liger-kernel 0.6.2__py3-none-any.whl → 0.6.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. liger_kernel/chunked_loss/fused_linear_ppo.py +4 -0
  2. liger_kernel/chunked_loss/grpo_loss.py +38 -4
  3. liger_kernel/chunked_loss/jsd_loss.py +5 -2
  4. liger_kernel/ops/cross_entropy.py +59 -53
  5. liger_kernel/ops/fused_linear_cross_entropy.py +68 -10
  6. liger_kernel/ops/layer_norm.py +4 -6
  7. liger_kernel/ops/poly_norm.py +386 -0
  8. liger_kernel/transformers/__init__.py +17 -0
  9. liger_kernel/transformers/functional.py +7 -0
  10. liger_kernel/transformers/fused_linear_cross_entropy.py +5 -1
  11. liger_kernel/transformers/model/falcon_h1.py +108 -0
  12. liger_kernel/transformers/model/gemma.py +2 -1
  13. liger_kernel/transformers/model/gemma2.py +8 -2
  14. liger_kernel/transformers/model/gemma3.py +27 -2
  15. liger_kernel/transformers/model/glm4.py +2 -1
  16. liger_kernel/transformers/model/glm4v.py +3 -2
  17. liger_kernel/transformers/model/glm4v_moe.py +153 -0
  18. liger_kernel/transformers/model/internvl.py +150 -0
  19. liger_kernel/transformers/model/llama.py +2 -1
  20. liger_kernel/transformers/model/llama4.py +2 -1
  21. liger_kernel/transformers/model/llava.py +6 -2
  22. liger_kernel/transformers/model/loss_utils.py +1 -0
  23. liger_kernel/transformers/model/mistral.py +2 -1
  24. liger_kernel/transformers/model/mixtral.py +8 -2
  25. liger_kernel/transformers/model/mllama.py +2 -1
  26. liger_kernel/transformers/model/olmo2.py +2 -1
  27. liger_kernel/transformers/model/paligemma.py +19 -0
  28. liger_kernel/transformers/model/phi3.py +2 -1
  29. liger_kernel/transformers/model/qwen2.py +2 -1
  30. liger_kernel/transformers/model/qwen2_5_vl.py +7 -2
  31. liger_kernel/transformers/model/qwen2_vl.py +7 -2
  32. liger_kernel/transformers/model/qwen3.py +2 -1
  33. liger_kernel/transformers/model/qwen3_moe.py +8 -2
  34. liger_kernel/transformers/model/qwen3_next.py +134 -0
  35. liger_kernel/transformers/model/smollm3.py +2 -1
  36. liger_kernel/transformers/model/smolvlm.py +158 -0
  37. liger_kernel/transformers/monkey_patch.py +452 -3
  38. liger_kernel/transformers/multi_token_attention.py +1 -1
  39. liger_kernel/transformers/poly_norm.py +42 -0
  40. liger_kernel/transformers/rms_norm.py +7 -0
  41. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/METADATA +13 -10
  42. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/RECORD +46 -39
  43. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/WHEEL +0 -0
  44. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/licenses/LICENSE +0 -0
  45. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/licenses/NOTICE +0 -0
  46. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/top_level.txt +0 -0
@@ -119,8 +119,14 @@ def causal_forward(
119
119
  logits = logits / self.config.final_logit_softcapping
120
120
  logits = torch.tanh(logits)
121
121
  logits = logits * self.config.final_logit_softcapping
122
- if labels is not None:
123
- loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
122
+ if labels is not None or shift_labels is not None:
123
+ loss = self.loss_function(
124
+ logits=logits,
125
+ labels=labels,
126
+ shift_labels=shift_labels,
127
+ vocab_size=self.vocab_size,
128
+ **loss_kwargs,
129
+ )
124
130
 
125
131
  if not return_dict:
126
132
  output = (logits,) + outputs[1:]
@@ -275,6 +281,25 @@ def multimodal_forward(
275
281
  # Flatten the tokens
276
282
  loss_fct = nn.CrossEntropyLoss()
277
283
 
284
+ flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
285
+ flat_labels = shift_labels.view(-1).to(shift_logits.device)
286
+ loss = loss_fct(flat_logits, flat_labels)
287
+ elif shift_labels is not None:
288
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
289
+ logits = logits.float()
290
+ shift_logits = logits[..., :-1, :]
291
+ if attention_mask is not None:
292
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
293
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
294
+ shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
295
+ shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
296
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
297
+ else:
298
+ shift_logits = shift_logits.contiguous()
299
+ shift_labels = shift_labels.contiguous()
300
+ # Flatten the tokens
301
+ loss_fct = nn.CrossEntropyLoss()
302
+
278
303
  flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
279
304
  flat_labels = shift_labels.view(-1).to(shift_logits.device)
280
305
  loss = loss_fct(flat_logits, flat_labels)
@@ -111,10 +111,11 @@ def lce_forward(
111
111
 
112
112
  else:
113
113
  logits = self.lm_head(kept_hidden_states)
114
- if labels is not None:
114
+ if labels is not None or shift_labels is not None:
115
115
  loss = self.loss_function(
116
116
  logits=logits,
117
117
  labels=labels,
118
+ shift_labels=shift_labels,
118
119
  vocab_size=self.config.vocab_size,
119
120
  **kwargs,
120
121
  )
@@ -70,7 +70,7 @@ def lce_forward(
70
70
  >>> processor = AutoProcessor.from_pretrained(MODEL_PATH, use_fast=True)
71
71
  >>> model = Glm4vForConditionalGeneration.from_pretrained(
72
72
  pretrained_model_name_or_path=MODEL_PATH,
73
- torch_dtype=torch.bfloat16,
73
+ dtype=torch.bfloat16,
74
74
  device_map="auto",
75
75
  )
76
76
  >>> inputs = processor.apply_chat_template(
@@ -133,10 +133,11 @@ def lce_forward(
133
133
 
134
134
  else:
135
135
  logits = self.lm_head(kept_hidden_states)
136
- if labels is not None:
136
+ if labels is not None or shift_labels is not None:
137
137
  loss = self.loss_function(
138
138
  logits=logits,
139
139
  labels=labels,
140
+ shift_labels=shift_labels,
140
141
  vocab_size=self.config.vocab_size,
141
142
  **kwargs,
142
143
  )
@@ -0,0 +1,153 @@
1
+ from typing import Optional
2
+ from typing import Tuple
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from transformers.models.glm4v_moe.modeling_glm4v_moe import Glm4vMoeCausalLMOutputWithPast
8
+ from transformers.utils.deprecation import deprecate_kwarg
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+
12
+
13
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
14
+ def lce_forward(
15
+ self,
16
+ input_ids: torch.LongTensor = None,
17
+ attention_mask: Optional[torch.Tensor] = None,
18
+ position_ids: Optional[torch.LongTensor] = None,
19
+ past_key_values: Optional[list[torch.FloatTensor]] = None,
20
+ inputs_embeds: Optional[torch.FloatTensor] = None,
21
+ labels: Optional[torch.LongTensor] = None,
22
+ pixel_values: Optional[torch.Tensor] = None,
23
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
24
+ image_grid_thw: Optional[torch.LongTensor] = None,
25
+ video_grid_thw: Optional[torch.LongTensor] = None,
26
+ rope_deltas: Optional[torch.LongTensor] = None,
27
+ cache_position: Optional[torch.LongTensor] = None,
28
+ logits_to_keep: Union[int, torch.Tensor] = 0,
29
+ skip_logits: Optional[bool] = None,
30
+ **kwargs,
31
+ ) -> Union[Tuple, Glm4vMoeCausalLMOutputWithPast]:
32
+ r"""
33
+ Args:
34
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
35
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
36
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
37
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
38
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
39
+ The temporal, height and width of feature shape of each image in LLM.
40
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
41
+ The temporal, height and width of feature shape of each video in LLM.
42
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
43
+ The rope index difference between sequence length and multimodal rope.
44
+
45
+
46
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
47
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
48
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
49
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
50
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
51
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
52
+
53
+ Example:
54
+
55
+ ```python
56
+ >>> from transformers import AutoProcessor, Glm4vMoeForConditionalGeneration
57
+ >>> import torch
58
+
59
+ >>> MODEL_PATH = "zai-org/GLM-4.5V"
60
+ >>> messages = [
61
+ {
62
+ "role": "user",
63
+ "content": [
64
+ {
65
+ "type": "image",
66
+ "url": "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png"
67
+ },
68
+ {
69
+ "type": "text",
70
+ "text": "describe this image"
71
+ }
72
+ ],
73
+ }
74
+ ]
75
+ >>> processor = AutoProcessor.from_pretrained(MODEL_PATH)
76
+ >>> model = Glm4vMoeForConditionalGeneration.from_pretrained(
77
+ pretrained_model_name_or_path=MODEL_PATH,
78
+ dtype="auto",
79
+ device_map="auto",
80
+ )
81
+ >>> inputs = processor.apply_chat_template(
82
+ messages,
83
+ tokenize=True,
84
+ add_generation_prompt=True,
85
+ return_dict=True,
86
+ return_tensors="pt"
87
+ ).to(model.device)
88
+ >>> inputs.pop("token_type_ids", None)
89
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=8192)
90
+ >>> output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False)
91
+ ```
92
+ """
93
+
94
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
95
+ outputs = self.model(
96
+ input_ids=input_ids,
97
+ pixel_values=pixel_values,
98
+ pixel_values_videos=pixel_values_videos,
99
+ image_grid_thw=image_grid_thw,
100
+ video_grid_thw=video_grid_thw,
101
+ position_ids=position_ids,
102
+ attention_mask=attention_mask,
103
+ past_key_values=past_key_values,
104
+ inputs_embeds=inputs_embeds,
105
+ cache_position=cache_position,
106
+ **kwargs,
107
+ )
108
+
109
+ hidden_states = outputs[0]
110
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
111
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
112
+ kept_hidden_states = hidden_states[:, slice_indices, :]
113
+
114
+ shift_labels = kwargs.pop("shift_labels", None)
115
+ logits = None
116
+ loss = None
117
+
118
+ if skip_logits and labels is None and shift_labels is None:
119
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
120
+
121
+ if skip_logits is None:
122
+ # By default, if in training mode, don't materialize logits
123
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
124
+
125
+ if skip_logits:
126
+ loss = LigerForCausalLMLoss(
127
+ hidden_states=kept_hidden_states,
128
+ lm_head_weight=self.lm_head.weight,
129
+ labels=labels,
130
+ shift_labels=shift_labels,
131
+ hidden_size=self.config.hidden_size,
132
+ **kwargs,
133
+ )
134
+
135
+ else:
136
+ logits = self.lm_head(kept_hidden_states)
137
+ if labels is not None or shift_labels is not None:
138
+ loss = self.loss_function(
139
+ logits=logits,
140
+ labels=labels,
141
+ shift_labels=shift_labels,
142
+ vocab_size=self.config.vocab_size,
143
+ **kwargs,
144
+ )
145
+
146
+ return Glm4vMoeCausalLMOutputWithPast(
147
+ loss=loss,
148
+ logits=logits,
149
+ past_key_values=outputs.past_key_values,
150
+ hidden_states=outputs.hidden_states,
151
+ attentions=outputs.attentions,
152
+ rope_deltas=outputs.rope_deltas,
153
+ )
@@ -0,0 +1,150 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.models.internvl.modeling_internvl import InternVLCausalLMOutputWithPast
9
+ from transformers.utils import can_return_tuple
10
+
11
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
12
+
13
+
14
+ # Copied from https://github.com/huggingface/transformers/blob/d888bd435d0c0eaabaabad5b33d52af518c7187c/src/transformers/models/internvl/modeling_internvl.py#L862
15
+ @can_return_tuple
16
+ def lce_forward(
17
+ self,
18
+ input_ids: torch.LongTensor = None,
19
+ pixel_values: Optional[torch.FloatTensor] = None,
20
+ attention_mask: Optional[torch.Tensor] = None,
21
+ position_ids: Optional[torch.LongTensor] = None,
22
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
23
+ inputs_embeds: Optional[torch.FloatTensor] = None,
24
+ vision_feature_layer: Optional[Union[int, List[int]]] = None,
25
+ vision_feature_select_strategy: Optional[str] = None,
26
+ labels: Optional[torch.LongTensor] = None,
27
+ use_cache: Optional[bool] = None,
28
+ output_attentions: Optional[bool] = None,
29
+ output_hidden_states: Optional[bool] = None,
30
+ return_dict: Optional[bool] = None,
31
+ cache_position: Optional[torch.LongTensor] = None,
32
+ logits_to_keep: Union[int, torch.Tensor] = 0,
33
+ image_sizes: Optional[torch.Tensor] = None,
34
+ skip_logits: Optional[bool] = None, # Added argument for liger-kernel
35
+ **lm_kwargs, # renamed from kwargs
36
+ ) -> Union[Tuple, InternVLCausalLMOutputWithPast]:
37
+ r"""
38
+ Example:
39
+
40
+ ```python
41
+ >>> import torch
42
+ >>> from transformers import AutoProcessor, AutoModelForImageTextToText
43
+
44
+ >>> torch_device = "cuda"
45
+ >>> processor = AutoProcessor.from_pretrained("OpenGVLab/InternVL3-1B-hf")
46
+ >>> model = AutoModelForImageTextToText.from_pretrained(
47
+ ... "OpenGVLab/InternVL3-1B-hf", dtype=torch.bfloat16, device_map=torch_device
48
+ ... )
49
+
50
+ >>> messages = [
51
+ ... {
52
+ ... "role": "user",
53
+ ... "content": [
54
+ ... {
55
+ ... "type": "image",
56
+ ... "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
57
+ ... },
58
+ ... {
59
+ ... "type": "image",
60
+ ... "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
61
+ ... },
62
+ ... {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
63
+ ... ],
64
+ ... },
65
+ ... ]
66
+
67
+ >>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(torch_device)
68
+ >>> generate_ids = model.generate(**inputs, max_new_tokens=200)
69
+ >>> print(processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True))
70
+ The images depict the Statue of Liberty and the Golden Gate Bridge.
71
+ ```"""
72
+
73
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
74
+ output_hidden_states = (
75
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
76
+ )
77
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
78
+ vision_feature_layer = (
79
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
80
+ )
81
+ vision_feature_select_strategy = (
82
+ vision_feature_select_strategy
83
+ if vision_feature_select_strategy is not None
84
+ else self.config.vision_feature_select_strategy
85
+ )
86
+
87
+ outputs = self.model(
88
+ input_ids=input_ids,
89
+ pixel_values=pixel_values,
90
+ attention_mask=attention_mask,
91
+ position_ids=position_ids,
92
+ past_key_values=past_key_values,
93
+ inputs_embeds=inputs_embeds,
94
+ vision_feature_layer=vision_feature_layer,
95
+ vision_feature_select_strategy=vision_feature_select_strategy,
96
+ use_cache=use_cache,
97
+ output_attentions=output_attentions,
98
+ output_hidden_states=output_hidden_states,
99
+ return_dict=return_dict,
100
+ cache_position=cache_position,
101
+ image_sizes=image_sizes,
102
+ **lm_kwargs,
103
+ )
104
+
105
+ # Copied from llava.py
106
+ hidden_states = outputs[0]
107
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
108
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
109
+ kept_hidden_states = hidden_states[:, slice_indices, :]
110
+
111
+ shift_labels = lm_kwargs.pop("shift_labels", None)
112
+ logits = None
113
+ loss = None
114
+
115
+ if skip_logits and labels is None and shift_labels is None:
116
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
117
+
118
+ if skip_logits is None:
119
+ # By default, if in training mode, don't materialize logits
120
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
121
+
122
+ if skip_logits:
123
+ loss = LigerForCausalLMLoss(
124
+ hidden_states=kept_hidden_states,
125
+ lm_head_weight=self.lm_head.weight,
126
+ labels=labels,
127
+ shift_labels=shift_labels,
128
+ hidden_size=self.config.text_config.hidden_size,
129
+ **lm_kwargs,
130
+ )
131
+
132
+ else:
133
+ logits = self.lm_head(kept_hidden_states)
134
+ if labels is not None:
135
+ loss = self.loss_function(
136
+ logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
137
+ )
138
+
139
+ if not return_dict:
140
+ output = (logits,) + outputs[1:]
141
+ return (loss,) + output if loss is not None else output
142
+
143
+ return InternVLCausalLMOutputWithPast(
144
+ loss=loss,
145
+ logits=logits,
146
+ past_key_values=outputs.past_key_values,
147
+ hidden_states=outputs.hidden_states,
148
+ attentions=outputs.attentions,
149
+ image_hidden_states=outputs.image_hidden_states,
150
+ )
@@ -248,10 +248,11 @@ def lce_forward(
248
248
 
249
249
  else:
250
250
  logits = self.lm_head(kept_hidden_states)
251
- if labels is not None:
251
+ if labels is not None or shift_labels is not None:
252
252
  loss = self.loss_function(
253
253
  logits=logits,
254
254
  labels=labels,
255
+ shift_labels=shift_labels,
255
256
  vocab_size=self.config.vocab_size,
256
257
  **kwargs,
257
258
  )
@@ -91,10 +91,11 @@ def lce_forward(
91
91
 
92
92
  else: # if in inference mode materialize logits
93
93
  logits = self.lm_head(kept_hidden_states)
94
- if labels is not None:
94
+ if labels is not None or shift_labels is not None:
95
95
  loss = self.loss_function(
96
96
  logits=logits,
97
97
  labels=labels,
98
+ shift_labels=shift_labels,
98
99
  vocab_size=self.config.vocab_size,
99
100
  **kwargs,
100
101
  )
@@ -313,9 +313,13 @@ def lce_forward(
313
313
 
314
314
  else:
315
315
  logits = self.lm_head(kept_hidden_states)
316
- if labels is not None:
316
+ if labels is not None or shift_labels is not None:
317
317
  loss = self.loss_function(
318
- logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
318
+ logits=logits,
319
+ labels=labels,
320
+ shift_labels=shift_labels,
321
+ vocab_size=self.config.text_config.vocab_size,
322
+ **lm_kwargs,
319
323
  )
320
324
 
321
325
  if not return_dict:
@@ -25,6 +25,7 @@ def fixed_fused_linear_cross_entropy(
25
25
  ignore_index=ignore_index,
26
26
  softcap=final_logit_softcapping,
27
27
  accum_dtype=accum_dtype,
28
+ **kwargs,
28
29
  )
29
30
  if reduction == "sum":
30
31
  loss = loss / num_items_in_batch
@@ -115,10 +115,11 @@ def lce_forward(
115
115
  logits = self.lm_head(kept_hidden_states)
116
116
 
117
117
  loss = None
118
- if labels is not None:
118
+ if labels is not None or shift_labels is not None:
119
119
  loss = self.loss_function(
120
120
  logits=logits,
121
121
  labels=labels,
122
+ shift_labels=shift_labels,
122
123
  vocab_size=self.config.vocab_size,
123
124
  **kwargs,
124
125
  )
@@ -248,8 +248,14 @@ def lce_forward(
248
248
  logits = self.lm_head(kept_hidden_states)
249
249
 
250
250
  loss = None
251
- if labels is not None:
252
- loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
251
+ if labels is not None or shift_labels is not None:
252
+ loss = self.loss_function(
253
+ logits=logits,
254
+ labels=labels,
255
+ shift_labels=shift_labels,
256
+ vocab_size=self.vocab_size,
257
+ **kwargs,
258
+ )
253
259
  aux_loss = None
254
260
  if output_router_logits:
255
261
  aux_loss = load_balancing_loss_func(
@@ -239,10 +239,11 @@ def lce_forward(
239
239
 
240
240
  else:
241
241
  logits = self.lm_head(kept_hidden_states)
242
- if labels is not None:
242
+ if labels is not None or shift_labels is not None:
243
243
  loss = self.loss_function(
244
244
  logits=logits,
245
245
  labels=labels,
246
+ shift_labels=shift_labels,
246
247
  vocab_size=self.config.vocab_size,
247
248
  **kwargs,
248
249
  )
@@ -111,10 +111,11 @@ def lce_forward(
111
111
 
112
112
  else:
113
113
  logits = self.lm_head(kept_hidden_states)
114
- if labels is not None:
114
+ if labels is not None or shift_labels is not None:
115
115
  loss = self.loss_function(
116
116
  logits=logits,
117
117
  labels=labels,
118
+ shift_labels=shift_labels,
118
119
  vocab_size=self.config.vocab_size,
119
120
  **kwargs,
120
121
  )
@@ -379,6 +379,25 @@ def lce_forward(
379
379
  # Flatten the tokens
380
380
  loss_fct = CrossEntropyLoss()
381
381
 
382
+ flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
383
+ flat_labels = shift_labels.view(-1).to(shift_logits.device)
384
+ loss = loss_fct(flat_logits, flat_labels)
385
+ elif shift_labels is not None:
386
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
387
+ logits = logits.float()
388
+ shift_logits = logits[..., :-1, :]
389
+ if attention_mask is not None:
390
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
391
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
392
+ shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
393
+ shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
394
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
395
+ else:
396
+ shift_logits = shift_logits.contiguous()
397
+ shift_labels = shift_labels.contiguous()
398
+ # Flatten the tokens
399
+ loss_fct = CrossEntropyLoss()
400
+
382
401
  flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
383
402
  flat_labels = shift_labels.view(-1).to(shift_logits.device)
384
403
  loss = loss_fct(flat_logits, flat_labels)
@@ -91,10 +91,11 @@ def lce_forward(
91
91
 
92
92
  else:
93
93
  logits = self.lm_head(kept_hidden_states)
94
- if labels is not None:
94
+ if labels is not None or shift_labels is not None:
95
95
  loss = self.loss_function(
96
96
  logits=logits,
97
97
  labels=labels,
98
+ shift_labels=shift_labels,
98
99
  vocab_size=self.config.vocab_size,
99
100
  **kwargs,
100
101
  )
@@ -228,10 +228,11 @@ def lce_forward(
228
228
 
229
229
  else:
230
230
  logits = self.lm_head(kept_hidden_states)
231
- if labels is not None:
231
+ if labels is not None or shift_labels is not None:
232
232
  loss = self.loss_function(
233
233
  logits=logits,
234
234
  labels=labels,
235
+ shift_labels=shift_labels,
235
236
  vocab_size=self.config.vocab_size,
236
237
  **kwargs,
237
238
  )
@@ -133,8 +133,13 @@ def lce_forward(
133
133
  logits = self.lm_head(hidden_states)
134
134
 
135
135
  loss = None
136
- if labels is not None:
137
- loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
136
+ if labels is not None or shift_labels is not None:
137
+ loss = self.loss_function(
138
+ logits=logits,
139
+ labels=labels,
140
+ shift_labels=shift_labels,
141
+ vocab_size=self.config.vocab_size,
142
+ )
138
143
 
139
144
  if not return_dict:
140
145
  output = (logits,) + outputs[1:]
@@ -129,8 +129,13 @@ def lce_forward(
129
129
  logits = self.lm_head(hidden_states)
130
130
 
131
131
  loss = None
132
- if labels is not None:
133
- loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
132
+ if labels is not None or shift_labels is not None:
133
+ loss = self.loss_function(
134
+ logits=logits,
135
+ labels=labels,
136
+ shift_labels=shift_labels,
137
+ vocab_size=self.config.vocab_size,
138
+ )
134
139
 
135
140
  return Qwen2VLCausalLMOutputWithPast(
136
141
  loss=loss,
@@ -103,10 +103,11 @@ def lce_forward(
103
103
 
104
104
  else:
105
105
  logits = self.lm_head(kept_hidden_states)
106
- if labels is not None:
106
+ if labels is not None or shift_labels is not None:
107
107
  loss = self.loss_function(
108
108
  logits=logits,
109
109
  labels=labels,
110
+ shift_labels=shift_labels,
110
111
  vocab_size=self.config.vocab_size,
111
112
  **kwargs,
112
113
  )
@@ -107,8 +107,14 @@ def lce_forward(
107
107
  )
108
108
  else: # if in inference model materialize logits
109
109
  logits = self.lm_head(kept_hidden_states)
110
- if labels is not None:
111
- loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
110
+ if labels is not None or shift_labels is not None:
111
+ loss = self.loss_function(
112
+ logits=logits,
113
+ labels=labels,
114
+ shift_labels=shift_labels,
115
+ vocab_size=self.vocab_size,
116
+ **kwargs,
117
+ )
112
118
 
113
119
  aux_loss = None
114
120
  if output_router_logits: