_loss.py +23 -7
  6. liger_kernel/ops/cross_entropy.py +118 -62
  7. liger_kernel/ops/fused_linear_cross_entropy.py +97 -13
  8. liger_kernel/ops/grpo_loss.py +3 -1
  9. liger_kernel/ops/layer_norm.py +86 -69
  10. liger_kernel/ops/poly_norm.py +386 -0
  11. liger_kernel/ops/tiled_mlp.py +136 -0
  12. liger_kernel/transformers/__init__.py +36 -0
  13. liger_kernel/transformers/cross_entropy.py +8 -3
  14. liger_kernel/transformers/functional.py +31 -6
  15. liger_kernel/transformers/fused_linear_cross_entropy.py +13 -4
  16. liger_kernel/transformers/grpo_loss.py +56 -1
  17. liger_kernel/transformers/model/falcon_h1.py +122 -0
  18. liger_kernel/transformers/model/gemma.py +19 -7
  19. liger_kernel/transformers/model/gemma2.py +22 -7
  20. liger_kernel/transformers/model/gemma3.py +52 -14
  21. liger_kernel/transformers/model/glm4.py +18 -5
  22. liger_kernel/transformers/model/glm4v.py +19 -6
  23. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  24. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  25. liger_kernel/transformers/model/internvl.py +157 -0
  26. liger_kernel/transformers/model/llama.py +16 -6
  27. liger_kernel/transformers/model/llama4.py +18 -5
  28. liger_kernel/transformers/model/llava.py +18 -6
  29. liger_kernel/transformers/model/loss_utils.py +32 -3
  30. liger_kernel/transformers/model/mistral.py +17 -7
  31. liger_kernel/transformers/model/mixtral.py +24 -9
  32. liger_kernel/transformers/model/mllama.py +14 -5
  33. liger_kernel/transformers/model/olmo2.py +18 -5
  34. liger_kernel/transformers/model/olmo3.py +142 -0
  35. liger_kernel/transformers/model/output_classes.py +147 -0
  36. liger_kernel/transformers/model/paligemma.py +41 -5
  37. liger_kernel/transformers/model/phi3.py +16 -8
  38. liger_kernel/transformers/model/qwen2.py +18 -4
  39. liger_kernel/transformers/model/qwen2_5_vl.py +21 -8
  40. liger_kernel/transformers/model/qwen2_vl.py +24 -7
  41. liger_kernel/transformers/model/qwen3.py +22 -6
  42. liger_kernel/transformers/model/qwen3_moe.py +27 -7
  43. liger_kernel/transformers/model/qwen3_next.py +146 -0
  44. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  45. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  46. liger_kernel/transformers/model/smollm3.py +17 -7
  47. liger_kernel/transformers/model/smolvlm.py +158 -0
  48. liger_kernel/transformers/monkey_patch.py +830 -3
  49. liger_kernel/transformers/multi_token_attention.py +1 -1
  50. liger_kernel/transformers/poly_norm.py +42 -0
  51. liger_kernel/transformers/rms_norm.py +7 -0
  52. liger_kernel/transformers/rope.py +43 -0
  53. liger_kernel/transformers/swiglu.py +17 -0
  54. liger_kernel/transformers/tiled_mlp.py +133 -0
  55. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.4.dist-info}/METADATA +16 -10
  56. liger_kernel-0.6.4.dist-info/RECORD +118 -0
  57. liger_kernel-0.6.2.dist-info/RECORD +0 -104
  58. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.4.dist-info}/WHEEL +0 -0
  59. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.4.dist-info}/licenses/LICENSE +0 -0
  60. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.4.dist-info}/licenses/NOTICE +0 -0
  61. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.4.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,134 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
8
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
9
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
10
+
11
+
12
+ def lce_forward(
13
+ self,
14
+ input_ids: Optional[torch.LongTensor] = None,
15
+ attention_mask: Optional[torch.Tensor] = None,
16
+ position_ids: Optional[torch.LongTensor] = None,
17
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
18
+ inputs_embeds: Optional[torch.FloatTensor] = None,
19
+ labels: Optional[torch.LongTensor] = None,
20
+ use_cache: Optional[bool] = None,
21
+ output_attentions: Optional[bool] = None,
22
+ output_hidden_states: Optional[bool] = None,
23
+ cache_position: Optional[torch.LongTensor] = None,
24
+ logits_to_keep: Union[int, torch.Tensor] = 0,
25
+ skip_logits: Optional[bool] = None,
26
+ return_dict: Optional[bool] = None,
27
+ **kwargs,
28
+ ) -> LigerCausalLMOutputWithPast:
29
+ r"""
30
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
31
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
32
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
33
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
34
+
35
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
36
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
37
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
38
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
39
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
40
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
41
+
42
+ Returns:
43
+
44
+ Example:
45
+
46
+ ```python
47
+ >>> from transformers import AutoTokenizer, HunYuanDenseV1ForCausalLM
48
+
49
+ >>> model = HunYuanDenseV1ForCausalLM.from_pretrained("meta-hunyuan_v1_dense/HunYuanDenseV1-2-7b-hf")
50
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-hunyuan_v1_dense/HunYuanDenseV1-2-7b-hf")
51
+
52
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
53
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
54
+
55
+ >>> # Generate
56
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
57
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
58
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
59
+ ```"""
60
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
61
+ output_hidden_states = (
62
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
63
+ )
64
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
65
+
66
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
67
+ outputs = self.model(
68
+ input_ids=input_ids,
69
+ attention_mask=attention_mask,
70
+ position_ids=position_ids,
71
+ past_key_values=past_key_values,
72
+ inputs_embeds=inputs_embeds,
73
+ use_cache=use_cache,
74
+ output_attentions=output_attentions,
75
+ output_hidden_states=output_hidden_states,
76
+ cache_position=cache_position,
77
+ **kwargs,
78
+ )
79
+
80
+ hidden_states = outputs[0]
81
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
82
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
83
+ kept_hidden_states = hidden_states[:, slice_indices, :]
84
+
85
+ shift_labels = kwargs.pop("shift_labels", None)
86
+ logits = None
87
+ loss = None
88
+ token_accuracy = None
89
+
90
+ if skip_logits and labels is None and shift_labels is None:
91
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
92
+
93
+ if skip_logits is None:
94
+ # By default, if in training mode, don't materialize logits
95
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
96
+
97
+ # Compute loss
98
+ if skip_logits:
99
+ result = LigerForCausalLMLoss(
100
+ hidden_states=kept_hidden_states,
101
+ lm_head_weight=self.lm_head.weight,
102
+ labels=labels,
103
+ shift_labels=shift_labels,
104
+ hidden_size=self.config.hidden_size,
105
+ **kwargs,
106
+ )
107
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
108
+
109
+ else:
110
+ logits = self.lm_head(kept_hidden_states)
111
+ if labels is not None or shift_labels is not None:
112
+ loss = self.loss_function(
113
+ logits=logits,
114
+ labels=labels,
115
+ shift_labels=shift_labels,
116
+ vocab_size=self.config.vocab_size,
117
+ **kwargs,
118
+ )
119
+
120
+ if not return_dict:
121
+ output = (logits,) + outputs[1:]
122
+ output = ((loss,) + output) if loss is not None else output
123
+ output = output + (token_accuracy,) if token_accuracy is not None else output
124
+ return output
125
+
126
+ # Return custom output class with accuracy field
127
+ return LigerCausalLMOutputWithPast(
128
+ loss=loss,
129
+ logits=logits,
130
+ past_key_values=outputs.past_key_values,
131
+ hidden_states=outputs.hidden_states,
132
+ attentions=outputs.attentions,
133
+ token_accuracy=token_accuracy,
134
+ )
@@ -0,0 +1,157 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.utils import can_return_tuple
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerInternVLCausalLMOutputWithPast
13
+
14
+
15
+ # Copied from https://github.com/huggingface/transformers/blob/d888bd435d0c0eaabaabad5b33d52af518c7187c/src/transformers/models/internvl/modeling_internvl.py#L862
16
+ @can_return_tuple
17
+ def lce_forward(
18
+ self,
19
+ input_ids: torch.LongTensor = None,
20
+ pixel_values: Optional[torch.FloatTensor] = None,
21
+ attention_mask: Optional[torch.Tensor] = None,
22
+ position_ids: Optional[torch.LongTensor] = None,
23
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
24
+ inputs_embeds: Optional[torch.FloatTensor] = None,
25
+ vision_feature_layer: Optional[Union[int, List[int]]] = None,
26
+ vision_feature_select_strategy: Optional[str] = None,
27
+ labels: Optional[torch.LongTensor] = None,
28
+ use_cache: Optional[bool] = None,
29
+ output_attentions: Optional[bool] = None,
30
+ output_hidden_states: Optional[bool] = None,
31
+ return_dict: Optional[bool] = None,
32
+ cache_position: Optional[torch.LongTensor] = None,
33
+ logits_to_keep: Union[int, torch.Tensor] = 0,
34
+ image_sizes: Optional[torch.Tensor] = None,
35
+ skip_logits: Optional[bool] = None, # Added argument for liger-kernel
36
+ **lm_kwargs, # renamed from kwargs
37
+ ) -> Union[Tuple, LigerInternVLCausalLMOutputWithPast]:
38
+ r"""
39
+ Example:
40
+
41
+ ```python
42
+ >>> import torch
43
+ >>> from transformers import AutoProcessor, AutoModelForImageTextToText
44
+
45
+ >>> torch_device = "cuda"
46
+ >>> processor = AutoProcessor.from_pretrained("OpenGVLab/InternVL3-1B-hf")
47
+ >>> model = AutoModelForImageTextToText.from_pretrained(
48
+ ... "OpenGVLab/InternVL3-1B-hf", dtype=torch.bfloat16, device_map=torch_device
49
+ ... )
50
+
51
+ >>> messages = [
52
+ ... {
53
+ ... "role": "user",
54
+ ... "content": [
55
+ ... {
56
+ ... "type": "image",
57
+ ... "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
58
+ ... },
59
+ ... {
60
+ ... "type": "image",
61
+ ... "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
62
+ ... },
63
+ ... {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
64
+ ... ],
65
+ ... },
66
+ ... ]
67
+
68
+ >>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(torch_device)
69
+ >>> generate_ids = model.generate(**inputs, max_new_tokens=200)
70
+ >>> print(processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True))
71
+ The images depict the Statue of Liberty and the Golden Gate Bridge.
72
+ ```"""
73
+
74
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
75
+ output_hidden_states = (
76
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
77
+ )
78
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
79
+ vision_feature_layer = (
80
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
81
+ )
82
+ vision_feature_select_strategy = (
83
+ vision_feature_select_strategy
84
+ if vision_feature_select_strategy is not None
85
+ else self.config.vision_feature_select_strategy
86
+ )
87
+
88
+ outputs = self.model(
89
+ input_ids=input_ids,
90
+ pixel_values=pixel_values,
91
+ attention_mask=attention_mask,
92
+ position_ids=position_ids,
93
+ past_key_values=past_key_values,
94
+ inputs_embeds=inputs_embeds,
95
+ vision_feature_layer=vision_feature_layer,
96
+ vision_feature_select_strategy=vision_feature_select_strategy,
97
+ use_cache=use_cache,
98
+ output_attentions=output_attentions,
99
+ output_hidden_states=output_hidden_states,
100
+ return_dict=return_dict,
101
+ cache_position=cache_position,
102
+ image_sizes=image_sizes,
103
+ **lm_kwargs,
104
+ )
105
+
106
+ # Copied from llava.py
107
+ hidden_states = outputs[0]
108
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
109
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
110
+ kept_hidden_states = hidden_states[:, slice_indices, :]
111
+
112
+ shift_labels = lm_kwargs.pop("shift_labels", None)
113
+ logits = None
114
+ loss = None
115
+ token_accuracy = None
116
+
117
+ if skip_logits and labels is None and shift_labels is None:
118
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
119
+
120
+ if skip_logits is None:
121
+ # By default, if in training mode, don't materialize logits
122
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
123
+
124
+ if skip_logits:
125
+ result = LigerForCausalLMLoss(
126
+ hidden_states=kept_hidden_states,
127
+ lm_head_weight=self.lm_head.weight,
128
+ labels=labels,
129
+ shift_labels=shift_labels,
130
+ hidden_size=self.config.text_config.hidden_size,
131
+ **lm_kwargs,
132
+ )
133
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
134
+
135
+ else:
136
+ logits = self.lm_head(kept_hidden_states)
137
+ if labels is not None:
138
+ loss = self.loss_function(
139
+ logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
140
+ )
141
+
142
+ if not return_dict:
143
+ output = (logits,) + outputs[1:]
144
+ output = (loss,) + output if loss is not None else output
145
+ output = output + (token_accuracy,) if token_accuracy is not None else output
146
+ return output
147
+
148
+ # Return custom output class with token_accuracy field
149
+ return LigerInternVLCausalLMOutputWithPast(
150
+ loss=loss,
151
+ logits=logits,
152
+ past_key_values=outputs.past_key_values,
153
+ hidden_states=outputs.hidden_states,
154
+ attentions=outputs.attentions,
155
+ image_hidden_states=outputs.image_hidden_states,
156
+ token_accuracy=token_accuracy,
157
+ )
@@ -15,6 +15,8 @@ from transformers.utils.deprecation import deprecate_kwarg
15
15
  from liger_kernel.transformers.fsdp import _FSDPForwardRedirection
16
16
  from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
17
17
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
18
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
19
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
18
20
  from liger_kernel.utils import PEFT_AVAILABLE
19
21
 
20
22
  if TYPE_CHECKING:
@@ -162,7 +164,7 @@ def lce_forward(
162
164
  logits_to_keep: Union[int, torch.Tensor] = 0,
163
165
  skip_logits: Optional[bool] = None,
164
166
  **kwargs,
165
- ) -> Union[Tuple, CausalLMOutputWithPast]:
167
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
166
168
  r"""
167
169
  Args:
168
170
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
@@ -228,6 +230,8 @@ def lce_forward(
228
230
  shift_labels = kwargs.pop("shift_labels", None)
229
231
  logits = None
230
232
  loss = None
233
+ token_accuracy = None
234
+
231
235
  # if in training mode, don't materialize logits
232
236
  if skip_logits and labels is None and shift_labels is None:
233
237
  raise ValueError("skip_logits is True, but labels and shift_labels are None")
@@ -236,8 +240,9 @@ def lce_forward(
236
240
  # By default, if in training mode, don't materialize logits
237
241
  skip_logits = self.training and (labels is not None or shift_labels is not None)
238
242
 
243
+ # Compute loss
239
244
  if skip_logits:
240
- loss = lce_maybe_trainable_lm_head(
245
+ result = lce_maybe_trainable_lm_head(
241
246
  self,
242
247
  hidden_states=kept_hidden_states,
243
248
  hidden_size=self.config.hidden_size,
@@ -245,27 +250,32 @@ def lce_forward(
245
250
  shift_labels=shift_labels,
246
251
  **kwargs,
247
252
  )
248
-
253
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
249
254
  else:
250
255
  logits = self.lm_head(kept_hidden_states)
251
- if labels is not None:
256
+ if labels is not None or shift_labels is not None:
252
257
  loss = self.loss_function(
253
258
  logits=logits,
254
259
  labels=labels,
260
+ shift_labels=shift_labels,
255
261
  vocab_size=self.config.vocab_size,
256
262
  **kwargs,
257
263
  )
258
264
 
259
265
  if not return_dict:
260
266
  output = (logits,) + outputs[1:]
261
- return (loss,) + output if loss is not None else output
267
+ output = ((loss,) + output) if loss is not None else output
268
+ output = output + (token_accuracy,) if token_accuracy is not None else output
269
+ return output
262
270
 
263
- return CausalLMOutputWithPast(
271
+ # Return custom output class with token_accuracy field
272
+ return LigerCausalLMOutputWithPast(
264
273
  loss=loss,
265
274
  logits=logits,
266
275
  past_key_values=outputs.past_key_values,
267
276
  hidden_states=outputs.hidden_states,
268
277
  attentions=outputs.attentions,
278
+ token_accuracy=token_accuracy,
269
279
  )
270
280
 
271
281
 
@@ -6,9 +6,10 @@ from typing import Union
6
6
  import torch
7
7
 
8
8
  from transformers.cache_utils import Cache
9
- from transformers.modeling_outputs import CausalLMOutputWithPast
10
9
 
11
10
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
12
13
 
13
14
 
14
15
  def lce_forward(
@@ -26,7 +27,7 @@ def lce_forward(
26
27
  cache_position: Optional[torch.LongTensor] = None,
27
28
  logits_to_keep: Union[int, torch.Tensor] = 0,
28
29
  **kwargs,
29
- ) -> Union[Tuple, CausalLMOutputWithPast]:
30
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
30
31
  r"""
31
32
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
32
33
  Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
@@ -78,9 +79,11 @@ def lce_forward(
78
79
  shift_labels = kwargs.pop("shift_labels", None)
79
80
  logits = None
80
81
  loss = None
82
+ token_accuracy = None
81
83
 
84
+ # Compute loss
82
85
  if self.training and (labels is not None or shift_labels is not None):
83
- loss = LigerForCausalLMLoss(
86
+ result = LigerForCausalLMLoss(
84
87
  hidden_states=kept_hidden_states,
85
88
  lm_head_weight=self.lm_head.weight,
86
89
  labels=labels,
@@ -88,21 +91,31 @@ def lce_forward(
88
91
  hidden_size=self.config.hidden_size,
89
92
  **kwargs,
90
93
  )
94
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
91
95
 
92
96
  else: # if in inference mode materialize logits
93
97
  logits = self.lm_head(kept_hidden_states)
94
- if labels is not None:
98
+ if labels is not None or shift_labels is not None:
95
99
  loss = self.loss_function(
96
100
  logits=logits,
97
101
  labels=labels,
102
+ shift_labels=shift_labels,
98
103
  vocab_size=self.config.vocab_size,
99
104
  **kwargs,
100
105
  )
101
106
 
102
- return CausalLMOutputWithPast(
107
+ if not return_dict:
108
+ output = (logits,) + outputs[1:]
109
+ output = ((loss,) + output) if loss is not None else output
110
+ output = output + (token_accuracy,) if token_accuracy is not None else output
111
+ return output
112
+
113
+ # Return custom output class with token_accuracy field
114
+ return LigerCausalLMOutputWithPast(
103
115
  loss=loss,
104
116
  logits=logits,
105
117
  past_key_values=outputs.past_key_values,
106
118
  hidden_states=outputs.hidden_states,
107
119
  attentions=outputs.attentions,
120
+ token_accuracy=token_accuracy,
108
121
  )
@@ -11,6 +11,8 @@ from transformers.utils import is_torchdynamo_compiling
11
11
 
12
12
  from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
13
13
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
14
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
15
+ from liger_kernel.transformers.model.output_classes import LigerLlavaCausalLMOutputWithPast
14
16
 
15
17
 
16
18
  def lce_forward_deprecated(
@@ -215,7 +217,7 @@ def lce_forward(
215
217
  image_sizes: torch.Tensor = None,
216
218
  skip_logits: Optional[bool] = None,
217
219
  **lm_kwargs,
218
- ) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
220
+ ) -> Union[Tuple, LigerLlavaCausalLMOutputWithPast]:
219
221
  r"""
220
222
  Args:
221
223
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
@@ -293,6 +295,7 @@ def lce_forward(
293
295
  shift_labels = lm_kwargs.pop("shift_labels", None)
294
296
  logits = None
295
297
  loss = None
298
+ token_accuracy = None
296
299
 
297
300
  if skip_logits and labels is None and shift_labels is None:
298
301
  raise ValueError("skip_logits is True, but labels and shift_labels are None")
@@ -302,7 +305,7 @@ def lce_forward(
302
305
  skip_logits = self.training and (labels is not None or shift_labels is not None)
303
306
 
304
307
  if skip_logits:
305
- loss = LigerForCausalLMLoss(
308
+ result = LigerForCausalLMLoss(
306
309
  hidden_states=kept_hidden_states,
307
310
  lm_head_weight=self.lm_head.weight,
308
311
  labels=labels,
@@ -310,23 +313,32 @@ def lce_forward(
310
313
  hidden_size=self.config.text_config.hidden_size,
311
314
  **lm_kwargs,
312
315
  )
316
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
313
317
 
314
318
  else:
315
319
  logits = self.lm_head(kept_hidden_states)
316
- if labels is not None:
320
+ if labels is not None or shift_labels is not None:
317
321
  loss = self.loss_function(
318
- logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
322
+ logits=logits,
323
+ labels=labels,
324
+ shift_labels=shift_labels,
325
+ vocab_size=self.config.text_config.vocab_size,
326
+ **lm_kwargs,
319
327
  )
320
328
 
321
329
  if not return_dict:
322
330
  output = (logits,) + outputs[1:]
323
- return (loss,) + output if loss is not None else output
331
+ output = (loss,) + output if loss is not None else output
332
+ output = output + (token_accuracy,) if token_accuracy is not None else output
333
+ return output
324
334
 
325
- return LlavaCausalLMOutputWithPast(
335
+ # Return custom output class with token_accuracy field
336
+ return LigerLlavaCausalLMOutputWithPast(
326
337
  loss=loss,
327
338
  logits=logits,
328
339
  past_key_values=outputs.past_key_values,
329
340
  hidden_states=outputs.hidden_states,
330
341
  attentions=outputs.attentions,
331
342
  image_hidden_states=outputs.image_hidden_states,
343
+ token_accuracy=token_accuracy,
332
344
  )
@@ -1,10 +1,28 @@
1
1
  from typing import Optional
2
+ from typing import Tuple
2
3
 
3
4
  import torch
4
5
  import torch.nn as nn
5
6
 
6
7
  import liger_kernel.transformers.functional as F
7
8
 
9
+ from liger_kernel.transformers.functional import CrossEntropyOutput
10
+
11
+
12
+ def unpack_cross_entropy_result(
13
+ result,
14
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]:
15
+ if isinstance(result, CrossEntropyOutput):
16
+ return result.loss, result.z_loss, result.token_accuracy
17
+
18
+ if isinstance(result, tuple):
19
+ loss = result[0]
20
+ z_loss = result[1] if len(result) > 1 else None
21
+ token_accuracy = result[2] if len(result) > 2 else None
22
+ return loss, z_loss, token_accuracy
23
+
24
+ return result, None, None
25
+
8
26
 
9
27
  def fixed_fused_linear_cross_entropy(
10
28
  hidden_states: torch.Tensor,
@@ -14,10 +32,11 @@ def fixed_fused_linear_cross_entropy(
14
32
  ignore_index: int = -100,
15
33
  final_logit_softcapping: Optional[float] = None,
16
34
  accum_dtype: Optional[torch.dtype] = None,
35
+ return_token_accuracy: bool = False,
17
36
  **kwargs,
18
37
  ):
19
38
  reduction = "sum" if num_items_in_batch is not None else "mean"
20
- loss = F.liger_fused_linear_cross_entropy(
39
+ result = F.liger_fused_linear_cross_entropy(
21
40
  hidden_states,
22
41
  lm_head_weight,
23
42
  target,
@@ -25,10 +44,18 @@ def fixed_fused_linear_cross_entropy(
25
44
  ignore_index=ignore_index,
26
45
  softcap=final_logit_softcapping,
27
46
  accum_dtype=accum_dtype,
47
+ return_token_accuracy=return_token_accuracy,
48
+ **kwargs,
28
49
  )
50
+
51
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
52
+
29
53
  if reduction == "sum":
30
54
  loss = loss / num_items_in_batch
31
55
 
56
+ if return_token_accuracy:
57
+ return CrossEntropyOutput(loss=loss, token_accuracy=token_accuracy)
58
+
32
59
  return loss
33
60
 
34
61
 
@@ -41,6 +68,7 @@ def LigerForCausalLMLoss(
41
68
  ignore_index: int = -100,
42
69
  shift_labels: Optional[torch.Tensor] = None,
43
70
  final_logit_softcapping: Optional[float] = None,
71
+ return_token_accuracy: bool = False,
44
72
  **kwargs,
45
73
  ):
46
74
  # Skip upcast since intermediate values for the loss are all fp32 in kernel
@@ -54,13 +82,14 @@ def LigerForCausalLMLoss(
54
82
  shift_labels = shift_labels.view(-1)
55
83
  # Enable model parallelism
56
84
  shift_labels = shift_labels.to(hidden_states.device)
57
- loss = fixed_fused_linear_cross_entropy(
85
+ result = fixed_fused_linear_cross_entropy(
58
86
  hidden_states,
59
87
  lm_head_weight,
60
88
  shift_labels,
61
89
  num_items_in_batch,
62
90
  ignore_index,
63
91
  final_logit_softcapping,
92
+ return_token_accuracy=return_token_accuracy,
64
93
  **kwargs,
65
94
  )
66
- return loss
95
+ return result
@@ -6,10 +6,11 @@ from typing import Union
6
6
  import torch
7
7
 
8
8
  from transformers.cache_utils import Cache
9
- from transformers.modeling_outputs import CausalLMOutputWithPast
10
9
  from transformers.utils.deprecation import deprecate_kwarg
11
10
 
12
11
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
12
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
13
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
13
14
 
14
15
 
15
16
  @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@@ -29,7 +30,7 @@ def lce_forward(
29
30
  logits_to_keep: Union[int, torch.Tensor] = 0,
30
31
  skip_logits: Optional[bool] = None,
31
32
  **kwargs,
32
- ) -> Union[Tuple, CausalLMOutputWithPast]:
33
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
33
34
  r"""
34
35
  Copy paste Mistral's forward but replace torch cross entropy with liger fused linear cross entropy
35
36
 
@@ -94,6 +95,7 @@ def lce_forward(
94
95
  shift_labels = kwargs.pop("shift_labels", None)
95
96
  loss = None
96
97
  logits = None
98
+ token_accuracy = None
97
99
 
98
100
  if skip_logits and labels is None and shift_labels is None:
99
101
  raise ValueError("skip_logits is True, but labels and shift_labels are None")
@@ -101,8 +103,9 @@ def lce_forward(
101
103
  if skip_logits is None:
102
104
  skip_logits = self.training and (labels is not None or shift_labels is not None)
103
105
 
106
+ # Compute loss
104
107
  if skip_logits:
105
- loss = LigerForCausalLMLoss(
108
+ result = LigerForCausalLMLoss(
106
109
  hidden_states=kept_hidden_states,
107
110
  lm_head_weight=self.lm_head.weight,
108
111
  labels=labels,
@@ -110,26 +113,33 @@ def lce_forward(
110
113
  hidden_size=self.config.hidden_size,
111
114
  **kwargs,
112
115
  )
116
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
113
117
 
114
118
  else:
115
119
  logits = self.lm_head(kept_hidden_states)
116
120
 
117
121
  loss = None
118
- if labels is not None:
122
+ if labels is not None or shift_labels is not None:
119
123
  loss = self.loss_function(
120
124
  logits=logits,
121
125
  labels=labels,
126
+ shift_labels=shift_labels,
122
127
  vocab_size=self.config.vocab_size,
123
128
  **kwargs,
124
129
  )
130
+
125
131
  if not return_dict:
126
- output = (logits,) + outputs[1:]
127
- return (loss,) + output if loss is not None else output
132
+ output_tuple = (logits,) + outputs[1:]
133
+ output = (loss,) + output_tuple if loss is not None else output_tuple
134
+ output = output + (token_accuracy,) if token_accuracy is not None else output
135
+ return output
128
136
 
129
- return CausalLMOutputWithPast(
137
+ # Return custom output class with token_accuracy field
138
+ return LigerCausalLMOutputWithPast(
130
139
  loss=loss,
131
140
  logits=logits,
132
141
  past_key_values=outputs.past_key_values,
133
142
  hidden_states=outputs.hidden_states,
134
143
  attentions=outputs.attentions,
144
+ token_accuracy=token_accuracy,
135
145
  )