liger-kernel 0.6.2__py3-none-any.whl → 0.6.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. liger_kernel/chunked_loss/cosine_similarity_loss.py +13 -4
  2. liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
  3. liger_kernel/chunked_loss/fused_linear_ppo.py +25 -5
  4. liger_kernel/chunked_loss/grpo_loss.py +46 -9
  5. liger_kernel/chunked_loss/jsd_loss.py +23 -7
  6. liger_kernel/ops/cross_entropy.py +118 -62
  7. liger_kernel/ops/fused_linear_cross_entropy.py +97 -13
  8. liger_kernel/ops/grpo_loss.py +3 -1
  9. liger_kernel/ops/layer_norm.py +86 -69
  10. liger_kernel/ops/poly_norm.py +386 -0
  11. liger_kernel/ops/tiled_mlp.py +136 -0
  12. liger_kernel/transformers/__init__.py +36 -0
  13. liger_kernel/transformers/cross_entropy.py +8 -3
  14. liger_kernel/transformers/functional.py +31 -6
  15. liger_kernel/transformers/fused_linear_cross_entropy.py +13 -4
  16. liger_kernel/transformers/grpo_loss.py +56 -1
  17. liger_kernel/transformers/model/falcon_h1.py +122 -0
  18. liger_kernel/transformers/model/gemma.py +19 -7
  19. liger_kernel/transformers/model/gemma2.py +22 -7
  20. liger_kernel/transformers/model/gemma3.py +52 -14
  21. liger_kernel/transformers/model/glm4.py +18 -5
  22. liger_kernel/transformers/model/glm4v.py +19 -6
  23. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  24. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  25. liger_kernel/transformers/model/internvl.py +157 -0
  26. liger_kernel/transformers/model/llama.py +16 -6
  27. liger_kernel/transformers/model/llama4.py +18 -5
  28. liger_kernel/transformers/model/llava.py +18 -6
  29. liger_kernel/transformers/model/loss_utils.py +32 -3
  30. liger_kernel/transformers/model/mistral.py +17 -7
  31. liger_kernel/transformers/model/mixtral.py +24 -9
  32. liger_kernel/transformers/model/mllama.py +14 -5
  33. liger_kernel/transformers/model/olmo2.py +18 -5
  34. liger_kernel/transformers/model/olmo3.py +142 -0
  35. liger_kernel/transformers/model/output_classes.py +147 -0
  36. liger_kernel/transformers/model/paligemma.py +41 -5
  37. liger_kernel/transformers/model/phi3.py +16 -8
  38. liger_kernel/transformers/model/qwen2.py +18 -4
  39. liger_kernel/transformers/model/qwen2_5_vl.py +21 -8
  40. liger_kernel/transformers/model/qwen2_vl.py +24 -7
  41. liger_kernel/transformers/model/qwen3.py +22 -6
  42. liger_kernel/transformers/model/qwen3_moe.py +27 -7
  43. liger_kernel/transformers/model/qwen3_next.py +146 -0
  44. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  45. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  46. liger_kernel/transformers/model/smollm3.py +17 -7
  47. liger_kernel/transformers/model/smolvlm.py +158 -0
  48. liger_kernel/transformers/monkey_patch.py +830 -3
  49. liger_kernel/transformers/multi_token_attention.py +1 -1
  50. liger_kernel/transformers/poly_norm.py +42 -0
  51. liger_kernel/transformers/rms_norm.py +7 -0
  52. liger_kernel/transformers/rope.py +43 -0
  53. liger_kernel/transformers/swiglu.py +17 -0
  54. liger_kernel/transformers/tiled_mlp.py +133 -0
  55. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.4.dist-info}/METADATA +16 -10
  56. liger_kernel-0.6.4.dist-info/RECORD +118 -0
  57. liger_kernel-0.6.2.dist-info/RECORD +0 -104
  58. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.4.dist-info}/WHEEL +0 -0
  59. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.4.dist-info}/licenses/LICENSE +0 -0
  60. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.4.dist-info}/licenses/NOTICE +0 -0
  61. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.4.dist-info}/top_level.txt +0 -0
@@ -9,7 +9,7 @@ from liger_kernel.ops.multi_token_attention import LigerMultiTokenAttentionFunct
9
9
 
10
10
 
11
11
  class LigerMultiTokenAttention(nn.Module):
12
- """
12
+ r"""
13
13
  Multi-Token Attention:
14
14
  out = mask_{0}(conv2d(softmax(mask_{-\inf}(scores))))
15
15
 
@@ -0,0 +1,42 @@
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from liger_kernel.ops.poly_norm import LigerPolyNormFunction
5
+
6
+
7
+ class LigerPolyNorm(nn.Module):
8
+ """
9
+ PolyNorm layer wrapper for Liger kernel.
10
+
11
+ PolyNorm formula:
12
+ y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
13
+ where norm(u) = u / sqrt(mean(u²) + ε)
14
+
15
+ Reference:
16
+ https://github.com/BryceZhuo/PolyCom/
17
+
18
+ Args:
19
+ eps: epsilon for numerical stability (default: 1e-6)
20
+ in_place: whether to in-place modify grad_output in backward to save memory (default: False).
21
+ Set to True to save memory if grad_output is not needed elsewhere.
22
+ """
23
+
24
+ def __init__(self, eps=1e-6, in_place=True):
25
+ super().__init__()
26
+ # Align with PolyCom reference: initialize weights to (1/3, 1/3, 1/3) and bias to 1.0
27
+ self.weight = nn.Parameter(torch.full((3,), 1.0 / 3.0))
28
+ self.bias = nn.Parameter(torch.tensor(1.0))
29
+ self.variance_epsilon = eps
30
+ self.in_place = in_place
31
+
32
+ def forward(self, hidden_states):
33
+ return LigerPolyNormFunction.apply(
34
+ hidden_states,
35
+ self.weight,
36
+ self.bias,
37
+ self.variance_epsilon,
38
+ self.in_place,
39
+ )
40
+
41
+ def extra_repr(self):
42
+ return f"weight_shape={tuple(self.weight.shape)}, eps={self.variance_epsilon}, in_place={self.in_place}"
@@ -77,3 +77,10 @@ class LigerRMSNormForGlm4(LigerRMSNorm):
77
77
  self, hidden_size, eps=1e-6, offset=0.0, casting_mode="llama", init_fn="ones", in_place=False, row_mode=None
78
78
  ):
79
79
  super().__init__(hidden_size, eps, offset, casting_mode, init_fn, in_place, row_mode)
80
+
81
+
82
+ class LigerRMSNormForQwen3Next(LigerRMSNorm):
83
+ def __init__(
84
+ self, hidden_size, eps=1e-6, offset=1.0, casting_mode="gemma", init_fn="zeros", in_place=False, row_mode=None
85
+ ):
86
+ super().__init__(hidden_size, eps, offset, casting_mode, init_fn, in_place, row_mode)
@@ -1,3 +1,8 @@
1
+ from typing import Optional
2
+ from typing import Tuple
3
+
4
+ import torch
5
+
1
6
  from liger_kernel.ops.rope import LigerRopeFunction
2
7
 
3
8
 
@@ -18,3 +23,41 @@ def liger_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
18
23
  """
19
24
 
20
25
  return LigerRopeFunction.apply(q, k, cos, sin, position_ids, unsqueeze_dim)
26
+
27
+
28
+ def liger_rotary_pos_emb_with_cast(
29
+ q: torch.Tensor,
30
+ k: torch.Tensor,
31
+ cos: torch.Tensor,
32
+ sin: torch.Tensor,
33
+ position_ids: Optional[torch.Tensor] = None,
34
+ unsqueeze_dim: int = 1,
35
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
36
+ orig_q_dtype, orig_k_dtype = q.dtype, k.dtype
37
+
38
+ q32 = q.to(torch.float32)
39
+ k32 = k.to(torch.float32)
40
+ cos32 = cos.to(torch.float32)
41
+ sin32 = sin.to(torch.float32)
42
+
43
+ q_out, k_out = liger_rotary_pos_emb(q32, k32, cos32, sin32, position_ids=position_ids, unsqueeze_dim=unsqueeze_dim)
44
+ return q_out.to(orig_q_dtype), k_out.to(orig_k_dtype)
45
+
46
+
47
+ def liger_rotary_pos_emb_with_cast_and_leading_batch(
48
+ q: torch.Tensor,
49
+ k: torch.Tensor,
50
+ cos: torch.Tensor,
51
+ sin: torch.Tensor,
52
+ position_ids: Optional[torch.Tensor] = None,
53
+ unsqueeze_dim: int = 1,
54
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
55
+ orig_q_dtype, orig_k_dtype = q.dtype, k.dtype
56
+
57
+ q32 = q.to(torch.float32).unsqueeze(0)
58
+ k32 = k.to(torch.float32).unsqueeze(0)
59
+ cos32 = cos.to(torch.float32).unsqueeze(0)
60
+ sin32 = sin.to(torch.float32).unsqueeze(0)
61
+
62
+ q_out, k_out = liger_rotary_pos_emb(q32, k32, cos32, sin32, position_ids=position_ids, unsqueeze_dim=unsqueeze_dim)
63
+ return q_out.to(orig_q_dtype).squeeze(0), k_out.to(orig_k_dtype).squeeze(0)
@@ -77,3 +77,20 @@ class LigerQwen3MoeSwiGLUMLP(nn.Module):
77
77
 
78
78
  def forward(self, x):
79
79
  return self.down_proj(LigerSiLUMulFunction.apply(self.gate_proj(x), self.up_proj(x)))
80
+
81
+
82
+ class LigerHunyuanV1SwiGLUMLP(nn.Module):
83
+ def __init__(self, config, layer_idx=None, is_shared_mlp=False):
84
+ super().__init__()
85
+ self.config = config
86
+ self.hidden_size = config.hidden_size
87
+ self.intermediate_size = config.intermediate_size
88
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
89
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
90
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
91
+ self.layer_idx = layer_idx
92
+ if config.hidden_act not in ["silu", "swish"]:
93
+ raise ValueError(f"Activation function {config.hidden_act} not supported.")
94
+
95
+ def forward(self, x):
96
+ return self.down_proj(LigerSiLUMulFunction.apply(self.gate_proj(x), self.up_proj(x)))
@@ -0,0 +1,133 @@
1
+ from typing import Optional
2
+
3
+ import torch.nn as nn
4
+
5
+ from liger_kernel.ops.geglu import LigerGELUMulFunction
6
+ from liger_kernel.ops.swiglu import LigerSiLUMulFunction
7
+ from liger_kernel.ops.tiled_mlp import apply_tiled_mlp
8
+
9
+
10
+ class LigerTiledGEGLUMLP(nn.Module):
11
+ """
12
+ Memory-efficient GEGLU MLP using tiled computation.
13
+
14
+ This module combines GEGLU activation with tiled processing to handle
15
+ very long sequences efficiently. The forward pass is recomputed during
16
+ backward to save memory.
17
+
18
+ Args:
19
+ config: Model configuration with hidden_size and intermediate_size attributes
20
+ num_shards: Number of shards to split the sequence. If None, automatically
21
+ calculated as ceil(seqlen / hidden_size)
22
+ """
23
+
24
+ def __init__(self, config, num_shards: Optional[int] = None):
25
+ super().__init__()
26
+ self.config = config
27
+ self.hidden_size = config.hidden_size
28
+ self.intermediate_size = config.intermediate_size
29
+ self.num_shards = num_shards
30
+
31
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
32
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
33
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
34
+
35
+ # Validate activation function
36
+ if hasattr(config, "hidden_act") and config.hidden_act not in [
37
+ "gelu",
38
+ "gelu_new",
39
+ "gelu_pytorch_tanh",
40
+ ]:
41
+ raise ValueError(f"LigerTiledGEGLUMLP requires GELU activation, got {config.hidden_act}")
42
+
43
+ def _mlp_forward(self, module, x):
44
+ """Internal MLP forward function for tiled computation."""
45
+ gate = module.gate_proj(x)
46
+ up = module.up_proj(x)
47
+ return module.down_proj(LigerGELUMulFunction.apply(gate, up))
48
+
49
+ def forward(self, x):
50
+ """
51
+ Forward pass with tiled computation.
52
+
53
+ Args:
54
+ x: Input tensor of shape [batch_size, seq_len, hidden_size]
55
+ or [seq_len, hidden_size]
56
+
57
+ Returns:
58
+ Output tensor of the same shape as input
59
+ """
60
+ compute_params = [
61
+ self.gate_proj.weight,
62
+ self.up_proj.weight,
63
+ self.down_proj.weight,
64
+ ]
65
+
66
+ return apply_tiled_mlp(
67
+ fn=self._mlp_forward,
68
+ mlp_module=self,
69
+ x=x,
70
+ num_shards=self.num_shards,
71
+ compute_params=compute_params,
72
+ )
73
+
74
+
75
+ class LigerTiledSwiGLUMLP(nn.Module):
76
+ """
77
+ Memory-efficient SwiGLU MLP using tiled computation.
78
+
79
+ This module combines SwiGLU activation with tiled processing to handle
80
+ very long sequences efficiently. The forward pass is recomputed during
81
+ backward to save memory.
82
+
83
+ Args:
84
+ config: Model configuration with hidden_size and intermediate_size attributes
85
+ num_shards: Number of shards to split the sequence. If None, automatically
86
+ calculated as ceil(seqlen / hidden_size)
87
+ """
88
+
89
+ def __init__(self, config, num_shards: Optional[int] = None):
90
+ super().__init__()
91
+ self.config = config
92
+ self.hidden_size = config.hidden_size
93
+ self.intermediate_size = config.intermediate_size
94
+ self.num_shards = num_shards
95
+
96
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
97
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
98
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
99
+
100
+ # Validate activation function
101
+ if hasattr(config, "hidden_act") and config.hidden_act not in ["silu", "swish"]:
102
+ raise ValueError(f"LigerTiledSwiGLUMLP requires SiLU/Swish activation, got {config.hidden_act}")
103
+
104
+ def _mlp_forward(self, module, x):
105
+ """Internal MLP forward function for tiled computation."""
106
+ gate = module.gate_proj(x)
107
+ up = module.up_proj(x)
108
+ return module.down_proj(LigerSiLUMulFunction.apply(gate, up))
109
+
110
+ def forward(self, x):
111
+ """
112
+ Forward pass with tiled computation.
113
+
114
+ Args:
115
+ x: Input tensor of shape [batch_size, seq_len, hidden_size]
116
+ or [seq_len, hidden_size]
117
+
118
+ Returns:
119
+ Output tensor of the same shape as input
120
+ """
121
+ compute_params = [
122
+ self.gate_proj.weight,
123
+ self.up_proj.weight,
124
+ self.down_proj.weight,
125
+ ]
126
+
127
+ return apply_tiled_mlp(
128
+ fn=self._mlp_forward,
129
+ mlp_module=self,
130
+ x=x,
131
+ num_shards=self.num_shards,
132
+ compute_params=compute_params,
133
+ )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: liger_kernel
3
- Version: 0.6.2
3
+ Version: 0.6.4
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -35,15 +35,14 @@ Requires-Dist: triton>=2.3.1
35
35
  Provides-Extra: dev
36
36
  Requires-Dist: transformers>=4.49.0; extra == "dev"
37
37
  Requires-Dist: matplotlib>=3.7.2; extra == "dev"
38
- Requires-Dist: flake8>=4.0.1.1; extra == "dev"
39
- Requires-Dist: black>=24.4.2; extra == "dev"
40
- Requires-Dist: isort>=5.13.2; extra == "dev"
38
+ Requires-Dist: ruff>=0.12.0; extra == "dev"
41
39
  Requires-Dist: pytest>=7.1.2; extra == "dev"
42
40
  Requires-Dist: pytest-xdist; extra == "dev"
41
+ Requires-Dist: pytest-cov; extra == "dev"
42
+ Requires-Dist: pytest-asyncio; extra == "dev"
43
43
  Requires-Dist: pytest-rerunfailures; extra == "dev"
44
44
  Requires-Dist: datasets>=2.19.2; extra == "dev"
45
45
  Requires-Dist: seaborn; extra == "dev"
46
- Requires-Dist: mkdocs; extra == "dev"
47
46
  Requires-Dist: mkdocs-material; extra == "dev"
48
47
  Requires-Dist: torchvision>=0.20; extra == "dev"
49
48
  Dynamic: license-file
@@ -181,8 +180,8 @@ y = orpo_loss(lm_head.weight, x, target)
181
180
  - `triton >= 3.0.0` Install from pypi. (e.g. `pip install triton==3.0.0`)
182
181
 
183
182
  ```bash
184
- # Need to pass the url when installing
185
- pip install -e .[dev] --extra-index-url https://download.pytorch.org/whl/nightly/rocm6.2
183
+ pip install -e .[dev]
184
+ pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.3/
186
185
  ```
187
186
 
188
187
  ### Optional Dependencies
@@ -216,6 +215,9 @@ pip install -e .
216
215
 
217
216
  # Setup Development Dependencies
218
217
  pip install -e ".[dev]"
218
+
219
+ # NOTE -> For AMD users only
220
+ pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.3/
219
221
  ```
220
222
 
221
223
 
@@ -311,7 +313,11 @@ loss.backward()
311
313
  | Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
312
314
  | Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
313
315
  | OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
316
+ | Olmo3 | `liger_kernel.transformers.apply_liger_kernel_to_olmo3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
314
317
  | GLM-4 | `liger_kernel.transformers.apply_liger_kernel_to_glm4` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
318
+ | InternVL3 | `liger_kernel.transformers.apply_liger_kernel_to_internvl` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
319
+ | HunyuanV1 | `liger_kernel.transformers.apply_liger_kernel_to_hunyuan_v1_dense` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
320
+ | HunyuanV1 MoE | `liger_kernel.transformers.apply_liger_kernel_to_hunyuan_v1_moe` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
315
321
 
316
322
 
317
323
  ## Low-level APIs
@@ -391,17 +397,17 @@ loss.backward()
391
397
  <td style="padding: 10px;">
392
398
  <div style="display: block;">
393
399
  <a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/nvi-ci.yml">
394
- <img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/nvi-ci.yml/badge.svg?event=schedule" alt="Build">
400
+ <img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/nvi-ci.yml/badge.svg?branch=main&event=push" alt="Build">
395
401
  </a>
396
402
  </div>
397
403
  <div style="display: block;">
398
404
  <a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/amd-ci.yml">
399
- <img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/amd-ci.yml/badge.svg?event=schedule" alt="Build">
405
+ <img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/amd-ci.yml/badge.svg?branch=main&event=push" alt="Build">
400
406
  </a>
401
407
  </div>
402
408
  <div style="display: block;">
403
409
  <a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/intel-ci.yml">
404
- <img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/intel-ci.yml/badge.svg?event=schedule" alt="Build">
410
+ <img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/intel-ci.yml/badge.svg?branch=main&event=push" alt="Build">
405
411
  </a>
406
412
  </div>
407
413
  </td>
@@ -0,0 +1,118 @@
1
+ liger_kernel/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ liger_kernel/env_report.py,sha256=uhdEC8OydxoZlb7B6YYcAaBF3crGFdIck-4cxaW4NJY,1728
3
+ liger_kernel/utils.py,sha256=BQleeZWHSZPNuPcYcoZTOp1kcNEZONZilPP5-AmjgWI,2024
4
+ liger_kernel/chunked_loss/README.md,sha256=0FmkFC3hKBqyoDT5uTlIYmrvRkF-EOCR1y-EBU1LpWU,2248
5
+ liger_kernel/chunked_loss/__init__.py,sha256=J5_jNnzZ4gZmA38W5f_4oab7xMoNk1Xy-yh3X_Xlf-s,714
6
+ liger_kernel/chunked_loss/cosine_similarity_loss.py,sha256=x2nprTHPraU8Ya2NMZtaDk9r-s-1NKJwCTrzQIdmg-8,4680
7
+ liger_kernel/chunked_loss/cpo_loss.py,sha256=Gzz1eU4kgcbdubFVRy55e8A1Cr-r45UgNicXwZIjmBU,5454
8
+ liger_kernel/chunked_loss/dpo_loss.py,sha256=I83khNs3QQjuhr8U3NIOAACkbse6DNiBV-TulPZ0lXw,9006
9
+ liger_kernel/chunked_loss/functional.py,sha256=-XPDbLml9dHmvoSU2VNTUrBDFehuzvuAGPikVetBMtI,1132
10
+ liger_kernel/chunked_loss/fused_linear_distillation.py,sha256=yRtolfFGfKB-SxGQQyF68GYXd11Zlvh1InLdGeWNFIE,12652
11
+ liger_kernel/chunked_loss/fused_linear_ppo.py,sha256=baU19PwqO1FTVxwlB-eyJv6gOLtL7baXGzSncYQ8Ktc,14296
12
+ liger_kernel/chunked_loss/fused_linear_preference.py,sha256=FIH85uUXAOgYx5Ax8MjFhJHVu-2pKtY7wSegd0zSyyY,18336
13
+ liger_kernel/chunked_loss/fused_linear_unpaired_preference.py,sha256=RiuK3UtRwH9T6jZ36sA8Urj-TVuOLOO2syLg_JOQapY,13437
14
+ liger_kernel/chunked_loss/grpo_loss.py,sha256=bmuZaNgqNbJ5pJGFDXWE-B4BGYF7xWVSN15UyCfuq_s,13079
15
+ liger_kernel/chunked_loss/jsd_loss.py,sha256=G0RghPYYelyZ6DOEiwS8we9TT5MY2iHpiFqzZ2Xy87g,8038
16
+ liger_kernel/chunked_loss/kto_loss.py,sha256=llVCe6DkcpCo57seGWoMikaQVFApx764jsmSbQyqwQY,7529
17
+ liger_kernel/chunked_loss/orpo_loss.py,sha256=nu9UYG16dcMw93lvHi4_hYs3Q0FK1KnlmMRj7OpYU8s,4872
18
+ liger_kernel/chunked_loss/simpo_loss.py,sha256=fy2w8KbhMrBv7b1jdIeH3bBFxY52bPQPZb3KwBvmurM,5385
19
+ liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
+ liger_kernel/ops/cross_entropy.py,sha256=-fd8qVxn_66MGSLs-Gs8yGmWlkET5YAoyb__Bolfz4c,22617
21
+ liger_kernel/ops/dyt.py,sha256=gCLz4S8aul8SY9nvIGaoK67aGb7U9MJRQdo3ONqmQYs,5417
22
+ liger_kernel/ops/fused_add_rms_norm.py,sha256=UBqmlqFCmhSAIpkNKd8rrfXatX7Z4J9bp2dX9A0lrJQ,14017
23
+ liger_kernel/ops/fused_linear_cross_entropy.py,sha256=YepeWqX37gKc1-FUrzkDTzXYdOvmBmfv4KgL__KN_UI,16158
24
+ liger_kernel/ops/fused_linear_jsd.py,sha256=CSoprxb-YcJy-YUKiTcYkxN8sb9h2kdk_iHuncvSV5c,9683
25
+ liger_kernel/ops/fused_neighborhood_attention.py,sha256=vPi5xbnh6wxyZehaqo6Tuilqo2fN5SGDiONjnNmIKqs,35556
26
+ liger_kernel/ops/geglu.py,sha256=r0WSq9E93zzynL44Wh8femzOWK07_SseBM_pJUyxT3s,4144
27
+ liger_kernel/ops/group_norm.py,sha256=qD4D4lSjSgVtO52EBNLC2iTseALRgPgqXE50U2woggk,10837
28
+ liger_kernel/ops/grpo_loss.py,sha256=2SyOujtF9I3xiNo4wFf4s6MeiDotE_qeYfRWgj_bOBE,9573
29
+ liger_kernel/ops/jsd.py,sha256=onHp5T3MbvJaVz5Vup7Ww6EQp_HTaZeayTjJk6FgQMY,7042
30
+ liger_kernel/ops/kl_div.py,sha256=ZjGdDLKWksHT9dZ0xF_TDgAkj5cuMTwwT5tr9E-_24o,8734
31
+ liger_kernel/ops/layer_norm.py,sha256=OMaex1MDsM9kaFs0-q5Pnx3DrMVjongQoZ5-iFIOy00,10523
32
+ liger_kernel/ops/llama4_rope.py,sha256=-aqdZzllklTN8b9--e-TsWY_ntGCN8-tyseT4x0bd8s,8223
33
+ liger_kernel/ops/multi_token_attention.py,sha256=Oz_RXDp-OSS_R_HuGmaETHdAJ7Toda_70OfE7TXMUlY,7645
34
+ liger_kernel/ops/poly_norm.py,sha256=MLgI8Ea93fugKibHCUauQ2ASYVXCvpPZe5v3kQZU6po,11152
35
+ liger_kernel/ops/qwen2vl_mrope.py,sha256=3GExhYpLgB4VUtyZyjRk8XjEur3W4EWF6HQ67ML5vBU,8481
36
+ liger_kernel/ops/rms_norm.py,sha256=DtvsWN5YktFAoc0JYSAwVeoZfryBFJlX-ipU7ooP01A,18891
37
+ liger_kernel/ops/rope.py,sha256=v-7JHRrv-5ImoROkpKfl30WwWI4qTa2tAl7zQeB4ml4,8956
38
+ liger_kernel/ops/softmax.py,sha256=tgORx6MK1IDDtZKqGarj0IPIVjqAIEUXXYPiinhRdtI,5864
39
+ liger_kernel/ops/sparsemax.py,sha256=AeWe1xgkHJFEKWTj2vu_0hj7LztGvjqXAps-QTpCY0U,5087
40
+ liger_kernel/ops/swiglu.py,sha256=D7nd4u_LInwsIRNCDdY77lqnTz8-W5dJrpEAt8zEO_A,3033
41
+ liger_kernel/ops/tiled_mlp.py,sha256=eyMFsFFgHch8a_6R6IYRG24_jqKg5GF_BQUoQuAG8SY,4529
42
+ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
43
+ liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
44
+ liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
45
+ liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
46
+ liger_kernel/transformers/__init__.py,sha256=CgwhrY5cdx6OcRgR2ZZJbOIkLswQWPTr-BAaoxDNNOY,10687
47
+ liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
48
+ liger_kernel/transformers/cross_entropy.py,sha256=DMtHkKrVJDSsels7KgGQJqrXkEAd6Zopcdr-5oRmQgE,2010
49
+ liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
50
+ liger_kernel/transformers/fsdp.py,sha256=CUiyjTmjkjY7pLXQv8ly9rnzgXw6529csd9pvtJNMYc,3096
51
+ liger_kernel/transformers/functional.py,sha256=OqEmsDkaV3YiXaw1zqjDvHcC9_tU5TBrmhCNPOdgHQY,8590
52
+ liger_kernel/transformers/fused_add_rms_norm.py,sha256=7_Bzg-x6lLe6W1qG2DtjDALhEpNZlC6N5GppEs9cTYY,1199
53
+ liger_kernel/transformers/fused_linear_cross_entropy.py,sha256=Hhp9XGgMKZhvlkjHY5Jkl_T7fSyJoCL9m5c3z_9mflQ,2347
54
+ liger_kernel/transformers/fused_linear_jsd.py,sha256=bZ4otCvWBuOnA5XdQL-FzZVItJlDt-ht9e_pG7PG93E,3999
55
+ liger_kernel/transformers/fused_neighborhood_attention.py,sha256=TxYDUAt9B6WSP14aJP66C_2Mbds2sSIPGnamhUSTrC8,7957
56
+ liger_kernel/transformers/geglu.py,sha256=mrgqzIUVd6lN7fkDKLkw5YaESDxDtFgbot430WwPVOQ,1107
57
+ liger_kernel/transformers/group_norm.py,sha256=6qMAWOprr4SzP0YhNVNGQIBpM5aUHplUD2VuGJrMBz0,2173
58
+ liger_kernel/transformers/grpo_loss.py,sha256=QS6Ycct1E2yMfqoHPBa2sUAu5cmweNPK_-Q_KJE8hb4,6098
59
+ liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
60
+ liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
61
+ liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
62
+ liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
63
+ liger_kernel/transformers/monkey_patch.py,sha256=4LV6LSz_AAop6HWk1spZm1QigPN9nUDPJu9tK21-jIo,132446
64
+ liger_kernel/transformers/multi_token_attention.py,sha256=K3NIY9_5TPgZ4_Rahn0xnkMXxD_fmlJHK4CWGYvGQp0,1752
65
+ liger_kernel/transformers/poly_norm.py,sha256=g5tC75i3qy1_N26ZUP-jfpct7ivQAEdJfIfx8IXzeyE,1377
66
+ liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
67
+ liger_kernel/transformers/rms_norm.py,sha256=HwddVqrqS58jE-M2_4NkFGARtCDBhGnkKyjBN9b3FYI,3004
68
+ liger_kernel/transformers/rope.py,sha256=VMlDZI6zss9mLaLcN5XCE_ktmYRwAi_Eh4TIgO6NrIQ,2361
69
+ liger_kernel/transformers/softmax.py,sha256=yadlAgE4V2JByMwrDDa2s5SUBp8Jgd57xwnVvAWoBaI,264
70
+ liger_kernel/transformers/sparsemax.py,sha256=0lQA0UEOs4mu8CMruZ3VLhImxQVXJWhPsAKUsYA7vj8,403
71
+ liger_kernel/transformers/swiglu.py,sha256=dRR69wDWSWfdjtnsTECyxQqWVo5QkdXdXm9SpSQ4Jvw,4291
72
+ liger_kernel/transformers/tiled_mlp.py,sha256=J51-kpzwikDMMhT5bX-RZCKMaXBK6zZc1bhgRYTK5F0,4651
73
+ liger_kernel/transformers/trainer_integration.py,sha256=W3ON51O5GkyzNJsItz0y5rKx-uy2f2cFfveZpqbUdhw,123
74
+ liger_kernel/transformers/tvd.py,sha256=XrRfyJIqN6HFxXk8MYyFVZM1OLz3mtSbRZvWfZ_JerQ,450
75
+ liger_kernel/transformers/experimental/__init__.py,sha256=oQqk-f32JYgWEP9DJCj6ty6bbJSGrdXsFDQFwGeX6vI,127
76
+ liger_kernel/transformers/experimental/embedding.py,sha256=2P0QYdlFyFrG5OqTzTa1wcRgDSyjBMv5i1a7BrDPDQw,881
77
+ liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
78
+ liger_kernel/transformers/model/falcon_h1.py,sha256=heUZ4wUt2ATmtBtmv8Rcro3pQl6fV9T0pburjTTW7os,5004
79
+ liger_kernel/transformers/model/gemma.py,sha256=pAri4PYpknsFfkvyo8Ez2NNlqrUDW-KkExUXTGZAcH4,10621
80
+ liger_kernel/transformers/model/gemma2.py,sha256=qa9Ok42vFojVGNmASTH3Ek566Vu507kjd--ZpZDKX9M,12024
81
+ liger_kernel/transformers/model/gemma3.py,sha256=mEV3Kuy-dqfTk_b899Vb-InuD4_DvwH0nm5xgbG-0MM,14911
82
+ liger_kernel/transformers/model/glm4.py,sha256=bSp22iPIjsli4-c_usUOsyh1Bs2gIK8X6ynS0azseUs,5900
83
+ liger_kernel/transformers/model/glm4v.py,sha256=dd-BQpccDCp1SbIxcJ5rG8xcwYQK3KOv1Tgm9TGnZc4,6594
84
+ liger_kernel/transformers/model/glm4v_moe.py,sha256=zKhMdOOrRhlrvCSFaeVYfddL1ubpY8edEO91TN81n98,7135
85
+ liger_kernel/transformers/model/hunyuan_v1.py,sha256=MJvP9xkUFePIV0HLETJM4YPbVCEPkAE1ZI5Jxyiebh0,5731
86
+ liger_kernel/transformers/model/internvl.py,sha256=OOutracs9qrPHSU7FVYar08yinvGrHQVPvo39JEws6w,6473
87
+ liger_kernel/transformers/model/llama.py,sha256=kqZeONzwTBzudoChlKMzq1w23BtYGbxWZC1l1V__JTw,13410
88
+ liger_kernel/transformers/model/llama4.py,sha256=PfkynGVI0xxMs3EtyYpCgaALI6stu25OIrTIymE-pvg,4853
89
+ liger_kernel/transformers/model/llava.py,sha256=yoADM_BuIEummtTDiwWqjfUjXUMZD78VJzS0TRj5GJ4,15687
90
+ liger_kernel/transformers/model/loss_utils.py,sha256=mAV6NsE1xR2smQMlr_n9afh4ek3BhIfieZdTn1Z-9Fw,2836
91
+ liger_kernel/transformers/model/mistral.py,sha256=OcwOzVDMwwDbVccVPv-AaocznzWwzLT3aRaKK5SMaAg,6030
92
+ liger_kernel/transformers/model/mixtral.py,sha256=YcBDoTEJDgLFJ_RTo180DYGxR8D5Ad9-idumif7kCPE,12130
93
+ liger_kernel/transformers/model/mllama.py,sha256=vAHwCm63sn4kpAY0rDGf_N0HR7KRTBVpBYDVTPOaZTg,12079
94
+ liger_kernel/transformers/model/olmo2.py,sha256=-h2bUOeuPfY1MdShdRvq5_wFDHKP4PEimgIl0fL-BT4,5902
95
+ liger_kernel/transformers/model/olmo3.py,sha256=k2zYOlS8U_b5MwjdToB3tDRQ0bH_mWapVQqJcH8-qAo,6007
96
+ liger_kernel/transformers/model/output_classes.py,sha256=0BGXVR4dYQpSHLkSqpRoXuHMryrceGSlTYRu6pvd8ZY,4542
97
+ liger_kernel/transformers/model/paligemma.py,sha256=r0smHLADkEwfLS6d6ArWoSWEeLt2d_8pmgOO5F04b1o,20793
98
+ liger_kernel/transformers/model/phi3.py,sha256=PT7Kw6yySg-7TsssWfi82eVMN3SWujCqzCqHigAdfeQ,4574
99
+ liger_kernel/transformers/model/qwen2.py,sha256=ojqdJpD3A9A5uCS0N_rSq8gyNYWSsHfuvx3Z3ObC7ss,10686
100
+ liger_kernel/transformers/model/qwen2_5_vl.py,sha256=FbIZDcg9cOr4PtBLNN8yVubN-gu2clndjSIzfi8NMos,6894
101
+ liger_kernel/transformers/model/qwen2_vl.py,sha256=967Ex4Scm0ehhiVxOtjwfj396nD9xkAwFwHcoURH6-o,6578
102
+ liger_kernel/transformers/model/qwen3.py,sha256=1fvioVmq5CRZSIuTd7uuLet-fti9ee3r8eLibvfNTcQ,5769
103
+ liger_kernel/transformers/model/qwen3_moe.py,sha256=yljJO4kyeM5U2Q4pXH3Mmq71ZFEC_Z73qgBx1-an-o8,6457
104
+ liger_kernel/transformers/model/qwen3_next.py,sha256=TayfD91GVLA1-fJwtVl6vMZgkUTYLQYURMRGBdCtnFc,6331
105
+ liger_kernel/transformers/model/qwen3_vl.py,sha256=sUIdJ-32IlFm_4pHv6PpLgVafqBS0QeJm_91tY67NdY,6646
106
+ liger_kernel/transformers/model/qwen3_vl_moe.py,sha256=CJEFcwBqItSEw9NA0mhEozlDTgIuJQ6VTjgkh5iLZ78,4856
107
+ liger_kernel/transformers/model/smollm3.py,sha256=1ewDY-99UAFJEfoeqfZxDcxjkqKYUSr5b7X-E_2BLLs,8126
108
+ liger_kernel/transformers/model/smolvlm.py,sha256=yFpPKawLVo3zXzLjM7Y_T8FyRrPxVyp-YPFMM8m3k0c,6734
109
+ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7HHWHwku25A-GYL0WU,193
110
+ liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
111
+ liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
112
+ liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
113
+ liger_kernel-0.6.4.dist-info/licenses/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
114
+ liger_kernel-0.6.4.dist-info/licenses/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
115
+ liger_kernel-0.6.4.dist-info/METADATA,sha256=NnRXjH2DzVC_HejG1qKfyd7vjOlgqQ4uqMwFujom3Uo,25281
116
+ liger_kernel-0.6.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
117
+ liger_kernel-0.6.4.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
118
+ liger_kernel-0.6.4.dist-info/RECORD,,
@@ -1,104 +0,0 @@
1
- liger_kernel/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- liger_kernel/env_report.py,sha256=uhdEC8OydxoZlb7B6YYcAaBF3crGFdIck-4cxaW4NJY,1728
3
- liger_kernel/utils.py,sha256=BQleeZWHSZPNuPcYcoZTOp1kcNEZONZilPP5-AmjgWI,2024
4
- liger_kernel/chunked_loss/README.md,sha256=0FmkFC3hKBqyoDT5uTlIYmrvRkF-EOCR1y-EBU1LpWU,2248
5
- liger_kernel/chunked_loss/__init__.py,sha256=J5_jNnzZ4gZmA38W5f_4oab7xMoNk1Xy-yh3X_Xlf-s,714
6
- liger_kernel/chunked_loss/cosine_similarity_loss.py,sha256=pZ07OQ6RI-c8uk96tDRlUXdt31-da7yWhfwircZlKRw,4198
7
- liger_kernel/chunked_loss/cpo_loss.py,sha256=Gzz1eU4kgcbdubFVRy55e8A1Cr-r45UgNicXwZIjmBU,5454
8
- liger_kernel/chunked_loss/dpo_loss.py,sha256=I83khNs3QQjuhr8U3NIOAACkbse6DNiBV-TulPZ0lXw,9006
9
- liger_kernel/chunked_loss/functional.py,sha256=-XPDbLml9dHmvoSU2VNTUrBDFehuzvuAGPikVetBMtI,1132
10
- liger_kernel/chunked_loss/fused_linear_distillation.py,sha256=ooR-qnZCyWJN935oHCSWLaKKKyaYERyhNczRGi1VOiw,11935
11
- liger_kernel/chunked_loss/fused_linear_ppo.py,sha256=AA19cpv6D8mo5RbSK5GRCcZoOSnpxV_Z1eJlAsC5eic,13434
12
- liger_kernel/chunked_loss/fused_linear_preference.py,sha256=FIH85uUXAOgYx5Ax8MjFhJHVu-2pKtY7wSegd0zSyyY,18336
13
- liger_kernel/chunked_loss/fused_linear_unpaired_preference.py,sha256=RiuK3UtRwH9T6jZ36sA8Urj-TVuOLOO2syLg_JOQapY,13437
14
- liger_kernel/chunked_loss/grpo_loss.py,sha256=kuqHkYV383sUxqJN-DMsfADHi2hxHVyKx5S24TNc8bQ,10866
15
- liger_kernel/chunked_loss/jsd_loss.py,sha256=uInjy-KtKNJs46Wk0AlMO9e3UYo33KJhoCl8KL8ypGU,7081
16
- liger_kernel/chunked_loss/kto_loss.py,sha256=llVCe6DkcpCo57seGWoMikaQVFApx764jsmSbQyqwQY,7529
17
- liger_kernel/chunked_loss/orpo_loss.py,sha256=nu9UYG16dcMw93lvHi4_hYs3Q0FK1KnlmMRj7OpYU8s,4872
18
- liger_kernel/chunked_loss/simpo_loss.py,sha256=fy2w8KbhMrBv7b1jdIeH3bBFxY52bPQPZb3KwBvmurM,5385
19
- liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
- liger_kernel/ops/cross_entropy.py,sha256=e8THGnhOcy_0SbOLABx67HEM7-B8a8pG7nDKbCRpQKM,19123
21
- liger_kernel/ops/dyt.py,sha256=gCLz4S8aul8SY9nvIGaoK67aGb7U9MJRQdo3ONqmQYs,5417
22
- liger_kernel/ops/fused_add_rms_norm.py,sha256=UBqmlqFCmhSAIpkNKd8rrfXatX7Z4J9bp2dX9A0lrJQ,14017
23
- liger_kernel/ops/fused_linear_cross_entropy.py,sha256=YFPXUOIZpM_4r7AlfjkwOgDhAE_0H2mFjdKtx8cv-T4,11594
24
- liger_kernel/ops/fused_linear_jsd.py,sha256=CSoprxb-YcJy-YUKiTcYkxN8sb9h2kdk_iHuncvSV5c,9683
25
- liger_kernel/ops/fused_neighborhood_attention.py,sha256=vPi5xbnh6wxyZehaqo6Tuilqo2fN5SGDiONjnNmIKqs,35556
26
- liger_kernel/ops/geglu.py,sha256=r0WSq9E93zzynL44Wh8femzOWK07_SseBM_pJUyxT3s,4144
27
- liger_kernel/ops/group_norm.py,sha256=qD4D4lSjSgVtO52EBNLC2iTseALRgPgqXE50U2woggk,10837
28
- liger_kernel/ops/grpo_loss.py,sha256=anRnv7k1-AV3pCC6_TqP0GMg78YYUfRAJrbpx6PVhl0,9448
29
- liger_kernel/ops/jsd.py,sha256=onHp5T3MbvJaVz5Vup7Ww6EQp_HTaZeayTjJk6FgQMY,7042
30
- liger_kernel/ops/kl_div.py,sha256=ZjGdDLKWksHT9dZ0xF_TDgAkj5cuMTwwT5tr9E-_24o,8734
31
- liger_kernel/ops/layer_norm.py,sha256=BHPDuaogMTfIJkBJdqLZbOQouNWTf3fJVyOQOD7blCE,9901
32
- liger_kernel/ops/llama4_rope.py,sha256=-aqdZzllklTN8b9--e-TsWY_ntGCN8-tyseT4x0bd8s,8223
33
- liger_kernel/ops/multi_token_attention.py,sha256=Oz_RXDp-OSS_R_HuGmaETHdAJ7Toda_70OfE7TXMUlY,7645
34
- liger_kernel/ops/qwen2vl_mrope.py,sha256=3GExhYpLgB4VUtyZyjRk8XjEur3W4EWF6HQ67ML5vBU,8481
35
- liger_kernel/ops/rms_norm.py,sha256=DtvsWN5YktFAoc0JYSAwVeoZfryBFJlX-ipU7ooP01A,18891
36
- liger_kernel/ops/rope.py,sha256=v-7JHRrv-5ImoROkpKfl30WwWI4qTa2tAl7zQeB4ml4,8956
37
- liger_kernel/ops/softmax.py,sha256=tgORx6MK1IDDtZKqGarj0IPIVjqAIEUXXYPiinhRdtI,5864
38
- liger_kernel/ops/sparsemax.py,sha256=AeWe1xgkHJFEKWTj2vu_0hj7LztGvjqXAps-QTpCY0U,5087
39
- liger_kernel/ops/swiglu.py,sha256=D7nd4u_LInwsIRNCDdY77lqnTz8-W5dJrpEAt8zEO_A,3033
40
- liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
41
- liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
42
- liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
43
- liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
44
- liger_kernel/transformers/__init__.py,sha256=jkokP69dbCzUDTz-H6QowB5xNEflmgQ7Zv-_4MVuxpY,8440
45
- liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
46
- liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
47
- liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
48
- liger_kernel/transformers/fsdp.py,sha256=CUiyjTmjkjY7pLXQv8ly9rnzgXw6529csd9pvtJNMYc,3096
49
- liger_kernel/transformers/functional.py,sha256=XkYk_zb8xsRMtZtouYmlX_Tyyr-QA3WigSPF36DECYk,7777
50
- liger_kernel/transformers/fused_add_rms_norm.py,sha256=7_Bzg-x6lLe6W1qG2DtjDALhEpNZlC6N5GppEs9cTYY,1199
51
- liger_kernel/transformers/fused_linear_cross_entropy.py,sha256=_5AaQT2mcUEO2T7JGJYQafz6A1Efn9d3-Z3xFO_Xe0o,1862
52
- liger_kernel/transformers/fused_linear_jsd.py,sha256=bZ4otCvWBuOnA5XdQL-FzZVItJlDt-ht9e_pG7PG93E,3999
53
- liger_kernel/transformers/fused_neighborhood_attention.py,sha256=TxYDUAt9B6WSP14aJP66C_2Mbds2sSIPGnamhUSTrC8,7957
54
- liger_kernel/transformers/geglu.py,sha256=mrgqzIUVd6lN7fkDKLkw5YaESDxDtFgbot430WwPVOQ,1107
55
- liger_kernel/transformers/group_norm.py,sha256=6qMAWOprr4SzP0YhNVNGQIBpM5aUHplUD2VuGJrMBz0,2173
56
- liger_kernel/transformers/grpo_loss.py,sha256=uAkUNKSnUGEOqa82L9w2e6AI1kcmG8K45-QxyaT8zhM,3897
57
- liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
58
- liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
59
- liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
60
- liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
61
- liger_kernel/transformers/monkey_patch.py,sha256=pG3Yf0fMg4_0pAncc2wLtpdfXvmC5CROpNJ43-MmElM,93075
62
- liger_kernel/transformers/multi_token_attention.py,sha256=l9VDICK0dfmifUDW668hGscP8AHq2rYcM2oGUa3baRQ,1751
63
- liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
64
- liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
65
- liger_kernel/transformers/rope.py,sha256=ZTrTORSAyfcFIKjk6XEeYmk4ROH7xXED9L4g2NFntlE,999
66
- liger_kernel/transformers/softmax.py,sha256=yadlAgE4V2JByMwrDDa2s5SUBp8Jgd57xwnVvAWoBaI,264
67
- liger_kernel/transformers/sparsemax.py,sha256=0lQA0UEOs4mu8CMruZ3VLhImxQVXJWhPsAKUsYA7vj8,403
68
- liger_kernel/transformers/swiglu.py,sha256=LZ8YeLIdv2k46JleZMjzubGk98smt6t780kSgcVLsQk,3454
69
- liger_kernel/transformers/trainer_integration.py,sha256=W3ON51O5GkyzNJsItz0y5rKx-uy2f2cFfveZpqbUdhw,123
70
- liger_kernel/transformers/tvd.py,sha256=XrRfyJIqN6HFxXk8MYyFVZM1OLz3mtSbRZvWfZ_JerQ,450
71
- liger_kernel/transformers/experimental/__init__.py,sha256=oQqk-f32JYgWEP9DJCj6ty6bbJSGrdXsFDQFwGeX6vI,127
72
- liger_kernel/transformers/experimental/embedding.py,sha256=2P0QYdlFyFrG5OqTzTa1wcRgDSyjBMv5i1a7BrDPDQw,881
73
- liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
74
- liger_kernel/transformers/model/gemma.py,sha256=mNX-mIwV6jI4zfbrUHp0C468pOmjzsL7mjXipGt-eS0,10007
75
- liger_kernel/transformers/model/gemma2.py,sha256=R_JFPyWTk7RyA7D05ZiIaNO5pX8gWcvfWf-6rdCRMxs,11296
76
- liger_kernel/transformers/model/gemma3.py,sha256=FKO4j3t4W_5uECRA1lhVnXC-It2GhirHm4tpCf9ApAc,12785
77
- liger_kernel/transformers/model/glm4.py,sha256=GlnEhdGJuDIqp2R9qC54biY3HwV1tWmfpJm6ijoAsrM,5257
78
- liger_kernel/transformers/model/glm4v.py,sha256=zbV3agptEYpGAD0eeCRwIpJAhJUviTT5xQbbLlgpVnc,5957
79
- liger_kernel/transformers/model/llama.py,sha256=i8jJgyZsMKWQ-zKloETLugtwFpUOdaWxLDceciFXKd4,12832
80
- liger_kernel/transformers/model/llama4.py,sha256=IgbB8sTh3dlETQnaNNy1bZLuXy-Nt7qmeAjF27ydGpg,4210
81
- liger_kernel/transformers/model/llava.py,sha256=bLCioday_SOm69ogMDBhy_4UsVkH2-BSl93-EXY6-7I,15076
82
- liger_kernel/transformers/model/loss_utils.py,sha256=YiYsmRHIuoRnFjGpwyIM18DCsrPPmO32YWMWqkEm1UQ,1867
83
- liger_kernel/transformers/model/mistral.py,sha256=syYNL8dLThX2-4uC13Lu0krEZ5zw3InviDUR3AJmc-I,5500
84
- liger_kernel/transformers/model/mixtral.py,sha256=VY-y73IyjcCyWyI7ahxXLw0fJrhgjYfr1xwRYtsHX0o,11396
85
- liger_kernel/transformers/model/mllama.py,sha256=NhJtlXiuszJHo5YSJOvSGYH47ly7Hse8r-5BKznBg9s,11522
86
- liger_kernel/transformers/model/olmo2.py,sha256=6L_bo-ZUgO1lYppdJneOtYxNIylQKS6BiGp13g7Uq9E,5259
87
- liger_kernel/transformers/model/paligemma.py,sha256=xuIx3oOwTgftU3jqLfWOxUxgCLBNJh0yNC21an9qDjo,18773
88
- liger_kernel/transformers/model/phi3.py,sha256=AwScxUe3LjmHHyQg4gW9bMoUI7uA6fUEMXJ3YhBiHtQ,4046
89
- liger_kernel/transformers/model/qwen2.py,sha256=3fpOTEOkniQmkCfN1KUa3KhseHJVzhj2Ht9FdYPUy-E,9962
90
- liger_kernel/transformers/model/qwen2_5_vl.py,sha256=zEVVwotCXnAm3RRc8-1Nc8uitSWrwW4B9dYY2uOZDwg,6331
91
- liger_kernel/transformers/model/qwen2_vl.py,sha256=5vK-vtCDpKZ2w33xYp2BS8kQYWUbKMqaiKvQcI27Mss,5884
92
- liger_kernel/transformers/model/qwen3.py,sha256=w2jBHuK9kK9EmOr5dnEIXNQXUgUSV_sJUkXSEwxLPHs,4885
93
- liger_kernel/transformers/model/qwen3_moe.py,sha256=BkpfFH3fOH0yRfA7LF-AoHTLut2GV0Y4MOlkiIYewfU,5511
94
- liger_kernel/transformers/model/smollm3.py,sha256=mqayvpwpMbp2yd_Ue7IPzy-dA4KHSDi_ROZW5vHCHfQ,7596
95
- liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7HHWHwku25A-GYL0WU,193
96
- liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
97
- liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
98
- liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
99
- liger_kernel-0.6.2.dist-info/licenses/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
100
- liger_kernel-0.6.2.dist-info/licenses/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
101
- liger_kernel-0.6.2.dist-info/METADATA,sha256=vW1xVHcl4MfLYAF86zLMpZM_OVtBALaNsD4mZTRI0N8,24547
102
- liger_kernel-0.6.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
103
- liger_kernel-0.6.2.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
104
- liger_kernel-0.6.2.dist-info/RECORD,,