liger-kernel 0.6.2__py3-none-any.whl → 0.6.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/cosine_similarity_loss.py +13 -4
- liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
- liger_kernel/chunked_loss/fused_linear_ppo.py +25 -5
- liger_kernel/chunked_loss/grpo_loss.py +46 -9
- liger_kernel/chunked_loss/jsd_loss.py +23 -7
- liger_kernel/ops/cross_entropy.py +118 -62
- liger_kernel/ops/fused_linear_cross_entropy.py +97 -13
- liger_kernel/ops/grpo_loss.py +3 -1
- liger_kernel/ops/layer_norm.py +86 -69
- liger_kernel/ops/poly_norm.py +386 -0
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/transformers/__init__.py +36 -0
- liger_kernel/transformers/cross_entropy.py +8 -3
- liger_kernel/transformers/functional.py +31 -6
- liger_kernel/transformers/fused_linear_cross_entropy.py +13 -4
- liger_kernel/transformers/grpo_loss.py +56 -1
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +19 -7
- liger_kernel/transformers/model/gemma2.py +22 -7
- liger_kernel/transformers/model/gemma3.py +52 -14
- liger_kernel/transformers/model/glm4.py +18 -5
- liger_kernel/transformers/model/glm4v.py +19 -6
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +16 -6
- liger_kernel/transformers/model/llama4.py +18 -5
- liger_kernel/transformers/model/llava.py +18 -6
- liger_kernel/transformers/model/loss_utils.py +32 -3
- liger_kernel/transformers/model/mistral.py +17 -7
- liger_kernel/transformers/model/mixtral.py +24 -9
- liger_kernel/transformers/model/mllama.py +14 -5
- liger_kernel/transformers/model/olmo2.py +18 -5
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +41 -5
- liger_kernel/transformers/model/phi3.py +16 -8
- liger_kernel/transformers/model/qwen2.py +18 -4
- liger_kernel/transformers/model/qwen2_5_vl.py +21 -8
- liger_kernel/transformers/model/qwen2_vl.py +24 -7
- liger_kernel/transformers/model/qwen3.py +22 -6
- liger_kernel/transformers/model/qwen3_moe.py +27 -7
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +17 -7
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +830 -3
- liger_kernel/transformers/multi_token_attention.py +1 -1
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/rms_norm.py +7 -0
- liger_kernel/transformers/rope.py +43 -0
- liger_kernel/transformers/swiglu.py +17 -0
- liger_kernel/transformers/tiled_mlp.py +133 -0
- {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.4.dist-info}/METADATA +16 -10
- liger_kernel-0.6.4.dist-info/RECORD +118 -0
- liger_kernel-0.6.2.dist-info/RECORD +0 -104
- {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.4.dist-info}/WHEEL +0 -0
- {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.4.dist-info}/licenses/LICENSE +0 -0
- {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.4.dist-info}/licenses/NOTICE +0 -0
- {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
import math
|
|
2
|
+
|
|
3
|
+
from typing import Callable
|
|
4
|
+
from typing import List
|
|
5
|
+
from typing import Optional
|
|
6
|
+
|
|
7
|
+
import torch
|
|
8
|
+
|
|
9
|
+
from liger_kernel.ops.utils import ensure_contiguous
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class LigerTiledMLPFunction(torch.autograd.Function):
|
|
13
|
+
"""
|
|
14
|
+
Based on DeepSpeed's TiledMLP:
|
|
15
|
+
https://github.com/deepspeedai/DeepSpeed/blob/v0.18.2/deepspeed/runtime/sequence_parallel/ulysses_sp.py#L838
|
|
16
|
+
|
|
17
|
+
Perform a tiled MLP computation to massively reduce memory usage needed to compute MLP
|
|
18
|
+
when using very long sequence lengths.
|
|
19
|
+
|
|
20
|
+
This module re-computes `forward` in the `backward`. So the `forward` occurs twice each iteration.
|
|
21
|
+
And if you're using activation checkpointing it then occurs thrice.
|
|
22
|
+
|
|
23
|
+
Args:
|
|
24
|
+
fn: the function to call on sharded inputs (e.g., mlp.forward)
|
|
25
|
+
mlp_module: the MLP nn.Module object
|
|
26
|
+
x: the input to MLP.forward (hidden_states)
|
|
27
|
+
shards: how many shards to use
|
|
28
|
+
compute_params: a list of weights engaged in the compute
|
|
29
|
+
|
|
30
|
+
Returns:
|
|
31
|
+
the computed hidden_states
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
@staticmethod
|
|
35
|
+
@ensure_contiguous
|
|
36
|
+
def forward(
|
|
37
|
+
ctx,
|
|
38
|
+
fn: Callable,
|
|
39
|
+
mlp_module: torch.nn.Module,
|
|
40
|
+
x: torch.Tensor,
|
|
41
|
+
shards: int,
|
|
42
|
+
compute_params: Optional[List[torch.nn.Parameter]] = None,
|
|
43
|
+
) -> torch.Tensor:
|
|
44
|
+
ctx.fn = fn
|
|
45
|
+
ctx.mlp_module = mlp_module
|
|
46
|
+
ctx.shards = shards
|
|
47
|
+
ctx.save_for_backward(x)
|
|
48
|
+
|
|
49
|
+
# x.shape could be [bs, seqlen, hidden_size] or [seqlen, hidden_size] (moe experts)
|
|
50
|
+
x_shards = list(torch.chunk(x, chunks=shards, dim=-2))
|
|
51
|
+
with torch.no_grad():
|
|
52
|
+
output_shards = [fn(mlp_module, x_shard) for x_shard in x_shards]
|
|
53
|
+
output_unsharded = torch.cat(output_shards, dim=-2)
|
|
54
|
+
|
|
55
|
+
return output_unsharded
|
|
56
|
+
|
|
57
|
+
@staticmethod
|
|
58
|
+
@ensure_contiguous
|
|
59
|
+
def backward(ctx, *grads) -> tuple:
|
|
60
|
+
fn = ctx.fn
|
|
61
|
+
(x,) = ctx.saved_tensors
|
|
62
|
+
mlp_module = ctx.mlp_module
|
|
63
|
+
shards = ctx.shards
|
|
64
|
+
|
|
65
|
+
x_requires_grad = x.requires_grad
|
|
66
|
+
x = x.detach()
|
|
67
|
+
# detach() unsets x.requires_grad, so restore it
|
|
68
|
+
x.requires_grad_(x_requires_grad)
|
|
69
|
+
|
|
70
|
+
# x.shape could be [bs, seqlen, hidden_size] or [seqlen, hidden_size] (moe experts)
|
|
71
|
+
hidden_size = x.shape[-1]
|
|
72
|
+
x_shape_orig = x.shape
|
|
73
|
+
|
|
74
|
+
# flatten bs+seqlen to avoid having stride issues when narrowing into seqlen w/ bs>1
|
|
75
|
+
x = x.view(-1, hidden_size)
|
|
76
|
+
incoming_grad = grads[0].view(-1, hidden_size)
|
|
77
|
+
x_grad = torch.zeros_like(x)
|
|
78
|
+
|
|
79
|
+
x_shards = list(torch.chunk(x, chunks=shards, dim=0))
|
|
80
|
+
|
|
81
|
+
for i, x_shard in enumerate(x_shards):
|
|
82
|
+
x_shard.requires_grad_(x_requires_grad)
|
|
83
|
+
|
|
84
|
+
# if seqlen is not exactly divisible by shards the last step will be shorter than shard_step
|
|
85
|
+
shard_step = x_shards[i].shape[0]
|
|
86
|
+
shard_offset = i * x_shards[0].shape[0]
|
|
87
|
+
|
|
88
|
+
x_shard.grad = x_grad.narrow(0, shard_offset, shard_step).view_as(x_shard)
|
|
89
|
+
incoming_grad_shard = incoming_grad.narrow(0, shard_offset, shard_step).view_as(x_shard)
|
|
90
|
+
|
|
91
|
+
with torch.enable_grad():
|
|
92
|
+
output = fn(mlp_module, x_shard)
|
|
93
|
+
torch.autograd.backward(output, incoming_grad_shard)
|
|
94
|
+
|
|
95
|
+
# unflatten
|
|
96
|
+
x_grad = x_grad.view(x_shape_orig)
|
|
97
|
+
|
|
98
|
+
return (None, None, x_grad, None, None)
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def apply_tiled_mlp(
|
|
102
|
+
fn: Callable,
|
|
103
|
+
mlp_module: torch.nn.Module,
|
|
104
|
+
x: torch.Tensor,
|
|
105
|
+
num_shards: Optional[int] = None,
|
|
106
|
+
compute_params: Optional[List[torch.nn.Parameter]] = None,
|
|
107
|
+
) -> torch.Tensor:
|
|
108
|
+
"""
|
|
109
|
+
Apply tiled MLP computation for memory efficiency.
|
|
110
|
+
|
|
111
|
+
Args:
|
|
112
|
+
fn: the function to call on sharded inputs (e.g., lambda module, x: module(x))
|
|
113
|
+
mlp_module: the MLP nn.Module object
|
|
114
|
+
x: the input tensor with shape [bs, seqlen, hidden_size] or [seqlen, hidden_size]
|
|
115
|
+
num_shards: number of shards to use. If None, automatically calculated as ceil(seqlen / hidden_size)
|
|
116
|
+
compute_params: list of parameters for DeepSpeed ZeRO optimization
|
|
117
|
+
|
|
118
|
+
Returns:
|
|
119
|
+
output tensor with the same shape as input
|
|
120
|
+
"""
|
|
121
|
+
if num_shards is None:
|
|
122
|
+
# x.shape could be [bs, seqlen, hidden_size] or [seqlen, hidden_size]
|
|
123
|
+
hidden_size = x.shape[-1]
|
|
124
|
+
seqlen = x.shape[-2]
|
|
125
|
+
num_shards = math.ceil(seqlen / hidden_size)
|
|
126
|
+
|
|
127
|
+
# Ensure num_shards is at least 1
|
|
128
|
+
num_shards = max(1, num_shards)
|
|
129
|
+
|
|
130
|
+
return LigerTiledMLPFunction.apply(
|
|
131
|
+
fn,
|
|
132
|
+
mlp_module,
|
|
133
|
+
x,
|
|
134
|
+
num_shards,
|
|
135
|
+
compute_params,
|
|
136
|
+
)
|
|
@@ -15,6 +15,7 @@ from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
|
|
|
15
15
|
from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
|
|
16
16
|
from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
|
|
17
17
|
from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
|
|
18
|
+
from liger_kernel.transformers.poly_norm import LigerPolyNorm # noqa: F401
|
|
18
19
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
|
|
19
20
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
|
|
20
21
|
from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
|
|
@@ -23,6 +24,8 @@ from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F4
|
|
|
23
24
|
from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
|
|
24
25
|
from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
|
|
25
26
|
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
|
|
27
|
+
from liger_kernel.transformers.tiled_mlp import LigerTiledGEGLUMLP # noqa: F401
|
|
28
|
+
from liger_kernel.transformers.tiled_mlp import LigerTiledSwiGLUMLP # noqa: F401
|
|
26
29
|
from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
|
|
27
30
|
|
|
28
31
|
# Static-only imports for IDEs and type checkers
|
|
@@ -30,13 +33,18 @@ if TYPE_CHECKING:
|
|
|
30
33
|
from liger_kernel.transformers.auto_model import AutoLigerKernelForCausalLM # noqa: F401
|
|
31
34
|
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa: F401
|
|
32
35
|
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
|
|
36
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_falcon_h1 # noqa: F401
|
|
33
37
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
|
|
34
38
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
|
|
35
39
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
|
|
36
40
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
|
|
37
41
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
|
|
38
42
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
|
|
43
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
|
|
39
44
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
|
45
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_dense # noqa: F401
|
|
46
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_moe # noqa: F401
|
|
47
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
|
|
40
48
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
|
41
49
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
|
|
42
50
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
|
|
@@ -44,6 +52,7 @@ if TYPE_CHECKING:
|
|
|
44
52
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
|
|
45
53
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
|
|
46
54
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
|
|
55
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo3 # noqa: F401
|
|
47
56
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
|
|
48
57
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
|
|
49
58
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
|
|
@@ -51,7 +60,11 @@ if TYPE_CHECKING:
|
|
|
51
60
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
|
52
61
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
|
|
53
62
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
|
|
63
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_next # noqa: F401
|
|
64
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl # noqa: F401
|
|
65
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl_moe # noqa: F401
|
|
54
66
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
|
|
67
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smolvlm # noqa: F401
|
|
55
68
|
|
|
56
69
|
|
|
57
70
|
# Check if 'transformers' is installed
|
|
@@ -89,13 +102,16 @@ def __getattr__(name: str):
|
|
|
89
102
|
monkey_patch_symbols = {
|
|
90
103
|
"_apply_liger_kernel",
|
|
91
104
|
"_apply_liger_kernel_to_instance",
|
|
105
|
+
"apply_liger_kernel_to_falcon_h1",
|
|
92
106
|
"apply_liger_kernel_to_gemma",
|
|
93
107
|
"apply_liger_kernel_to_gemma2",
|
|
94
108
|
"apply_liger_kernel_to_gemma3",
|
|
95
109
|
"apply_liger_kernel_to_gemma3_text",
|
|
96
110
|
"apply_liger_kernel_to_glm4",
|
|
97
111
|
"apply_liger_kernel_to_glm4v",
|
|
112
|
+
"apply_liger_kernel_to_glm4v_moe",
|
|
98
113
|
"apply_liger_kernel_to_granite",
|
|
114
|
+
"apply_liger_kernel_to_internvl",
|
|
99
115
|
"apply_liger_kernel_to_llama",
|
|
100
116
|
"apply_liger_kernel_to_llava",
|
|
101
117
|
"apply_liger_kernel_to_llama4",
|
|
@@ -103,6 +119,7 @@ def __getattr__(name: str):
|
|
|
103
119
|
"apply_liger_kernel_to_mixtral",
|
|
104
120
|
"apply_liger_kernel_to_mllama",
|
|
105
121
|
"apply_liger_kernel_to_olmo2",
|
|
122
|
+
"apply_liger_kernel_to_olmo3",
|
|
106
123
|
"apply_liger_kernel_to_paligemma",
|
|
107
124
|
"apply_liger_kernel_to_phi3",
|
|
108
125
|
"apply_liger_kernel_to_qwen2",
|
|
@@ -110,7 +127,13 @@ def __getattr__(name: str):
|
|
|
110
127
|
"apply_liger_kernel_to_qwen2_vl",
|
|
111
128
|
"apply_liger_kernel_to_qwen3",
|
|
112
129
|
"apply_liger_kernel_to_qwen3_moe",
|
|
130
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
131
|
+
"apply_liger_kernel_to_qwen3_vl",
|
|
132
|
+
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
113
133
|
"apply_liger_kernel_to_smollm3",
|
|
134
|
+
"apply_liger_kernel_to_smolvlm",
|
|
135
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
136
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
114
137
|
}
|
|
115
138
|
|
|
116
139
|
if name in monkey_patch_symbols:
|
|
@@ -131,6 +154,7 @@ __all__ = [
|
|
|
131
154
|
"LigerJSD",
|
|
132
155
|
"LigerLayerNorm",
|
|
133
156
|
"LigerFusedAddRMSNorm",
|
|
157
|
+
"LigerPolyNorm",
|
|
134
158
|
"LigerRMSNorm",
|
|
135
159
|
"liger_rotary_pos_emb",
|
|
136
160
|
"liger_llama4_text_rotary_pos_emb",
|
|
@@ -139,6 +163,8 @@ __all__ = [
|
|
|
139
163
|
"LigerPhi3SwiGLUMLP",
|
|
140
164
|
"LigerQwen3MoeSwiGLUMLP",
|
|
141
165
|
"LigerSwiGLUMLP",
|
|
166
|
+
"LigerTiledGEGLUMLP",
|
|
167
|
+
"LigerTiledSwiGLUMLP",
|
|
142
168
|
"LigerTVDLoss",
|
|
143
169
|
"LigerKLDIVLoss",
|
|
144
170
|
"LigerMultiTokenAttention",
|
|
@@ -153,13 +179,16 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
153
179
|
"AutoLigerKernelForCausalLM",
|
|
154
180
|
"_apply_liger_kernel",
|
|
155
181
|
"_apply_liger_kernel_to_instance",
|
|
182
|
+
"apply_liger_kernel_to_falcon_h1",
|
|
156
183
|
"apply_liger_kernel_to_gemma",
|
|
157
184
|
"apply_liger_kernel_to_gemma2",
|
|
158
185
|
"apply_liger_kernel_to_gemma3",
|
|
159
186
|
"apply_liger_kernel_to_gemma3_text",
|
|
160
187
|
"apply_liger_kernel_to_glm4",
|
|
161
188
|
"apply_liger_kernel_to_glm4v",
|
|
189
|
+
"apply_liger_kernel_to_glm4v_moe",
|
|
162
190
|
"apply_liger_kernel_to_granite",
|
|
191
|
+
"apply_liger_kernel_to_internvl",
|
|
163
192
|
"apply_liger_kernel_to_llama",
|
|
164
193
|
"apply_liger_kernel_to_llava",
|
|
165
194
|
"apply_liger_kernel_to_llama4",
|
|
@@ -167,6 +196,7 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
167
196
|
"apply_liger_kernel_to_mixtral",
|
|
168
197
|
"apply_liger_kernel_to_mllama",
|
|
169
198
|
"apply_liger_kernel_to_olmo2",
|
|
199
|
+
"apply_liger_kernel_to_olmo3",
|
|
170
200
|
"apply_liger_kernel_to_paligemma",
|
|
171
201
|
"apply_liger_kernel_to_phi3",
|
|
172
202
|
"apply_liger_kernel_to_qwen2",
|
|
@@ -174,6 +204,12 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
174
204
|
"apply_liger_kernel_to_qwen2_vl",
|
|
175
205
|
"apply_liger_kernel_to_qwen3",
|
|
176
206
|
"apply_liger_kernel_to_qwen3_moe",
|
|
207
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
208
|
+
"apply_liger_kernel_to_qwen3_vl",
|
|
209
|
+
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
177
210
|
"apply_liger_kernel_to_smollm3",
|
|
211
|
+
"apply_liger_kernel_to_smolvlm",
|
|
212
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
213
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
178
214
|
]
|
|
179
215
|
)
|
|
@@ -3,6 +3,7 @@ from typing import Optional
|
|
|
3
3
|
import torch
|
|
4
4
|
|
|
5
5
|
from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
|
|
6
|
+
from liger_kernel.transformers.functional import CrossEntropyOutput
|
|
6
7
|
|
|
7
8
|
|
|
8
9
|
class LigerCrossEntropyLoss(torch.nn.Module):
|
|
@@ -15,6 +16,7 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
15
16
|
reduction: str = "mean",
|
|
16
17
|
softcap: Optional[float] = None,
|
|
17
18
|
return_z_loss: bool = False,
|
|
19
|
+
return_token_accuracy: bool = False,
|
|
18
20
|
):
|
|
19
21
|
super().__init__()
|
|
20
22
|
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
@@ -33,9 +35,10 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
33
35
|
self.reduction = reduction
|
|
34
36
|
self.softcap = softcap
|
|
35
37
|
self.return_z_loss = return_z_loss
|
|
38
|
+
self.return_token_accuracy = return_token_accuracy
|
|
36
39
|
|
|
37
40
|
def forward(self, _input: torch.Tensor, target: torch.Tensor):
|
|
38
|
-
loss, z_loss = LigerCrossEntropyFunction.apply(
|
|
41
|
+
loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
|
|
39
42
|
_input,
|
|
40
43
|
target,
|
|
41
44
|
self.weight,
|
|
@@ -45,7 +48,9 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
45
48
|
self.reduction,
|
|
46
49
|
self.softcap,
|
|
47
50
|
self.return_z_loss,
|
|
51
|
+
self.return_token_accuracy,
|
|
48
52
|
)
|
|
49
|
-
if not self.return_z_loss:
|
|
53
|
+
if not self.return_z_loss and not self.return_token_accuracy:
|
|
50
54
|
return loss
|
|
51
|
-
|
|
55
|
+
|
|
56
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
@@ -1,5 +1,8 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
1
2
|
from typing import Optional
|
|
2
3
|
|
|
4
|
+
import torch
|
|
5
|
+
|
|
3
6
|
from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
|
|
4
7
|
from liger_kernel.ops.dyt import LigerDyTFunction
|
|
5
8
|
from liger_kernel.ops.fused_add_rms_norm import LigerFusedAddRMSNormFunction
|
|
@@ -12,6 +15,7 @@ from liger_kernel.ops.jsd import LigerJSDFunction
|
|
|
12
15
|
from liger_kernel.ops.kl_div import LigerKLDivLossFunction
|
|
13
16
|
from liger_kernel.ops.layer_norm import LigerLayerNormFunction
|
|
14
17
|
from liger_kernel.ops.multi_token_attention import LigerMultiTokenAttentionFunction
|
|
18
|
+
from liger_kernel.ops.poly_norm import LigerPolyNormFunction
|
|
15
19
|
from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
|
|
16
20
|
from liger_kernel.ops.rms_norm import LigerRMSNormFunction
|
|
17
21
|
from liger_kernel.ops.rope import LigerRopeFunction
|
|
@@ -21,6 +25,13 @@ from liger_kernel.ops.swiglu import LigerSiLUMulFunction
|
|
|
21
25
|
from liger_kernel.ops.tvd import LigerTVDLossFunction
|
|
22
26
|
|
|
23
27
|
|
|
28
|
+
@dataclass
|
|
29
|
+
class CrossEntropyOutput:
|
|
30
|
+
loss: torch.Tensor
|
|
31
|
+
z_loss: Optional[torch.Tensor] = None
|
|
32
|
+
token_accuracy: Optional[torch.Tensor] = None
|
|
33
|
+
|
|
34
|
+
|
|
24
35
|
# conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
|
|
25
36
|
# `weight` and `size_average` are placeholders and not implemented yet
|
|
26
37
|
def liger_cross_entropy(
|
|
@@ -35,8 +46,9 @@ def liger_cross_entropy(
|
|
|
35
46
|
lse_square_scale: float = 0.0,
|
|
36
47
|
softcap: Optional[float] = None,
|
|
37
48
|
return_z_loss: bool = False,
|
|
49
|
+
return_token_accuracy: bool = False,
|
|
38
50
|
):
|
|
39
|
-
loss, z_loss = LigerCrossEntropyFunction.apply(
|
|
51
|
+
loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
|
|
40
52
|
input,
|
|
41
53
|
target,
|
|
42
54
|
weight,
|
|
@@ -46,10 +58,13 @@ def liger_cross_entropy(
|
|
|
46
58
|
reduction,
|
|
47
59
|
softcap,
|
|
48
60
|
return_z_loss,
|
|
61
|
+
return_token_accuracy,
|
|
49
62
|
)
|
|
50
|
-
|
|
63
|
+
|
|
64
|
+
if not return_z_loss and not return_token_accuracy:
|
|
51
65
|
return loss
|
|
52
|
-
|
|
66
|
+
|
|
67
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
53
68
|
|
|
54
69
|
|
|
55
70
|
def liger_fused_linear_cross_entropy(
|
|
@@ -65,8 +80,10 @@ def liger_fused_linear_cross_entropy(
|
|
|
65
80
|
softcap: Optional[float] = None,
|
|
66
81
|
return_z_loss: bool = False,
|
|
67
82
|
accum_dtype=None,
|
|
83
|
+
use_token_scaling: bool = False,
|
|
84
|
+
return_token_accuracy: bool = False,
|
|
68
85
|
):
|
|
69
|
-
loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
|
|
86
|
+
loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
|
|
70
87
|
input,
|
|
71
88
|
weight,
|
|
72
89
|
target,
|
|
@@ -79,10 +96,14 @@ def liger_fused_linear_cross_entropy(
|
|
|
79
96
|
softcap,
|
|
80
97
|
return_z_loss,
|
|
81
98
|
accum_dtype,
|
|
99
|
+
use_token_scaling,
|
|
100
|
+
return_token_accuracy,
|
|
82
101
|
)
|
|
83
|
-
|
|
102
|
+
|
|
103
|
+
if not return_z_loss and not return_token_accuracy:
|
|
84
104
|
return loss
|
|
85
|
-
|
|
105
|
+
|
|
106
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
86
107
|
|
|
87
108
|
|
|
88
109
|
def liger_fused_linear_jsd(
|
|
@@ -256,6 +277,10 @@ def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama",
|
|
|
256
277
|
return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
|
|
257
278
|
|
|
258
279
|
|
|
280
|
+
def liger_poly_norm(X, W, B, eps=1e-6, in_place=True):
|
|
281
|
+
return LigerPolyNormFunction.apply(X, W, B, eps, in_place)
|
|
282
|
+
|
|
283
|
+
|
|
259
284
|
def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
|
|
260
285
|
return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
|
|
261
286
|
|
|
@@ -3,6 +3,7 @@ from typing import Optional
|
|
|
3
3
|
import torch
|
|
4
4
|
|
|
5
5
|
from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
|
|
6
|
+
from liger_kernel.transformers.functional import CrossEntropyOutput
|
|
6
7
|
|
|
7
8
|
|
|
8
9
|
class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
@@ -16,6 +17,8 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
16
17
|
softcap: Optional[float] = None,
|
|
17
18
|
return_z_loss: bool = False,
|
|
18
19
|
accum_dtype: Optional[torch.dtype] = None,
|
|
20
|
+
use_token_scaling: bool = False,
|
|
21
|
+
return_token_accuracy: bool = False,
|
|
19
22
|
):
|
|
20
23
|
super().__init__()
|
|
21
24
|
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
@@ -24,7 +27,8 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
24
27
|
assert reduction in {
|
|
25
28
|
"mean",
|
|
26
29
|
"sum",
|
|
27
|
-
|
|
30
|
+
"none",
|
|
31
|
+
}, f"reduction must be 'mean' or 'sum' or 'none'. Got: {reduction}"
|
|
28
32
|
assert softcap is None or softcap > 0, f"softcap must greater than 0.0 or None. Got: {softcap}"
|
|
29
33
|
self.ce_weight = ce_weight
|
|
30
34
|
self.ignore_index = ignore_index
|
|
@@ -34,9 +38,11 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
34
38
|
self.softcap = softcap
|
|
35
39
|
self.return_z_loss = return_z_loss
|
|
36
40
|
self.accum_dtype = accum_dtype
|
|
41
|
+
self.use_token_scaling = use_token_scaling
|
|
42
|
+
self.return_token_accuracy = return_token_accuracy
|
|
37
43
|
|
|
38
44
|
def forward(self, lin_weight, _input, target, bias=None):
|
|
39
|
-
loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
|
|
45
|
+
loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
|
|
40
46
|
_input,
|
|
41
47
|
lin_weight,
|
|
42
48
|
target,
|
|
@@ -49,7 +55,10 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
49
55
|
self.softcap,
|
|
50
56
|
self.return_z_loss,
|
|
51
57
|
self.accum_dtype,
|
|
58
|
+
self.use_token_scaling,
|
|
59
|
+
self.return_token_accuracy,
|
|
52
60
|
)
|
|
53
|
-
if not self.return_z_loss:
|
|
61
|
+
if not self.return_z_loss and not self.return_token_accuracy:
|
|
54
62
|
return loss
|
|
55
|
-
|
|
63
|
+
|
|
64
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
@@ -1,3 +1,6 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
|
|
3
|
+
from liger_kernel.chunked_loss.fused_linear_ppo import LigerFusedLinearPPOBase
|
|
1
4
|
from liger_kernel.ops.grpo_loss import GrpoLossFunction
|
|
2
5
|
|
|
3
6
|
|
|
@@ -13,12 +16,20 @@ def triton_grpo_loss(
|
|
|
13
16
|
eps_low=0.2,
|
|
14
17
|
eps_high=0.4,
|
|
15
18
|
inplace=True,
|
|
19
|
+
loss_type="dapo",
|
|
20
|
+
max_completion_length=None,
|
|
21
|
+
importance_sampling_level="token",
|
|
22
|
+
reduce=False,
|
|
16
23
|
):
|
|
17
24
|
assert logits is not None and completion_ids is not None and advantages is not None, (
|
|
18
25
|
"must provide logits、completion_ids and advantages"
|
|
19
26
|
)
|
|
27
|
+
if importance_sampling_level != "token":
|
|
28
|
+
raise ValueError(
|
|
29
|
+
f"Triton GRPO loss only supports token-level importance sampling. Got {importance_sampling_level}."
|
|
30
|
+
)
|
|
20
31
|
|
|
21
|
-
|
|
32
|
+
per_token_loss, per_token_kl, is_clipped = GrpoLossFunction.apply(
|
|
22
33
|
logits,
|
|
23
34
|
old_logp,
|
|
24
35
|
ref_logp,
|
|
@@ -31,6 +42,50 @@ def triton_grpo_loss(
|
|
|
31
42
|
eps_high,
|
|
32
43
|
inplace,
|
|
33
44
|
)
|
|
45
|
+
if not reduce:
|
|
46
|
+
return per_token_loss, per_token_kl, is_clipped
|
|
47
|
+
|
|
48
|
+
loss = _reduce_grpo_loss(
|
|
49
|
+
per_token_loss,
|
|
50
|
+
completion_mask,
|
|
51
|
+
loss_type=loss_type,
|
|
52
|
+
max_completion_length=max_completion_length,
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
metrics = []
|
|
56
|
+
if beta != 0.0 and per_token_kl is not None:
|
|
57
|
+
metrics.append(_masked_mean(per_token_kl, completion_mask))
|
|
58
|
+
metrics.append(_masked_mean(is_clipped.float(), completion_mask))
|
|
59
|
+
return loss, metrics
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def _reduce_grpo_loss(per_token_loss, completion_mask, loss_type, max_completion_length):
|
|
63
|
+
mask = completion_mask
|
|
64
|
+
if mask is None:
|
|
65
|
+
mask = torch.ones_like(per_token_loss, dtype=per_token_loss.dtype, device=per_token_loss.device)
|
|
66
|
+
mask = mask.to(per_token_loss.dtype)
|
|
67
|
+
|
|
68
|
+
if loss_type == "grpo":
|
|
69
|
+
per_seq = (per_token_loss * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)
|
|
70
|
+
return per_seq.mean()
|
|
71
|
+
if loss_type == "bnpo":
|
|
72
|
+
return (per_token_loss * mask).sum() / mask.sum().clamp(min=1.0)
|
|
73
|
+
if loss_type == "dr_grpo":
|
|
74
|
+
if max_completion_length is None:
|
|
75
|
+
raise ValueError("max_completion_length must be provided when using loss_type='dr_grpo'")
|
|
76
|
+
batch = per_token_loss.shape[0]
|
|
77
|
+
return (per_token_loss * mask).sum() / (batch * max_completion_length)
|
|
78
|
+
if loss_type == "dapo":
|
|
79
|
+
normalizer = LigerFusedLinearPPOBase._compute_dapo_normalizer(mask)
|
|
80
|
+
return (per_token_loss * mask).sum() / normalizer
|
|
81
|
+
raise ValueError(f"Unsupported loss_type '{loss_type}' for Triton GRPO loss.")
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def _masked_mean(values, mask):
|
|
85
|
+
if mask is None:
|
|
86
|
+
mask = torch.ones_like(values, dtype=values.dtype, device=values.device)
|
|
87
|
+
mask = mask.to(values.dtype)
|
|
88
|
+
return (values * mask).sum() / mask.sum().clamp(min=1.0)
|
|
34
89
|
|
|
35
90
|
|
|
36
91
|
# This is a demo how to use grpo_loss in GRPOTrainer. The Trl version must be 0.16
|
|
@@ -0,0 +1,122 @@
|
|
|
1
|
+
from typing import TYPE_CHECKING
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Union
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
if TYPE_CHECKING:
|
|
8
|
+
from transformers.models.falcon_h1.modeling_falcon_h1 import FalconHybridMambaAttentionDynamicCache
|
|
9
|
+
|
|
10
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def lce_forward(
|
|
16
|
+
self,
|
|
17
|
+
input_ids: torch.LongTensor = None,
|
|
18
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
19
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
20
|
+
past_key_values: Optional["FalconHybridMambaAttentionDynamicCache"] = None,
|
|
21
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
22
|
+
labels: Optional[torch.LongTensor] = None,
|
|
23
|
+
use_cache: Optional[bool] = None,
|
|
24
|
+
output_attentions: Optional[bool] = None,
|
|
25
|
+
output_hidden_states: Optional[bool] = None,
|
|
26
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
27
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
28
|
+
skip_logits: Optional[bool] = None,
|
|
29
|
+
return_dict: Optional[bool] = None,
|
|
30
|
+
**kwargs,
|
|
31
|
+
) -> Union[tuple, LigerCausalLMOutputWithPast]:
|
|
32
|
+
r"""
|
|
33
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
34
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
35
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
36
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
37
|
+
|
|
38
|
+
Example:
|
|
39
|
+
|
|
40
|
+
```python
|
|
41
|
+
>>> from transformers import AutoTokenizer, FalconH1ForCausalLM
|
|
42
|
+
|
|
43
|
+
>>> model = FalconH1ForCausalLM.from_pretrained("...")
|
|
44
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("...")
|
|
45
|
+
|
|
46
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
47
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
48
|
+
|
|
49
|
+
>>> # Generate
|
|
50
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
51
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
52
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
53
|
+
```"""
|
|
54
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
55
|
+
output_hidden_states = (
|
|
56
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
57
|
+
)
|
|
58
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
59
|
+
|
|
60
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
61
|
+
outputs = self.model(
|
|
62
|
+
input_ids=input_ids,
|
|
63
|
+
attention_mask=attention_mask,
|
|
64
|
+
position_ids=position_ids,
|
|
65
|
+
past_key_values=past_key_values,
|
|
66
|
+
inputs_embeds=inputs_embeds,
|
|
67
|
+
use_cache=use_cache,
|
|
68
|
+
output_attentions=output_attentions,
|
|
69
|
+
output_hidden_states=output_hidden_states,
|
|
70
|
+
cache_position=cache_position,
|
|
71
|
+
**kwargs,
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
hidden_states = outputs[0]
|
|
75
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
76
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
77
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
78
|
+
|
|
79
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
80
|
+
logits = None
|
|
81
|
+
loss = None
|
|
82
|
+
token_accuracy = None
|
|
83
|
+
|
|
84
|
+
# if in training mode, don't materialize logits
|
|
85
|
+
if skip_logits and labels is None:
|
|
86
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
87
|
+
|
|
88
|
+
if skip_logits is None:
|
|
89
|
+
# By default, if in training mode, don't materialize logits
|
|
90
|
+
skip_logits = self.training and labels is not None
|
|
91
|
+
|
|
92
|
+
# Compute loss
|
|
93
|
+
if skip_logits:
|
|
94
|
+
result = LigerForCausalLMLoss(
|
|
95
|
+
hidden_states=kept_hidden_states,
|
|
96
|
+
lm_head_weight=self.lm_head.weight,
|
|
97
|
+
labels=labels,
|
|
98
|
+
shift_labels=shift_labels,
|
|
99
|
+
hidden_size=self.config.hidden_size,
|
|
100
|
+
**kwargs,
|
|
101
|
+
)
|
|
102
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
103
|
+
else:
|
|
104
|
+
logits = self.lm_head(kept_hidden_states)
|
|
105
|
+
if labels is not None or shift_labels is not None:
|
|
106
|
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
|
107
|
+
|
|
108
|
+
if not return_dict:
|
|
109
|
+
output = (logits,) + outputs[1:]
|
|
110
|
+
output = ((loss,) + output) if loss is not None else output
|
|
111
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
112
|
+
return output
|
|
113
|
+
|
|
114
|
+
# Return custom output class with token_accuracy field
|
|
115
|
+
return LigerCausalLMOutputWithPast(
|
|
116
|
+
loss=loss,
|
|
117
|
+
logits=logits,
|
|
118
|
+
past_key_values=outputs.past_key_values,
|
|
119
|
+
hidden_states=outputs.hidden_states,
|
|
120
|
+
attentions=outputs.attentions,
|
|
121
|
+
token_accuracy=token_accuracy,
|
|
122
|
+
)
|