liger-kernel 0.6.2__py3-none-any.whl → 0.6.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/fused_linear_ppo.py +4 -0
- liger_kernel/chunked_loss/grpo_loss.py +38 -4
- liger_kernel/chunked_loss/jsd_loss.py +5 -2
- liger_kernel/ops/cross_entropy.py +59 -53
- liger_kernel/ops/fused_linear_cross_entropy.py +68 -10
- liger_kernel/ops/layer_norm.py +4 -6
- liger_kernel/ops/poly_norm.py +386 -0
- liger_kernel/transformers/__init__.py +17 -0
- liger_kernel/transformers/functional.py +7 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +5 -1
- liger_kernel/transformers/model/falcon_h1.py +108 -0
- liger_kernel/transformers/model/gemma.py +2 -1
- liger_kernel/transformers/model/gemma2.py +8 -2
- liger_kernel/transformers/model/gemma3.py +27 -2
- liger_kernel/transformers/model/glm4.py +2 -1
- liger_kernel/transformers/model/glm4v.py +3 -2
- liger_kernel/transformers/model/glm4v_moe.py +153 -0
- liger_kernel/transformers/model/internvl.py +150 -0
- liger_kernel/transformers/model/llama.py +2 -1
- liger_kernel/transformers/model/llama4.py +2 -1
- liger_kernel/transformers/model/llava.py +6 -2
- liger_kernel/transformers/model/loss_utils.py +1 -0
- liger_kernel/transformers/model/mistral.py +2 -1
- liger_kernel/transformers/model/mixtral.py +8 -2
- liger_kernel/transformers/model/mllama.py +2 -1
- liger_kernel/transformers/model/olmo2.py +2 -1
- liger_kernel/transformers/model/paligemma.py +19 -0
- liger_kernel/transformers/model/phi3.py +2 -1
- liger_kernel/transformers/model/qwen2.py +2 -1
- liger_kernel/transformers/model/qwen2_5_vl.py +7 -2
- liger_kernel/transformers/model/qwen2_vl.py +7 -2
- liger_kernel/transformers/model/qwen3.py +2 -1
- liger_kernel/transformers/model/qwen3_moe.py +8 -2
- liger_kernel/transformers/model/qwen3_next.py +134 -0
- liger_kernel/transformers/model/smollm3.py +2 -1
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +452 -3
- liger_kernel/transformers/multi_token_attention.py +1 -1
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/rms_norm.py +7 -0
- {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/METADATA +13 -10
- {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/RECORD +46 -39
- {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/WHEEL +0 -0
- {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/licenses/LICENSE +0 -0
- {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/licenses/NOTICE +0 -0
- {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,134 @@
|
|
|
1
|
+
from typing import TYPE_CHECKING
|
|
2
|
+
from typing import List
|
|
3
|
+
from typing import Optional
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from transformers.modeling_outputs import MoeCausalLMOutputWithPast
|
|
9
|
+
from transformers.modeling_outputs import MoeModelOutputWithPast
|
|
10
|
+
|
|
11
|
+
if TYPE_CHECKING:
|
|
12
|
+
from transformers.models.qwen3_next.modeling_qwen3_next import load_balancing_loss_func
|
|
13
|
+
|
|
14
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def lce_forward(
|
|
18
|
+
self,
|
|
19
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
20
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
21
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
22
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
23
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
24
|
+
labels: Optional[torch.LongTensor] = None,
|
|
25
|
+
use_cache: Optional[bool] = None,
|
|
26
|
+
output_attentions: Optional[bool] = None,
|
|
27
|
+
output_hidden_states: Optional[bool] = None,
|
|
28
|
+
output_router_logits: Optional[bool] = None,
|
|
29
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
30
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
31
|
+
skip_logits: Optional[bool] = None,
|
|
32
|
+
**kwargs,
|
|
33
|
+
) -> MoeCausalLMOutputWithPast:
|
|
34
|
+
r"""
|
|
35
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
36
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
37
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
38
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
39
|
+
|
|
40
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
41
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
42
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
43
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
44
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
45
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
46
|
+
|
|
47
|
+
Returns:
|
|
48
|
+
|
|
49
|
+
Example:
|
|
50
|
+
|
|
51
|
+
```python
|
|
52
|
+
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
53
|
+
|
|
54
|
+
>>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Next-80B-A3B-Instruct")
|
|
55
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Next-80B-A3B-Instruct")
|
|
56
|
+
|
|
57
|
+
>>> prompt = "Give me a short introduction to large language model."
|
|
58
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
59
|
+
|
|
60
|
+
>>> # Generate
|
|
61
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
62
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
63
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
64
|
+
```"""
|
|
65
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
66
|
+
output_router_logits = (
|
|
67
|
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
output_hidden_states = (
|
|
71
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
75
|
+
outputs: MoeModelOutputWithPast = self.model(
|
|
76
|
+
input_ids=input_ids,
|
|
77
|
+
attention_mask=attention_mask,
|
|
78
|
+
position_ids=position_ids,
|
|
79
|
+
past_key_values=past_key_values,
|
|
80
|
+
inputs_embeds=inputs_embeds,
|
|
81
|
+
use_cache=use_cache,
|
|
82
|
+
output_attentions=output_attentions,
|
|
83
|
+
output_hidden_states=output_hidden_states,
|
|
84
|
+
output_router_logits=output_router_logits,
|
|
85
|
+
cache_position=cache_position,
|
|
86
|
+
**kwargs,
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
hidden_states = outputs.last_hidden_state
|
|
90
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
91
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
92
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
93
|
+
|
|
94
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
95
|
+
logits = None
|
|
96
|
+
loss = None
|
|
97
|
+
|
|
98
|
+
if skip_logits is None:
|
|
99
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
100
|
+
|
|
101
|
+
if skip_logits:
|
|
102
|
+
loss = LigerForCausalLMLoss(
|
|
103
|
+
hidden_states=kept_hidden_states,
|
|
104
|
+
lm_head_weight=self.lm_head.weight,
|
|
105
|
+
labels=labels,
|
|
106
|
+
shift_labels=shift_labels,
|
|
107
|
+
hidden_size=self.config.hidden_size,
|
|
108
|
+
**kwargs,
|
|
109
|
+
)
|
|
110
|
+
else: # if in inference model materialize logits
|
|
111
|
+
logits = self.lm_head(kept_hidden_states)
|
|
112
|
+
if labels is not None or shift_labels is not None:
|
|
113
|
+
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
|
|
114
|
+
|
|
115
|
+
aux_loss = None
|
|
116
|
+
if output_router_logits:
|
|
117
|
+
aux_loss = load_balancing_loss_func(
|
|
118
|
+
outputs.router_logits,
|
|
119
|
+
self.num_experts,
|
|
120
|
+
self.num_experts_per_tok,
|
|
121
|
+
attention_mask,
|
|
122
|
+
)
|
|
123
|
+
if labels is not None:
|
|
124
|
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
|
125
|
+
|
|
126
|
+
return MoeCausalLMOutputWithPast(
|
|
127
|
+
loss=loss,
|
|
128
|
+
aux_loss=aux_loss,
|
|
129
|
+
logits=logits,
|
|
130
|
+
past_key_values=outputs.past_key_values,
|
|
131
|
+
hidden_states=outputs.hidden_states,
|
|
132
|
+
attentions=outputs.attentions,
|
|
133
|
+
router_logits=outputs.router_logits,
|
|
134
|
+
)
|
|
@@ -121,10 +121,11 @@ def lce_forward(
|
|
|
121
121
|
|
|
122
122
|
else:
|
|
123
123
|
logits = self.lm_head(kept_hidden_states)
|
|
124
|
-
if labels is not None:
|
|
124
|
+
if labels is not None or shift_labels is not None:
|
|
125
125
|
loss = self.loss_function(
|
|
126
126
|
logits=logits,
|
|
127
127
|
labels=labels,
|
|
128
|
+
shift_labels=shift_labels,
|
|
128
129
|
vocab_size=self.config.vocab_size,
|
|
129
130
|
**kwargs,
|
|
130
131
|
)
|
|
@@ -0,0 +1,158 @@
|
|
|
1
|
+
from typing import TYPE_CHECKING
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Union
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from transformers.models.smolvlm.modeling_smolvlm import SmolVLMCausalLMOutputWithPast
|
|
8
|
+
from transformers.processing_utils import Unpack
|
|
9
|
+
from transformers.utils.generic import can_return_tuple
|
|
10
|
+
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
12
|
+
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from transformers.cache_utils import Cache
|
|
15
|
+
from transformers.utils.generic import TransformersKwargs
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
# Forward adapted to enable fused Linear + CE without materializing logits.
|
|
19
|
+
# Mirrors the pattern used for other multimodal models (e.g., InternVL, LLaVA).
|
|
20
|
+
@can_return_tuple
|
|
21
|
+
def lce_forward(
|
|
22
|
+
self,
|
|
23
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
24
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
25
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
26
|
+
past_key_values: Optional["Cache"] = None,
|
|
27
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
28
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
|
29
|
+
pixel_attention_mask: Optional[torch.BoolTensor] = None,
|
|
30
|
+
image_hidden_states: Optional[torch.FloatTensor] = None,
|
|
31
|
+
labels: Optional[torch.LongTensor] = None,
|
|
32
|
+
use_cache: Optional[bool] = None,
|
|
33
|
+
output_attentions: Optional[bool] = None,
|
|
34
|
+
output_hidden_states: Optional[bool] = None,
|
|
35
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
36
|
+
return_dict: Optional[bool] = None,
|
|
37
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
38
|
+
skip_logits: Optional[bool] = None, # Added argument for liger-kernel
|
|
39
|
+
**lm_kwargs: Unpack["TransformersKwargs"], # renamed from kwargs
|
|
40
|
+
) -> Union[tuple, SmolVLMCausalLMOutputWithPast]:
|
|
41
|
+
r"""
|
|
42
|
+
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
|
|
43
|
+
Mask to avoid performing attention on padding pixel indices.
|
|
44
|
+
image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
|
45
|
+
The hidden states of the image encoder after modality projection.
|
|
46
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
47
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
48
|
+
config.vocab_size]` or `model.image_token_id`. Tokens with indices set to `model.image_token_id` are
|
|
49
|
+
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
50
|
+
|
|
51
|
+
Example:
|
|
52
|
+
|
|
53
|
+
```python
|
|
54
|
+
>>> import requests
|
|
55
|
+
>>> import torch
|
|
56
|
+
>>> from PIL import Image
|
|
57
|
+
>>> from io import BytesIO
|
|
58
|
+
|
|
59
|
+
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
|
|
60
|
+
>>> from transformers.image_utils import load_image
|
|
61
|
+
|
|
62
|
+
>>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible
|
|
63
|
+
>>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
|
|
64
|
+
>>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg")
|
|
65
|
+
>>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg")
|
|
66
|
+
|
|
67
|
+
>>> processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
|
|
68
|
+
>>> model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct", dtype=torch.bfloat16, device_map="auto")
|
|
69
|
+
|
|
70
|
+
>>> # Create inputs
|
|
71
|
+
>>> messages = [
|
|
72
|
+
... {
|
|
73
|
+
... "role": "user",
|
|
74
|
+
... "content": [
|
|
75
|
+
... {"type": "video", "path": path/to/video},
|
|
76
|
+
... {"type": "text", "text": "What is happening in this video?"},
|
|
77
|
+
... ]
|
|
78
|
+
... }
|
|
79
|
+
... ]
|
|
80
|
+
|
|
81
|
+
>>> inputs = processor.apply_chat_template([messages], add_generation_prompt=True)
|
|
82
|
+
|
|
83
|
+
>>> # Generate
|
|
84
|
+
>>> generated_ids = model.generate(**inputs, max_new_tokens=256)
|
|
85
|
+
>>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
86
|
+
|
|
87
|
+
>>> print(generated_texts)
|
|
88
|
+
```"""
|
|
89
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
90
|
+
output_hidden_states = (
|
|
91
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
92
|
+
)
|
|
93
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
94
|
+
|
|
95
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
96
|
+
outputs = self.model(
|
|
97
|
+
input_ids=input_ids,
|
|
98
|
+
attention_mask=attention_mask,
|
|
99
|
+
position_ids=position_ids,
|
|
100
|
+
past_key_values=past_key_values,
|
|
101
|
+
inputs_embeds=inputs_embeds,
|
|
102
|
+
pixel_values=pixel_values,
|
|
103
|
+
pixel_attention_mask=pixel_attention_mask,
|
|
104
|
+
image_hidden_states=image_hidden_states,
|
|
105
|
+
use_cache=use_cache,
|
|
106
|
+
output_attentions=output_attentions,
|
|
107
|
+
output_hidden_states=output_hidden_states,
|
|
108
|
+
cache_position=cache_position,
|
|
109
|
+
return_dict=True,
|
|
110
|
+
**lm_kwargs,
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
# Copied from llava.py
|
|
114
|
+
hidden_states = outputs[0]
|
|
115
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
116
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
117
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
118
|
+
|
|
119
|
+
shift_labels = lm_kwargs.pop("shift_labels", None)
|
|
120
|
+
logits = None
|
|
121
|
+
loss = None
|
|
122
|
+
|
|
123
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
124
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
125
|
+
|
|
126
|
+
if skip_logits is None:
|
|
127
|
+
# By default, if in training mode, don't materialize logits
|
|
128
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
129
|
+
|
|
130
|
+
if skip_logits:
|
|
131
|
+
loss = LigerForCausalLMLoss(
|
|
132
|
+
hidden_states=kept_hidden_states,
|
|
133
|
+
lm_head_weight=self.lm_head.weight,
|
|
134
|
+
labels=labels,
|
|
135
|
+
shift_labels=shift_labels,
|
|
136
|
+
hidden_size=self.config.text_config.hidden_size,
|
|
137
|
+
**lm_kwargs,
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
else:
|
|
141
|
+
logits = self.lm_head(kept_hidden_states)
|
|
142
|
+
if labels is not None or shift_labels is not None:
|
|
143
|
+
loss = self.loss_function(
|
|
144
|
+
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
if not return_dict:
|
|
148
|
+
output = (logits,) + outputs[1:]
|
|
149
|
+
return (loss,) + output if loss is not None else output
|
|
150
|
+
|
|
151
|
+
return SmolVLMCausalLMOutputWithPast(
|
|
152
|
+
loss=loss,
|
|
153
|
+
logits=logits,
|
|
154
|
+
past_key_values=outputs.past_key_values,
|
|
155
|
+
hidden_states=outputs.hidden_states,
|
|
156
|
+
attentions=outputs.attentions,
|
|
157
|
+
image_hidden_states=outputs.image_hidden_states,
|
|
158
|
+
)
|