liger-kernel 0.6.2__py3-none-any.whl → 0.6.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. liger_kernel/chunked_loss/fused_linear_ppo.py +4 -0
  2. liger_kernel/chunked_loss/grpo_loss.py +38 -4
  3. liger_kernel/chunked_loss/jsd_loss.py +5 -2
  4. liger_kernel/ops/cross_entropy.py +59 -53
  5. liger_kernel/ops/fused_linear_cross_entropy.py +68 -10
  6. liger_kernel/ops/layer_norm.py +4 -6
  7. liger_kernel/ops/poly_norm.py +386 -0
  8. liger_kernel/transformers/__init__.py +17 -0
  9. liger_kernel/transformers/functional.py +7 -0
  10. liger_kernel/transformers/fused_linear_cross_entropy.py +5 -1
  11. liger_kernel/transformers/model/falcon_h1.py +108 -0
  12. liger_kernel/transformers/model/gemma.py +2 -1
  13. liger_kernel/transformers/model/gemma2.py +8 -2
  14. liger_kernel/transformers/model/gemma3.py +27 -2
  15. liger_kernel/transformers/model/glm4.py +2 -1
  16. liger_kernel/transformers/model/glm4v.py +3 -2
  17. liger_kernel/transformers/model/glm4v_moe.py +153 -0
  18. liger_kernel/transformers/model/internvl.py +150 -0
  19. liger_kernel/transformers/model/llama.py +2 -1
  20. liger_kernel/transformers/model/llama4.py +2 -1
  21. liger_kernel/transformers/model/llava.py +6 -2
  22. liger_kernel/transformers/model/loss_utils.py +1 -0
  23. liger_kernel/transformers/model/mistral.py +2 -1
  24. liger_kernel/transformers/model/mixtral.py +8 -2
  25. liger_kernel/transformers/model/mllama.py +2 -1
  26. liger_kernel/transformers/model/olmo2.py +2 -1
  27. liger_kernel/transformers/model/paligemma.py +19 -0
  28. liger_kernel/transformers/model/phi3.py +2 -1
  29. liger_kernel/transformers/model/qwen2.py +2 -1
  30. liger_kernel/transformers/model/qwen2_5_vl.py +7 -2
  31. liger_kernel/transformers/model/qwen2_vl.py +7 -2
  32. liger_kernel/transformers/model/qwen3.py +2 -1
  33. liger_kernel/transformers/model/qwen3_moe.py +8 -2
  34. liger_kernel/transformers/model/qwen3_next.py +134 -0
  35. liger_kernel/transformers/model/smollm3.py +2 -1
  36. liger_kernel/transformers/model/smolvlm.py +158 -0
  37. liger_kernel/transformers/monkey_patch.py +452 -3
  38. liger_kernel/transformers/multi_token_attention.py +1 -1
  39. liger_kernel/transformers/poly_norm.py +42 -0
  40. liger_kernel/transformers/rms_norm.py +7 -0
  41. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/METADATA +13 -10
  42. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/RECORD +46 -39
  43. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/WHEEL +0 -0
  44. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/licenses/LICENSE +0 -0
  45. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/licenses/NOTICE +0 -0
  46. {liger_kernel-0.6.2.dist-info → liger_kernel-0.6.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,386 @@
1
+ import operator
2
+
3
+ import torch
4
+ import triton
5
+ import triton.language as tl
6
+
7
+ from liger_kernel.ops.utils import calculate_settings
8
+ from liger_kernel.ops.utils import compare_version
9
+ from liger_kernel.ops.utils import ensure_contiguous
10
+
11
+ if compare_version("triton", operator.ge, "3.0.0"):
12
+ try:
13
+ from triton.language.extra.libdevice import rsqrt
14
+ except ModuleNotFoundError:
15
+ from triton.language.extra.cuda.libdevice import rsqrt
16
+ else:
17
+ from triton.language.math import rsqrt
18
+
19
+
20
+ @triton.jit
21
+ def _poly_norm_forward_kernel(
22
+ Y_ptr,
23
+ Y_row_stride,
24
+ X_ptr,
25
+ X_row_stride,
26
+ W_ptr, # weight: [3] for [w0, w1, w2]
27
+ B_ptr, # bias: scalar
28
+ RSTD_ptr, # cache rstd for backward: shape (n_rows, 3)
29
+ RSTD_row_stride,
30
+ n_cols,
31
+ eps,
32
+ BLOCK_SIZE: tl.constexpr,
33
+ ):
34
+ """
35
+ PolyNorm formula:
36
+ y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
37
+ where norm(u) = u / sqrt(mean(u²) + ε)
38
+
39
+ Reference:
40
+ 1. https://github.com/BryceZhuo/PolyCom/
41
+ 2. https://arxiv.org/pdf/2411.03884
42
+
43
+ Cache rstd values for backward pass
44
+ """
45
+ row_idx = tl.program_id(0).to(tl.int64)
46
+ col_offsets = tl.arange(0, BLOCK_SIZE)
47
+ mask = col_offsets < n_cols
48
+
49
+ # Load pointers
50
+ Y_ptr += row_idx * Y_row_stride
51
+ X_ptr += row_idx * X_row_stride
52
+ RSTD_ptr += row_idx * RSTD_row_stride
53
+
54
+ # Load input row
55
+ X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0.0)
56
+
57
+ # Load weights and bias
58
+ w0 = tl.load(W_ptr + 0)
59
+ w1 = tl.load(W_ptr + 1)
60
+ w2 = tl.load(W_ptr + 2)
61
+ b = tl.load(B_ptr)
62
+
63
+ # Compute x³, x², x
64
+ X_pow3 = X_row * X_row * X_row
65
+ X_pow2 = X_row * X_row
66
+ X_pow1 = X_row
67
+
68
+ # Compute norm(x³): norm(u) = u * rsqrt(mean(u²) + eps)
69
+ mean_square_3 = tl.sum(X_pow3 * X_pow3, axis=0) / n_cols
70
+ rstd_3 = rsqrt(mean_square_3 + eps)
71
+ norm_x3 = X_pow3 * rstd_3
72
+
73
+ # Compute norm(x²)
74
+ mean_square_2 = tl.sum(X_pow2 * X_pow2, axis=0) / n_cols
75
+ rstd_2 = rsqrt(mean_square_2 + eps)
76
+ norm_x2 = X_pow2 * rstd_2
77
+
78
+ # Compute norm(x)
79
+ mean_square_1 = tl.sum(X_pow1 * X_pow1, axis=0) / n_cols
80
+ rstd_1 = rsqrt(mean_square_1 + eps)
81
+ norm_x1 = X_pow1 * rstd_1
82
+
83
+ # Cache rstd values for backward
84
+ tl.store(RSTD_ptr + 0, rstd_3)
85
+ tl.store(RSTD_ptr + 1, rstd_2)
86
+ tl.store(RSTD_ptr + 2, rstd_1)
87
+
88
+ # Compute output: y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
89
+ Y_row = w0 * norm_x3 + w1 * norm_x2 + w2 * norm_x1 + b
90
+
91
+ # Store output
92
+ tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
93
+
94
+
95
+ @triton.jit
96
+ def _poly_norm_backward_kernel(
97
+ dY_ptr,
98
+ dY_row_stride,
99
+ dX_ptr,
100
+ dX_row_stride,
101
+ X_ptr,
102
+ X_row_stride,
103
+ W_ptr,
104
+ RSTD_ptr,
105
+ RSTD_row_stride,
106
+ dW_ptr, # shape: (n_programs, 3)
107
+ dW_row_stride,
108
+ dB_ptr, # shape: (n_programs,)
109
+ n_rows,
110
+ n_cols,
111
+ rows_per_program: tl.constexpr,
112
+ BLOCK_SIZE: tl.constexpr,
113
+ ):
114
+ """
115
+ PolyNorm Backward Kernel Gradient:
116
+ ∂L/∂x_i = Σ_p w_p * [p*x_i^(p-1) * grad_i/D_p - (p/d)*x_i^(2p-1) * S_p/(D_p³)]
117
+
118
+ where:
119
+ - D_p = RMS(x^p) = 1/rstd_p
120
+ - S_p = sum(grad * x^p) over the row
121
+ - d = n_cols
122
+ - p ∈ {3, 2, 1}
123
+ """
124
+ row_block_id = tl.program_id(0).to(tl.int64)
125
+ row_start = row_block_id * rows_per_program
126
+ row_end = min((row_block_id + 1) * rows_per_program, n_rows)
127
+ col_offsets = tl.arange(0, BLOCK_SIZE)
128
+ mask = col_offsets < n_cols
129
+
130
+ # Initialize accumulators for weight and bias gradients (scalars)
131
+ dW0_acc = 0.0
132
+ dW1_acc = 0.0
133
+ dW2_acc = 0.0
134
+ dB_acc = 0.0
135
+
136
+ # Load weights
137
+ w0 = tl.load(W_ptr + 0).to(tl.float32)
138
+ w1 = tl.load(W_ptr + 1).to(tl.float32)
139
+ w2 = tl.load(W_ptr + 2).to(tl.float32)
140
+
141
+ dY_ptr += row_start * dY_row_stride
142
+ dX_ptr += row_start * dX_row_stride
143
+ X_ptr += row_start * X_row_stride
144
+ RSTD_ptr += row_start * RSTD_row_stride
145
+
146
+ for _ in range(row_start, row_end):
147
+ # Load input and gradient
148
+ dY_row = tl.load(dY_ptr + col_offsets, mask=mask, other=0.0).to(tl.float32)
149
+ X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0.0).to(tl.float32)
150
+
151
+ # Load cached rstd values
152
+ rstd_3 = tl.load(RSTD_ptr + 0).to(tl.float32)
153
+ rstd_2 = tl.load(RSTD_ptr + 1).to(tl.float32)
154
+ rstd_1 = tl.load(RSTD_ptr + 2).to(tl.float32)
155
+
156
+ # Compute powers
157
+ X_pow3 = X_row * X_row * X_row
158
+ X_pow2 = X_row * X_row
159
+ X_pow1 = X_row
160
+
161
+ # Accumulate bias gradient: dB = sum(dY)
162
+ dB_acc += tl.sum(dY_row, axis=0)
163
+
164
+ # Compute gradient w.r.t. input using closed-form formula
165
+ # For p=3: ∂L/∂x from w0 * norm(x³)
166
+ S_3 = tl.sum(dY_row * X_pow3, axis=0) # scalar
167
+ grad_x_3 = w0 * (
168
+ 3.0 * X_pow2 * rstd_3 * dY_row
169
+ - (3.0 / n_cols) * X_row * X_row * X_row * X_row * X_row * (rstd_3 * rstd_3 * rstd_3) * S_3
170
+ )
171
+
172
+ # For p=2: ∂L/∂x from w1 * norm(x²)
173
+ S_2 = tl.sum(dY_row * X_pow2, axis=0) # scalar
174
+ grad_x_2 = w1 * (
175
+ 2.0 * X_row * rstd_2 * dY_row - (2.0 / n_cols) * X_row * X_row * X_row * (rstd_2 * rstd_2 * rstd_2) * S_2
176
+ )
177
+
178
+ # For p=1: ∂L/∂x from w2 * norm(x)
179
+ S_1 = tl.sum(dY_row * X_pow1, axis=0) # scalar
180
+ grad_x_1 = w2 * (1.0 * rstd_1 * dY_row - (1.0 / n_cols) * X_row * (rstd_1 * rstd_1 * rstd_1) * S_1)
181
+
182
+ # Accumulate weight gradients using closed-form: dW_p = rstd_p * S_p
183
+ dW0_acc += rstd_3 * S_3
184
+ dW1_acc += rstd_2 * S_2
185
+ dW2_acc += rstd_1 * S_1
186
+
187
+ # Total gradient
188
+ dX_row = grad_x_3 + grad_x_2 + grad_x_1
189
+
190
+ # Store gradient
191
+ tl.store(dX_ptr + col_offsets, dX_row, mask=mask)
192
+
193
+ # Update pointers
194
+ dY_ptr += dY_row_stride
195
+ dX_ptr += dX_row_stride
196
+ X_ptr += X_row_stride
197
+ RSTD_ptr += RSTD_row_stride
198
+
199
+ # Store accumulated gradients (scalars)
200
+ tl.store(dW_ptr + row_block_id * dW_row_stride + 0, dW0_acc)
201
+ tl.store(dW_ptr + row_block_id * dW_row_stride + 1, dW1_acc)
202
+ tl.store(dW_ptr + row_block_id * dW_row_stride + 2, dW2_acc)
203
+ tl.store(dB_ptr + row_block_id, dB_acc)
204
+
205
+
206
+ def poly_norm_forward(X, W, B, eps=1e-6):
207
+ """
208
+ PolyNorm Forward Pass
209
+
210
+ Args:
211
+ X: input tensor of shape (*, H) where H is hidden dimension
212
+ W: weight tensor of shape (3,) for [w0, w1, w2]
213
+ B: bias scalar tensor
214
+ eps: epsilon for numerical stability
215
+
216
+ Returns:
217
+ Y: output tensor of same shape as X
218
+ X: reshaped input (for backward)
219
+ RSTD: cached rstd values (for backward)
220
+ BLOCK_SIZE: block size used
221
+ num_warps: number of warps used
222
+ """
223
+ shape = X.shape
224
+ dim = shape[-1]
225
+ X = X.view(-1, dim)
226
+ n_rows, n_cols = X.shape
227
+ BLOCK_SIZE, num_warps = calculate_settings(n_cols)
228
+
229
+ # RSTD is to cache rstd for each row
230
+ Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
231
+ RSTD = torch.empty((n_rows, 3), dtype=torch.float32, device=X.device)
232
+
233
+ # Check constraints
234
+ assert W.shape[0] == 3, "Weight tensor must have shape (3,)"
235
+ assert B.numel() == 1, "Bias must be a scalar"
236
+
237
+ # XPU-specific optimization
238
+ kernel_args = {}
239
+ if X.device.type == "xpu":
240
+ kernel_args["grf_mode"] = "large"
241
+
242
+ # Launch kernel
243
+ _poly_norm_forward_kernel[(n_rows,)](
244
+ Y,
245
+ Y.stride(0),
246
+ X,
247
+ X.stride(0),
248
+ W,
249
+ B,
250
+ RSTD,
251
+ RSTD.stride(0),
252
+ n_cols,
253
+ eps,
254
+ BLOCK_SIZE=BLOCK_SIZE,
255
+ num_warps=num_warps,
256
+ **kernel_args,
257
+ )
258
+
259
+ return Y.view(*shape), X, RSTD, BLOCK_SIZE, num_warps
260
+
261
+
262
+ def poly_norm_backward(dY, X, W, RSTD, BLOCK_SIZE, num_warps, in_place):
263
+ """
264
+ PolyNorm Backward Pass
265
+
266
+ Args:
267
+ dY: gradient of output
268
+ X: input tensor (already reshaped to 2D)
269
+ W: weight tensor
270
+ RSTD: cached rstd values from forward
271
+ BLOCK_SIZE: block size from forward
272
+ num_warps: number of warps from forward
273
+ in_place: whether to in-place modify dY to store dX (saves memory)
274
+
275
+ Returns:
276
+ dX: gradient w.r.t. input
277
+ dW: gradient w.r.t. weight
278
+ dB: gradient w.r.t. bias
279
+ """
280
+ shape = dY.shape
281
+ dim = shape[-1]
282
+ dY = dY.view(-1, dim)
283
+ n_rows, n_cols = dY.shape
284
+
285
+ # Get number of SMs for parallelization
286
+ import math
287
+
288
+ sm_count = 1
289
+ if X.device.type == "cuda":
290
+ sm_count = torch.cuda.get_device_properties(X.device).multi_processor_count
291
+ elif X.device.type == "xpu":
292
+ sm_count = torch.xpu.get_device_properties(X.device).gpu_eu_count
293
+
294
+ # Allocate or reuse gradients
295
+ if in_place is True:
296
+ dX = dY
297
+ else:
298
+ dX = torch.zeros_like(dY)
299
+
300
+ _dW = torch.empty((sm_count, 3), dtype=torch.float32, device=W.device)
301
+ _dB = torch.empty((sm_count,), dtype=torch.float32, device=W.device)
302
+
303
+ rows_per_program = math.ceil(n_rows / sm_count)
304
+ grid = (sm_count,)
305
+
306
+ # XPU-specific optimization
307
+ kernel_args = {}
308
+ if X.device.type == "xpu":
309
+ kernel_args["grf_mode"] = "large"
310
+
311
+ # Launch backward kernel
312
+ _poly_norm_backward_kernel[grid](
313
+ dY,
314
+ dY.stride(0),
315
+ dX,
316
+ dX.stride(0),
317
+ X,
318
+ X.stride(0),
319
+ W,
320
+ RSTD,
321
+ RSTD.stride(0),
322
+ _dW,
323
+ _dW.stride(0),
324
+ _dB,
325
+ n_rows,
326
+ n_cols,
327
+ rows_per_program,
328
+ BLOCK_SIZE=BLOCK_SIZE,
329
+ num_warps=num_warps,
330
+ **kernel_args,
331
+ )
332
+
333
+ # Reduce gradients across SMs
334
+ dX = dX.view(*shape)
335
+ dW = _dW.sum(dim=0).to(W.dtype)
336
+ dB = _dB.sum().to(W.dtype)
337
+
338
+ return dX, dW, dB
339
+
340
+
341
+ class LigerPolyNormFunction(torch.autograd.Function):
342
+ """
343
+ PolyNorm Function with forward and backward pass
344
+
345
+ PolyNorm formula:
346
+ y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
347
+ where norm(u) = u / sqrt(mean(u²) + ε)
348
+
349
+ Backward uses closed-form gradient:
350
+ ∂L/∂x_i = Σ_p w_p * [p*x_i^(p-1) * grad_i/D_p - (p/d)*x_i^(2p-1) * S_p/(D_p³)]
351
+ """
352
+
353
+ @staticmethod
354
+ @ensure_contiguous
355
+ def forward(ctx, X, W, B, eps=1e-6, in_place=True):
356
+ """
357
+ Args:
358
+ X: input tensor of shape (B, T, H) or (BxT, H)
359
+ W: weight tensor of shape (3,) for [w0, w1, w2]
360
+ B: bias scalar
361
+ eps: epsilon for numerical stability
362
+ in_place: whether to in-place modify grad_output in backward (saves memory)
363
+
364
+ Returns:
365
+ Y: output tensor of same shape as X
366
+ """
367
+ Y, X, RSTD, BLOCK_SIZE, num_warps = poly_norm_forward(X, W, B, eps)
368
+ ctx.BLOCK_SIZE = BLOCK_SIZE
369
+ ctx.num_warps = num_warps
370
+ ctx.in_place = in_place
371
+ ctx.save_for_backward(X, W, RSTD)
372
+ return Y
373
+
374
+ @staticmethod
375
+ @ensure_contiguous
376
+ def backward(ctx, grad_output):
377
+ """
378
+ Args:
379
+ grad_output: gradient of output
380
+
381
+ Returns:
382
+ dX, dW, dB: gradients w.r.t. X, W, B
383
+ """
384
+ X, W, RSTD = ctx.saved_tensors
385
+ dX, dW, dB = poly_norm_backward(grad_output, X, W, RSTD, ctx.BLOCK_SIZE, ctx.num_warps, ctx.in_place)
386
+ return dX, dW, dB, None, None
@@ -15,6 +15,7 @@ from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
15
15
  from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
16
16
  from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
17
17
  from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
18
+ from liger_kernel.transformers.poly_norm import LigerPolyNorm # noqa: F401
18
19
  from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
19
20
  from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
20
21
  from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
@@ -30,13 +31,16 @@ if TYPE_CHECKING:
30
31
  from liger_kernel.transformers.auto_model import AutoLigerKernelForCausalLM # noqa: F401
31
32
  from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa: F401
32
33
  from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
34
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_falcon_h1 # noqa: F401
33
35
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
34
36
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
35
37
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
36
38
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
37
39
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
38
40
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
41
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
39
42
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
43
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
40
44
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
41
45
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
42
46
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
@@ -51,7 +55,9 @@ if TYPE_CHECKING:
51
55
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
52
56
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
53
57
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
58
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_next # noqa: F401
54
59
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
60
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smolvlm # noqa: F401
55
61
 
56
62
 
57
63
  # Check if 'transformers' is installed
@@ -89,13 +95,16 @@ def __getattr__(name: str):
89
95
  monkey_patch_symbols = {
90
96
  "_apply_liger_kernel",
91
97
  "_apply_liger_kernel_to_instance",
98
+ "apply_liger_kernel_to_falcon_h1",
92
99
  "apply_liger_kernel_to_gemma",
93
100
  "apply_liger_kernel_to_gemma2",
94
101
  "apply_liger_kernel_to_gemma3",
95
102
  "apply_liger_kernel_to_gemma3_text",
96
103
  "apply_liger_kernel_to_glm4",
97
104
  "apply_liger_kernel_to_glm4v",
105
+ "apply_liger_kernel_to_glm4v_moe",
98
106
  "apply_liger_kernel_to_granite",
107
+ "apply_liger_kernel_to_internvl",
99
108
  "apply_liger_kernel_to_llama",
100
109
  "apply_liger_kernel_to_llava",
101
110
  "apply_liger_kernel_to_llama4",
@@ -110,7 +119,9 @@ def __getattr__(name: str):
110
119
  "apply_liger_kernel_to_qwen2_vl",
111
120
  "apply_liger_kernel_to_qwen3",
112
121
  "apply_liger_kernel_to_qwen3_moe",
122
+ "apply_liger_kernel_to_qwen3_next",
113
123
  "apply_liger_kernel_to_smollm3",
124
+ "apply_liger_kernel_to_smolvlm",
114
125
  }
115
126
 
116
127
  if name in monkey_patch_symbols:
@@ -131,6 +142,7 @@ __all__ = [
131
142
  "LigerJSD",
132
143
  "LigerLayerNorm",
133
144
  "LigerFusedAddRMSNorm",
145
+ "LigerPolyNorm",
134
146
  "LigerRMSNorm",
135
147
  "liger_rotary_pos_emb",
136
148
  "liger_llama4_text_rotary_pos_emb",
@@ -153,13 +165,16 @@ if _TRANSFORMERS_AVAILABLE:
153
165
  "AutoLigerKernelForCausalLM",
154
166
  "_apply_liger_kernel",
155
167
  "_apply_liger_kernel_to_instance",
168
+ "apply_liger_kernel_to_falcon_h1",
156
169
  "apply_liger_kernel_to_gemma",
157
170
  "apply_liger_kernel_to_gemma2",
158
171
  "apply_liger_kernel_to_gemma3",
159
172
  "apply_liger_kernel_to_gemma3_text",
160
173
  "apply_liger_kernel_to_glm4",
161
174
  "apply_liger_kernel_to_glm4v",
175
+ "apply_liger_kernel_to_glm4v_moe",
162
176
  "apply_liger_kernel_to_granite",
177
+ "apply_liger_kernel_to_internvl",
163
178
  "apply_liger_kernel_to_llama",
164
179
  "apply_liger_kernel_to_llava",
165
180
  "apply_liger_kernel_to_llama4",
@@ -174,6 +189,8 @@ if _TRANSFORMERS_AVAILABLE:
174
189
  "apply_liger_kernel_to_qwen2_vl",
175
190
  "apply_liger_kernel_to_qwen3",
176
191
  "apply_liger_kernel_to_qwen3_moe",
192
+ "apply_liger_kernel_to_qwen3_next",
177
193
  "apply_liger_kernel_to_smollm3",
194
+ "apply_liger_kernel_to_smolvlm",
178
195
  ]
179
196
  )
@@ -12,6 +12,7 @@ from liger_kernel.ops.jsd import LigerJSDFunction
12
12
  from liger_kernel.ops.kl_div import LigerKLDivLossFunction
13
13
  from liger_kernel.ops.layer_norm import LigerLayerNormFunction
14
14
  from liger_kernel.ops.multi_token_attention import LigerMultiTokenAttentionFunction
15
+ from liger_kernel.ops.poly_norm import LigerPolyNormFunction
15
16
  from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
16
17
  from liger_kernel.ops.rms_norm import LigerRMSNormFunction
17
18
  from liger_kernel.ops.rope import LigerRopeFunction
@@ -65,6 +66,7 @@ def liger_fused_linear_cross_entropy(
65
66
  softcap: Optional[float] = None,
66
67
  return_z_loss: bool = False,
67
68
  accum_dtype=None,
69
+ use_token_scaling: bool = False,
68
70
  ):
69
71
  loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
70
72
  input,
@@ -79,6 +81,7 @@ def liger_fused_linear_cross_entropy(
79
81
  softcap,
80
82
  return_z_loss,
81
83
  accum_dtype,
84
+ use_token_scaling,
82
85
  )
83
86
  if not return_z_loss:
84
87
  return loss
@@ -256,6 +259,10 @@ def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama",
256
259
  return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
257
260
 
258
261
 
262
+ def liger_poly_norm(X, W, B, eps=1e-6, in_place=True):
263
+ return LigerPolyNormFunction.apply(X, W, B, eps, in_place)
264
+
265
+
259
266
  def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
260
267
  return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
261
268
 
@@ -16,6 +16,7 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
16
16
  softcap: Optional[float] = None,
17
17
  return_z_loss: bool = False,
18
18
  accum_dtype: Optional[torch.dtype] = None,
19
+ use_token_scaling: bool = False,
19
20
  ):
20
21
  super().__init__()
21
22
  assert (label_smoothing >= 0) and (label_smoothing <= 1), (
@@ -24,7 +25,8 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
24
25
  assert reduction in {
25
26
  "mean",
26
27
  "sum",
27
- }, f"reduction must be 'mean' or 'sum'. Got: {reduction}"
28
+ "none",
29
+ }, f"reduction must be 'mean' or 'sum' or 'none'. Got: {reduction}"
28
30
  assert softcap is None or softcap > 0, f"softcap must greater than 0.0 or None. Got: {softcap}"
29
31
  self.ce_weight = ce_weight
30
32
  self.ignore_index = ignore_index
@@ -34,6 +36,7 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
34
36
  self.softcap = softcap
35
37
  self.return_z_loss = return_z_loss
36
38
  self.accum_dtype = accum_dtype
39
+ self.use_token_scaling = use_token_scaling
37
40
 
38
41
  def forward(self, lin_weight, _input, target, bias=None):
39
42
  loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
@@ -49,6 +52,7 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
49
52
  self.softcap,
50
53
  self.return_z_loss,
51
54
  self.accum_dtype,
55
+ self.use_token_scaling,
52
56
  )
53
57
  if not self.return_z_loss:
54
58
  return loss
@@ -0,0 +1,108 @@
1
+ from typing import TYPE_CHECKING
2
+ from typing import Optional
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from transformers.modeling_outputs import CausalLMOutputWithPast
8
+
9
+ if TYPE_CHECKING:
10
+ from transformers.models.falcon_h1.modeling_falcon_h1 import FalconHybridMambaAttentionDynamicCache
11
+
12
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
13
+
14
+
15
+ def lce_forward(
16
+ self,
17
+ input_ids: torch.LongTensor = None,
18
+ attention_mask: Optional[torch.Tensor] = None,
19
+ position_ids: Optional[torch.LongTensor] = None,
20
+ past_key_values: Optional["FalconHybridMambaAttentionDynamicCache"] = None,
21
+ inputs_embeds: Optional[torch.FloatTensor] = None,
22
+ labels: Optional[torch.LongTensor] = None,
23
+ use_cache: Optional[bool] = None,
24
+ output_attentions: Optional[bool] = None,
25
+ output_hidden_states: Optional[bool] = None,
26
+ cache_position: Optional[torch.LongTensor] = None,
27
+ logits_to_keep: Union[int, torch.Tensor] = 0,
28
+ skip_logits: Optional[bool] = None,
29
+ **kwargs,
30
+ ) -> Union[tuple, CausalLMOutputWithPast]:
31
+ r"""
32
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
33
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
34
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
35
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
36
+
37
+ Example:
38
+
39
+ ```python
40
+ >>> from transformers import AutoTokenizer, FalconH1ForCausalLM
41
+
42
+ >>> model = FalconH1ForCausalLM.from_pretrained("...")
43
+ >>> tokenizer = AutoTokenizer.from_pretrained("...")
44
+
45
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
46
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
47
+
48
+ >>> # Generate
49
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
50
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
51
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
52
+ ```"""
53
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
54
+ output_hidden_states = (
55
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
56
+ )
57
+
58
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
59
+ outputs = self.model(
60
+ input_ids=input_ids,
61
+ attention_mask=attention_mask,
62
+ position_ids=position_ids,
63
+ past_key_values=past_key_values,
64
+ inputs_embeds=inputs_embeds,
65
+ use_cache=use_cache,
66
+ output_attentions=output_attentions,
67
+ output_hidden_states=output_hidden_states,
68
+ cache_position=cache_position,
69
+ **kwargs,
70
+ )
71
+
72
+ hidden_states = outputs[0]
73
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
74
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
75
+ kept_hidden_states = hidden_states[:, slice_indices, :]
76
+
77
+ shift_labels = kwargs.pop("shift_labels", None)
78
+ logits = None
79
+ loss = None
80
+ # if in training mode, don't materialize logits
81
+ if skip_logits and labels is None:
82
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
83
+
84
+ if skip_logits is None:
85
+ # By default, if in training mode, don't materialize logits
86
+ skip_logits = self.training and labels is not None
87
+
88
+ if skip_logits:
89
+ loss = LigerForCausalLMLoss(
90
+ hidden_states=kept_hidden_states,
91
+ lm_head_weight=self.lm_head.weight,
92
+ labels=labels,
93
+ shift_labels=shift_labels,
94
+ hidden_size=self.config.hidden_size,
95
+ **kwargs,
96
+ )
97
+ else:
98
+ logits = self.lm_head(kept_hidden_states)
99
+ if labels is not None or shift_labels is not None:
100
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
101
+
102
+ return CausalLMOutputWithPast(
103
+ loss=loss,
104
+ logits=logits,
105
+ past_key_values=outputs.past_key_values,
106
+ hidden_states=outputs.hidden_states,
107
+ attentions=outputs.attentions,
108
+ )
@@ -228,10 +228,11 @@ def lce_forward(
228
228
  )
229
229
  else:
230
230
  logits = self.lm_head(kept_hidden_states)
231
- if labels is not None:
231
+ if labels is not None or shift_labels is not None:
232
232
  loss = self.loss_function(
233
233
  logits=logits,
234
234
  labels=labels,
235
+ shift_labels=shift_labels,
235
236
  vocab_size=self.config.vocab_size,
236
237
  **kwargs,
237
238
  )
@@ -252,8 +252,14 @@ def lce_forward(
252
252
  logits = logits * self.config.final_logit_softcapping
253
253
 
254
254
  loss = None
255
- if labels is not None:
256
- loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
255
+ if labels is not None or shift_labels is not None:
256
+ loss = self.loss_function(
257
+ logits=logits,
258
+ labels=labels,
259
+ shift_labels=shift_labels,
260
+ vocab_size=self.vocab_size,
261
+ **kwargs,
262
+ )
257
263
 
258
264
  if not return_dict:
259
265
  output = (logits,) + outputs[1:]