liger-kernel 0.6.2__py3-none-any.whl → 0.6.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. liger_kernel/chunked_loss/fused_linear_ppo.py +4 -0
  2. liger_kernel/chunked_loss/grpo_loss.py +38 -4
  3. liger_kernel/chunked_loss/jsd_loss.py +5 -2
  4. liger_kernel/ops/cross_entropy.py +59 -53
  5. liger_kernel/ops/fused_linear_cross_entropy.py +68 -10
  6. liger_kernel/ops/layer_norm.py +4 -6
  7. liger_kernel/ops/poly_norm.py +386 -0
  8. liger_kernel/transformers/__init__.py +17 -0
  9. liger_kernel/transformers/functional.py +7 -0
  10. liger_kernel/transformers/fused_linear_cross_entropy.py +5 -1
  11. liger_kernel/transformers/model/falcon_h1.py +108 -0
  12. liger_kernel/transformers/model/gemma.py +2 -1
  13. liger_kernel/transformers/model/gemma2.py +8 -2
  14. liger_kernel/transformers/model/gemma3.py +27 -2
  15. liger_kernel/transformers/model/glm4.py +2 -1
  16. liger_kernel/transformers/model/glm4v.py +3 -2
  17. liger_kernel/transformers/model/glm4v_moe.py +153 -0
  18. liger_kernel/transformers/model/internvl.py +150 -0
  19. liger_kernel/transformers/model/llama.py +2 -1
  20. liger_kernel/transformers/model/llama4.py +2 -1
  21. liger_kernel/transformers/model/llava.py +6 -2
  22. liger_kernel/transformers/model/loss_utils.py +1 -0
  23. liger_kernel/transformers/model/mistral.py +2 -1
  24. liger_kernel/transformers/model/mixtral.py +8 -2
  25. liger_kernel/transformers/model/mllama.py +2 -1
  26. liger_kernel/transformers/model/olmo2.py +2 -1
  27. liger_kernel/transformers/model/paligemma.py +19 -0
  28. liger_kernel/transformers/model/phi3.py +2 -1
  29. liger_kernel/transformers/model/qwen2.py +2 -1
  30. liger_kernel/transformers/model/qwen2_5_vl.py +7 -2
  31. liger_kernel/transformers/model/qwen2_vl.py +7 -2
  32. liger_kernel/transformers/model/qwen3.py +2 -1
  33. liger_kernel/transformers/model/qwen3_moe.py +8 -2
  34. liger_kernel/transformers/model/qwen3_next.py +134 -0
  35. liger_kernel/transformers/model/smollm3.py +2 -1
  36. liger_kernel/transformers/model/smolvlm.py +158 -0
  37. liger_kernel/transformers/monkey_patch.py +452 -3
  38. liger_kernel/transformers/multi_token_attention.py +1 -1
  39. liger_kernel/transformers/poly_norm.py +42 -0
  40. liger_kernel/transformers/rms_norm.py +7 -0
  41. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/METADATA +13 -10
  42. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/RECORD +46 -39
  43. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/WHEEL +0 -0
  44. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/licenses/LICENSE +0 -0
  45. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/licenses/NOTICE +0 -0
  46. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,134 @@
1
+ from typing import TYPE_CHECKING
2
+ from typing import List
3
+ from typing import Optional
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.modeling_outputs import MoeCausalLMOutputWithPast
9
+ from transformers.modeling_outputs import MoeModelOutputWithPast
10
+
11
+ if TYPE_CHECKING:
12
+ from transformers.models.qwen3_next.modeling_qwen3_next import load_balancing_loss_func
13
+
14
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
15
+
16
+
17
+ def lce_forward(
18
+ self,
19
+ input_ids: Optional[torch.LongTensor] = None,
20
+ attention_mask: Optional[torch.Tensor] = None,
21
+ position_ids: Optional[torch.LongTensor] = None,
22
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
23
+ inputs_embeds: Optional[torch.FloatTensor] = None,
24
+ labels: Optional[torch.LongTensor] = None,
25
+ use_cache: Optional[bool] = None,
26
+ output_attentions: Optional[bool] = None,
27
+ output_hidden_states: Optional[bool] = None,
28
+ output_router_logits: Optional[bool] = None,
29
+ cache_position: Optional[torch.LongTensor] = None,
30
+ logits_to_keep: Union[int, torch.Tensor] = 0,
31
+ skip_logits: Optional[bool] = None,
32
+ **kwargs,
33
+ ) -> MoeCausalLMOutputWithPast:
34
+ r"""
35
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
36
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
37
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
38
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
39
+
40
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
41
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
42
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
43
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
44
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
45
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
46
+
47
+ Returns:
48
+
49
+ Example:
50
+
51
+ ```python
52
+ >>> from transformers import AutoModelForCausalLM, AutoTokenizer
53
+
54
+ >>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Next-80B-A3B-Instruct")
55
+ >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Next-80B-A3B-Instruct")
56
+
57
+ >>> prompt = "Give me a short introduction to large language model."
58
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
59
+
60
+ >>> # Generate
61
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
62
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
63
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
64
+ ```"""
65
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
66
+ output_router_logits = (
67
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
68
+ )
69
+
70
+ output_hidden_states = (
71
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
72
+ )
73
+
74
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
75
+ outputs: MoeModelOutputWithPast = self.model(
76
+ input_ids=input_ids,
77
+ attention_mask=attention_mask,
78
+ position_ids=position_ids,
79
+ past_key_values=past_key_values,
80
+ inputs_embeds=inputs_embeds,
81
+ use_cache=use_cache,
82
+ output_attentions=output_attentions,
83
+ output_hidden_states=output_hidden_states,
84
+ output_router_logits=output_router_logits,
85
+ cache_position=cache_position,
86
+ **kwargs,
87
+ )
88
+
89
+ hidden_states = outputs.last_hidden_state
90
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
91
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
92
+ kept_hidden_states = hidden_states[:, slice_indices, :]
93
+
94
+ shift_labels = kwargs.pop("shift_labels", None)
95
+ logits = None
96
+ loss = None
97
+
98
+ if skip_logits is None:
99
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
100
+
101
+ if skip_logits:
102
+ loss = LigerForCausalLMLoss(
103
+ hidden_states=kept_hidden_states,
104
+ lm_head_weight=self.lm_head.weight,
105
+ labels=labels,
106
+ shift_labels=shift_labels,
107
+ hidden_size=self.config.hidden_size,
108
+ **kwargs,
109
+ )
110
+ else: # if in inference model materialize logits
111
+ logits = self.lm_head(kept_hidden_states)
112
+ if labels is not None or shift_labels is not None:
113
+ loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
114
+
115
+ aux_loss = None
116
+ if output_router_logits:
117
+ aux_loss = load_balancing_loss_func(
118
+ outputs.router_logits,
119
+ self.num_experts,
120
+ self.num_experts_per_tok,
121
+ attention_mask,
122
+ )
123
+ if labels is not None:
124
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
125
+
126
+ return MoeCausalLMOutputWithPast(
127
+ loss=loss,
128
+ aux_loss=aux_loss,
129
+ logits=logits,
130
+ past_key_values=outputs.past_key_values,
131
+ hidden_states=outputs.hidden_states,
132
+ attentions=outputs.attentions,
133
+ router_logits=outputs.router_logits,
134
+ )
@@ -121,10 +121,11 @@ def lce_forward(
121
121
 
122
122
  else:
123
123
  logits = self.lm_head(kept_hidden_states)
124
- if labels is not None:
124
+ if labels is not None or shift_labels is not None:
125
125
  loss = self.loss_function(
126
126
  logits=logits,
127
127
  labels=labels,
128
+ shift_labels=shift_labels,
128
129
  vocab_size=self.config.vocab_size,
129
130
  **kwargs,
130
131
  )
@@ -0,0 +1,158 @@
1
+ from typing import TYPE_CHECKING
2
+ from typing import Optional
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from transformers.models.smolvlm.modeling_smolvlm import SmolVLMCausalLMOutputWithPast
8
+ from transformers.processing_utils import Unpack
9
+ from transformers.utils.generic import can_return_tuple
10
+
11
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
12
+
13
+ if TYPE_CHECKING:
14
+ from transformers.cache_utils import Cache
15
+ from transformers.utils.generic import TransformersKwargs
16
+
17
+
18
+ # Forward adapted to enable fused Linear + CE without materializing logits.
19
+ # Mirrors the pattern used for other multimodal models (e.g., InternVL, LLaVA).
20
+ @can_return_tuple
21
+ def lce_forward(
22
+ self,
23
+ input_ids: Optional[torch.LongTensor] = None,
24
+ attention_mask: Optional[torch.Tensor] = None,
25
+ position_ids: Optional[torch.LongTensor] = None,
26
+ past_key_values: Optional["Cache"] = None,
27
+ inputs_embeds: Optional[torch.FloatTensor] = None,
28
+ pixel_values: Optional[torch.FloatTensor] = None,
29
+ pixel_attention_mask: Optional[torch.BoolTensor] = None,
30
+ image_hidden_states: Optional[torch.FloatTensor] = None,
31
+ labels: Optional[torch.LongTensor] = None,
32
+ use_cache: Optional[bool] = None,
33
+ output_attentions: Optional[bool] = None,
34
+ output_hidden_states: Optional[bool] = None,
35
+ cache_position: Optional[torch.LongTensor] = None,
36
+ return_dict: Optional[bool] = None,
37
+ logits_to_keep: Union[int, torch.Tensor] = 0,
38
+ skip_logits: Optional[bool] = None, # Added argument for liger-kernel
39
+ **lm_kwargs: Unpack["TransformersKwargs"], # renamed from kwargs
40
+ ) -> Union[tuple, SmolVLMCausalLMOutputWithPast]:
41
+ r"""
42
+ pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
43
+ Mask to avoid performing attention on padding pixel indices.
44
+ image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
45
+ The hidden states of the image encoder after modality projection.
46
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
47
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
48
+ config.vocab_size]` or `model.image_token_id`. Tokens with indices set to `model.image_token_id` are
49
+ ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
50
+
51
+ Example:
52
+
53
+ ```python
54
+ >>> import requests
55
+ >>> import torch
56
+ >>> from PIL import Image
57
+ >>> from io import BytesIO
58
+
59
+ >>> from transformers import AutoProcessor, AutoModelForImageTextToText
60
+ >>> from transformers.image_utils import load_image
61
+
62
+ >>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible
63
+ >>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
64
+ >>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg")
65
+ >>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg")
66
+
67
+ >>> processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
68
+ >>> model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct", dtype=torch.bfloat16, device_map="auto")
69
+
70
+ >>> # Create inputs
71
+ >>> messages = [
72
+ ... {
73
+ ... "role": "user",
74
+ ... "content": [
75
+ ... {"type": "video", "path": path/to/video},
76
+ ... {"type": "text", "text": "What is happening in this video?"},
77
+ ... ]
78
+ ... }
79
+ ... ]
80
+
81
+ >>> inputs = processor.apply_chat_template([messages], add_generation_prompt=True)
82
+
83
+ >>> # Generate
84
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=256)
85
+ >>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
86
+
87
+ >>> print(generated_texts)
88
+ ```"""
89
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
90
+ output_hidden_states = (
91
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
92
+ )
93
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
94
+
95
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
96
+ outputs = self.model(
97
+ input_ids=input_ids,
98
+ attention_mask=attention_mask,
99
+ position_ids=position_ids,
100
+ past_key_values=past_key_values,
101
+ inputs_embeds=inputs_embeds,
102
+ pixel_values=pixel_values,
103
+ pixel_attention_mask=pixel_attention_mask,
104
+ image_hidden_states=image_hidden_states,
105
+ use_cache=use_cache,
106
+ output_attentions=output_attentions,
107
+ output_hidden_states=output_hidden_states,
108
+ cache_position=cache_position,
109
+ return_dict=True,
110
+ **lm_kwargs,
111
+ )
112
+
113
+ # Copied from llava.py
114
+ hidden_states = outputs[0]
115
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
116
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
117
+ kept_hidden_states = hidden_states[:, slice_indices, :]
118
+
119
+ shift_labels = lm_kwargs.pop("shift_labels", None)
120
+ logits = None
121
+ loss = None
122
+
123
+ if skip_logits and labels is None and shift_labels is None:
124
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
125
+
126
+ if skip_logits is None:
127
+ # By default, if in training mode, don't materialize logits
128
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
129
+
130
+ if skip_logits:
131
+ loss = LigerForCausalLMLoss(
132
+ hidden_states=kept_hidden_states,
133
+ lm_head_weight=self.lm_head.weight,
134
+ labels=labels,
135
+ shift_labels=shift_labels,
136
+ hidden_size=self.config.text_config.hidden_size,
137
+ **lm_kwargs,
138
+ )
139
+
140
+ else:
141
+ logits = self.lm_head(kept_hidden_states)
142
+ if labels is not None or shift_labels is not None:
143
+ loss = self.loss_function(
144
+ logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
145
+ )
146
+
147
+ if not return_dict:
148
+ output = (logits,) + outputs[1:]
149
+ return (loss,) + output if loss is not None else output
150
+
151
+ return SmolVLMCausalLMOutputWithPast(
152
+ loss=loss,
153
+ logits=logits,
154
+ past_key_values=outputs.past_key_values,
155
+ hidden_states=outputs.hidden_states,
156
+ attentions=outputs.attentions,
157
+ image_hidden_states=outputs.image_hidden_states,
158
+ )