liger-kernel 0.6.1__py3-none-any.whl → 0.6.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. liger_kernel/chunked_loss/dpo_loss.py +54 -3
  2. liger_kernel/chunked_loss/fused_linear_ppo.py +4 -0
  3. liger_kernel/chunked_loss/grpo_loss.py +38 -4
  4. liger_kernel/chunked_loss/jsd_loss.py +5 -2
  5. liger_kernel/ops/cross_entropy.py +59 -53
  6. liger_kernel/ops/fused_linear_cross_entropy.py +83 -17
  7. liger_kernel/ops/layer_norm.py +4 -6
  8. liger_kernel/ops/llama4_rope.py +225 -0
  9. liger_kernel/ops/poly_norm.py +386 -0
  10. liger_kernel/transformers/__init__.py +32 -0
  11. liger_kernel/transformers/experimental/__init__.py +5 -0
  12. liger_kernel/transformers/functional.py +9 -0
  13. liger_kernel/transformers/fused_linear_cross_entropy.py +8 -1
  14. liger_kernel/transformers/llama4_rope.py +93 -0
  15. liger_kernel/transformers/model/falcon_h1.py +108 -0
  16. liger_kernel/transformers/model/gemma.py +2 -1
  17. liger_kernel/transformers/model/gemma2.py +8 -2
  18. liger_kernel/transformers/model/gemma3.py +27 -2
  19. liger_kernel/transformers/model/glm4.py +2 -1
  20. liger_kernel/transformers/model/glm4v.py +151 -0
  21. liger_kernel/transformers/model/glm4v_moe.py +153 -0
  22. liger_kernel/transformers/model/internvl.py +150 -0
  23. liger_kernel/transformers/model/llama.py +2 -1
  24. liger_kernel/transformers/model/llama4.py +2 -1
  25. liger_kernel/transformers/model/llava.py +6 -2
  26. liger_kernel/transformers/model/loss_utils.py +3 -0
  27. liger_kernel/transformers/model/mistral.py +2 -1
  28. liger_kernel/transformers/model/mixtral.py +8 -2
  29. liger_kernel/transformers/model/mllama.py +6 -3
  30. liger_kernel/transformers/model/olmo2.py +2 -1
  31. liger_kernel/transformers/model/paligemma.py +19 -0
  32. liger_kernel/transformers/model/phi3.py +10 -160
  33. liger_kernel/transformers/model/qwen2.py +2 -1
  34. liger_kernel/transformers/model/qwen2_5_vl.py +7 -2
  35. liger_kernel/transformers/model/qwen2_vl.py +7 -2
  36. liger_kernel/transformers/model/qwen3.py +2 -1
  37. liger_kernel/transformers/model/qwen3_moe.py +8 -2
  38. liger_kernel/transformers/model/qwen3_next.py +134 -0
  39. liger_kernel/transformers/model/smollm3.py +2 -1
  40. liger_kernel/transformers/model/smolvlm.py +158 -0
  41. liger_kernel/transformers/monkey_patch.py +552 -23
  42. liger_kernel/transformers/multi_token_attention.py +1 -1
  43. liger_kernel/transformers/poly_norm.py +42 -0
  44. liger_kernel/transformers/rms_norm.py +7 -0
  45. {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/METADATA +14 -11
  46. {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/RECORD +50 -39
  47. {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/WHEEL +0 -0
  48. {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/licenses/LICENSE +0 -0
  49. {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/licenses/NOTICE +0 -0
  50. {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/top_level.txt +0 -0
@@ -5,131 +5,12 @@ from typing import Union
5
5
 
6
6
  import torch
7
7
 
8
- from torch.nn import CrossEntropyLoss
8
+ from transformers.modeling_outputs import BaseModelOutputWithPast
9
9
  from transformers.modeling_outputs import CausalLMOutputWithPast
10
- from transformers.utils.deprecation import deprecate_kwarg
11
10
 
12
- from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
13
11
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
14
12
 
15
13
 
16
- def lce_forward_deprecated(
17
- self,
18
- input_ids: torch.LongTensor = None,
19
- attention_mask: Optional[torch.Tensor] = None,
20
- position_ids: Optional[torch.LongTensor] = None,
21
- past_key_values: Optional[List[torch.FloatTensor]] = None,
22
- inputs_embeds: Optional[torch.FloatTensor] = None,
23
- labels: Optional[torch.LongTensor] = None,
24
- use_cache: Optional[bool] = None,
25
- output_attentions: Optional[bool] = None,
26
- output_hidden_states: Optional[bool] = None,
27
- return_dict: Optional[bool] = None,
28
- cache_position: Optional[torch.LongTensor] = None,
29
- skip_logits: Optional[bool] = None,
30
- ) -> Union[Tuple, CausalLMOutputWithPast]:
31
- r"""
32
- Copy paste phi3 forward from transfomers v4.44.2 but replace torch cross entropy with liger fused linear cross entropy
33
-
34
-
35
- Args:
36
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
37
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
38
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
39
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
40
-
41
- Returns:
42
-
43
- Example:
44
-
45
- ```python
46
- >>> from transformers import AutoTokenizer, Phi3ForCausalLM
47
-
48
- >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
49
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
50
-
51
- >>> prompt = "This is an example script ."
52
- >>> inputs = tokenizer(prompt, return_tensors="pt")
53
-
54
- >>> # Generate
55
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
56
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
57
- 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
58
- ```"""
59
-
60
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
61
- output_hidden_states = (
62
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
63
- )
64
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
65
-
66
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
67
- outputs = self.model(
68
- input_ids=input_ids,
69
- attention_mask=attention_mask,
70
- position_ids=position_ids,
71
- past_key_values=past_key_values,
72
- inputs_embeds=inputs_embeds,
73
- use_cache=use_cache,
74
- output_attentions=output_attentions,
75
- output_hidden_states=output_hidden_states,
76
- return_dict=return_dict,
77
- )
78
-
79
- hidden_states = outputs[0]
80
-
81
- loss = None
82
- logits = None
83
-
84
- if skip_logits and labels is None:
85
- raise ValueError("skip_logits is True, but labels is None")
86
-
87
- if skip_logits is None:
88
- # By default, if in training mode, don't materialize logits
89
- skip_logits = self.training and labels is not None
90
-
91
- if skip_logits:
92
- shift_hidden_states = hidden_states[..., :-1, :].contiguous()
93
- shift_labels = labels[..., 1:].contiguous()
94
-
95
- # flatten tokens
96
- shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
97
- shift_labels = shift_labels.view(-1)
98
-
99
- lce = LigerFusedLinearCrossEntropyLoss()
100
- loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
101
- else:
102
- logits = self.lm_head(hidden_states)
103
-
104
- loss = None
105
- if labels is not None:
106
- # Upcast to float if we need to compute the loss to avoid potential precision issues
107
- logits = logits.float()
108
- # Shift so that tokens < n predict n
109
- shift_logits = logits[..., :-1, :].contiguous()
110
- shift_labels = labels[..., 1:].contiguous()
111
- # Flatten the tokens
112
- loss_fct = CrossEntropyLoss()
113
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
114
- shift_labels = shift_labels.view(-1)
115
- # Enable model parallelism
116
- shift_labels = shift_labels.to(shift_logits.device)
117
- loss = loss_fct(shift_logits, shift_labels)
118
-
119
- if not return_dict:
120
- output = (logits,) + outputs[1:]
121
- return (loss,) + output if loss is not None else output
122
-
123
- return CausalLMOutputWithPast(
124
- loss=loss,
125
- logits=logits,
126
- past_key_values=outputs.past_key_values,
127
- hidden_states=outputs.hidden_states,
128
- attentions=outputs.attentions,
129
- )
130
-
131
-
132
- @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
133
14
  def lce_forward(
134
15
  self,
135
16
  input_ids: torch.LongTensor = None,
@@ -148,73 +29,41 @@ def lce_forward(
148
29
  **kwargs,
149
30
  ) -> Union[Tuple, CausalLMOutputWithPast]:
150
31
  r"""
151
- Args:
152
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
153
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
154
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
155
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
156
-
157
- logits_to_keep (`int` or `torch.Tensor`, *optional*):
158
- If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
159
- `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
160
- token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
161
- If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
162
- This is useful when using packed tensor format (single dimension for batch and sequence length).
163
-
164
- Returns:
165
-
166
32
  Example:
167
33
 
168
34
  ```python
169
35
  >>> from transformers import AutoTokenizer, Phi3ForCausalLM
170
36
 
171
- >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
172
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
37
+ >>> model = Phi3ForCausalLM.from_pretrained("meta-phi3/Phi3-2-7b-hf")
38
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-phi3/Phi3-2-7b-hf")
173
39
 
174
- >>> prompt = "This is an example script ."
40
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
175
41
  >>> inputs = tokenizer(prompt, return_tensors="pt")
176
42
 
177
43
  >>> # Generate
178
44
  >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
179
45
  >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
180
- 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
46
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
181
47
  ```"""
182
48
 
183
- from transformers.models.phi3.modeling_phi3 import logging
184
-
185
- logger = logging.get_logger(__name__)
186
-
187
- if (
188
- use_cache
189
- and self.config.rope_scaling
190
- and cache_position is not None
191
- and cache_position[0] == self.config.original_max_position_embeddings
192
- ):
193
- logger.warning(
194
- f"If you are not using the generate method, you may encounter nonsensical outputs after the {self.config.original_max_position_embeddings}th token, as the KV cache needs to be recomputed."
195
- )
196
-
197
49
  output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
198
50
  output_hidden_states = (
199
51
  output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
200
52
  )
201
53
  return_dict = return_dict if return_dict is not None else self.config.use_return_dict
202
54
 
203
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
204
- outputs = self.model(
55
+ outputs: BaseModelOutputWithPast = self.model(
205
56
  input_ids=input_ids,
206
57
  attention_mask=attention_mask,
207
58
  position_ids=position_ids,
208
59
  past_key_values=past_key_values,
209
60
  inputs_embeds=inputs_embeds,
210
61
  use_cache=use_cache,
211
- output_attentions=output_attentions,
212
- output_hidden_states=output_hidden_states,
213
- return_dict=return_dict,
62
+ cache_position=cache_position,
214
63
  **kwargs,
215
64
  )
216
65
 
217
- hidden_states = outputs[0]
66
+ hidden_states = outputs.last_hidden_state
218
67
  # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
219
68
  slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
220
69
  kept_hidden_states = hidden_states[:, slice_indices, :]
@@ -242,10 +91,11 @@ def lce_forward(
242
91
 
243
92
  else:
244
93
  logits = self.lm_head(kept_hidden_states)
245
- if labels is not None:
94
+ if labels is not None or shift_labels is not None:
246
95
  loss = self.loss_function(
247
96
  logits=logits,
248
97
  labels=labels,
98
+ shift_labels=shift_labels,
249
99
  vocab_size=self.config.vocab_size,
250
100
  **kwargs,
251
101
  )
@@ -228,10 +228,11 @@ def lce_forward(
228
228
 
229
229
  else:
230
230
  logits = self.lm_head(kept_hidden_states)
231
- if labels is not None:
231
+ if labels is not None or shift_labels is not None:
232
232
  loss = self.loss_function(
233
233
  logits=logits,
234
234
  labels=labels,
235
+ shift_labels=shift_labels,
235
236
  vocab_size=self.config.vocab_size,
236
237
  **kwargs,
237
238
  )
@@ -133,8 +133,13 @@ def lce_forward(
133
133
  logits = self.lm_head(hidden_states)
134
134
 
135
135
  loss = None
136
- if labels is not None:
137
- loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
136
+ if labels is not None or shift_labels is not None:
137
+ loss = self.loss_function(
138
+ logits=logits,
139
+ labels=labels,
140
+ shift_labels=shift_labels,
141
+ vocab_size=self.config.vocab_size,
142
+ )
138
143
 
139
144
  if not return_dict:
140
145
  output = (logits,) + outputs[1:]
@@ -129,8 +129,13 @@ def lce_forward(
129
129
  logits = self.lm_head(hidden_states)
130
130
 
131
131
  loss = None
132
- if labels is not None:
133
- loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
132
+ if labels is not None or shift_labels is not None:
133
+ loss = self.loss_function(
134
+ logits=logits,
135
+ labels=labels,
136
+ shift_labels=shift_labels,
137
+ vocab_size=self.config.vocab_size,
138
+ )
134
139
 
135
140
  return Qwen2VLCausalLMOutputWithPast(
136
141
  loss=loss,
@@ -103,10 +103,11 @@ def lce_forward(
103
103
 
104
104
  else:
105
105
  logits = self.lm_head(kept_hidden_states)
106
- if labels is not None:
106
+ if labels is not None or shift_labels is not None:
107
107
  loss = self.loss_function(
108
108
  logits=logits,
109
109
  labels=labels,
110
+ shift_labels=shift_labels,
110
111
  vocab_size=self.config.vocab_size,
111
112
  **kwargs,
112
113
  )
@@ -107,8 +107,14 @@ def lce_forward(
107
107
  )
108
108
  else: # if in inference model materialize logits
109
109
  logits = self.lm_head(kept_hidden_states)
110
- if labels is not None:
111
- loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
110
+ if labels is not None or shift_labels is not None:
111
+ loss = self.loss_function(
112
+ logits=logits,
113
+ labels=labels,
114
+ shift_labels=shift_labels,
115
+ vocab_size=self.vocab_size,
116
+ **kwargs,
117
+ )
112
118
 
113
119
  aux_loss = None
114
120
  if output_router_logits:
@@ -0,0 +1,134 @@
1
+ from typing import TYPE_CHECKING
2
+ from typing import List
3
+ from typing import Optional
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.modeling_outputs import MoeCausalLMOutputWithPast
9
+ from transformers.modeling_outputs import MoeModelOutputWithPast
10
+
11
+ if TYPE_CHECKING:
12
+ from transformers.models.qwen3_next.modeling_qwen3_next import load_balancing_loss_func
13
+
14
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
15
+
16
+
17
+ def lce_forward(
18
+ self,
19
+ input_ids: Optional[torch.LongTensor] = None,
20
+ attention_mask: Optional[torch.Tensor] = None,
21
+ position_ids: Optional[torch.LongTensor] = None,
22
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
23
+ inputs_embeds: Optional[torch.FloatTensor] = None,
24
+ labels: Optional[torch.LongTensor] = None,
25
+ use_cache: Optional[bool] = None,
26
+ output_attentions: Optional[bool] = None,
27
+ output_hidden_states: Optional[bool] = None,
28
+ output_router_logits: Optional[bool] = None,
29
+ cache_position: Optional[torch.LongTensor] = None,
30
+ logits_to_keep: Union[int, torch.Tensor] = 0,
31
+ skip_logits: Optional[bool] = None,
32
+ **kwargs,
33
+ ) -> MoeCausalLMOutputWithPast:
34
+ r"""
35
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
36
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
37
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
38
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
39
+
40
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
41
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
42
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
43
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
44
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
45
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
46
+
47
+ Returns:
48
+
49
+ Example:
50
+
51
+ ```python
52
+ >>> from transformers import AutoModelForCausalLM, AutoTokenizer
53
+
54
+ >>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Next-80B-A3B-Instruct")
55
+ >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Next-80B-A3B-Instruct")
56
+
57
+ >>> prompt = "Give me a short introduction to large language model."
58
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
59
+
60
+ >>> # Generate
61
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
62
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
63
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
64
+ ```"""
65
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
66
+ output_router_logits = (
67
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
68
+ )
69
+
70
+ output_hidden_states = (
71
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
72
+ )
73
+
74
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
75
+ outputs: MoeModelOutputWithPast = self.model(
76
+ input_ids=input_ids,
77
+ attention_mask=attention_mask,
78
+ position_ids=position_ids,
79
+ past_key_values=past_key_values,
80
+ inputs_embeds=inputs_embeds,
81
+ use_cache=use_cache,
82
+ output_attentions=output_attentions,
83
+ output_hidden_states=output_hidden_states,
84
+ output_router_logits=output_router_logits,
85
+ cache_position=cache_position,
86
+ **kwargs,
87
+ )
88
+
89
+ hidden_states = outputs.last_hidden_state
90
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
91
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
92
+ kept_hidden_states = hidden_states[:, slice_indices, :]
93
+
94
+ shift_labels = kwargs.pop("shift_labels", None)
95
+ logits = None
96
+ loss = None
97
+
98
+ if skip_logits is None:
99
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
100
+
101
+ if skip_logits:
102
+ loss = LigerForCausalLMLoss(
103
+ hidden_states=kept_hidden_states,
104
+ lm_head_weight=self.lm_head.weight,
105
+ labels=labels,
106
+ shift_labels=shift_labels,
107
+ hidden_size=self.config.hidden_size,
108
+ **kwargs,
109
+ )
110
+ else: # if in inference model materialize logits
111
+ logits = self.lm_head(kept_hidden_states)
112
+ if labels is not None or shift_labels is not None:
113
+ loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
114
+
115
+ aux_loss = None
116
+ if output_router_logits:
117
+ aux_loss = load_balancing_loss_func(
118
+ outputs.router_logits,
119
+ self.num_experts,
120
+ self.num_experts_per_tok,
121
+ attention_mask,
122
+ )
123
+ if labels is not None:
124
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
125
+
126
+ return MoeCausalLMOutputWithPast(
127
+ loss=loss,
128
+ aux_loss=aux_loss,
129
+ logits=logits,
130
+ past_key_values=outputs.past_key_values,
131
+ hidden_states=outputs.hidden_states,
132
+ attentions=outputs.attentions,
133
+ router_logits=outputs.router_logits,
134
+ )
@@ -121,10 +121,11 @@ def lce_forward(
121
121
 
122
122
  else:
123
123
  logits = self.lm_head(kept_hidden_states)
124
- if labels is not None:
124
+ if labels is not None or shift_labels is not None:
125
125
  loss = self.loss_function(
126
126
  logits=logits,
127
127
  labels=labels,
128
+ shift_labels=shift_labels,
128
129
  vocab_size=self.config.vocab_size,
129
130
  **kwargs,
130
131
  )
@@ -0,0 +1,158 @@
1
+ from typing import TYPE_CHECKING
2
+ from typing import Optional
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from transformers.models.smolvlm.modeling_smolvlm import SmolVLMCausalLMOutputWithPast
8
+ from transformers.processing_utils import Unpack
9
+ from transformers.utils.generic import can_return_tuple
10
+
11
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
12
+
13
+ if TYPE_CHECKING:
14
+ from transformers.cache_utils import Cache
15
+ from transformers.utils.generic import TransformersKwargs
16
+
17
+
18
+ # Forward adapted to enable fused Linear + CE without materializing logits.
19
+ # Mirrors the pattern used for other multimodal models (e.g., InternVL, LLaVA).
20
+ @can_return_tuple
21
+ def lce_forward(
22
+ self,
23
+ input_ids: Optional[torch.LongTensor] = None,
24
+ attention_mask: Optional[torch.Tensor] = None,
25
+ position_ids: Optional[torch.LongTensor] = None,
26
+ past_key_values: Optional["Cache"] = None,
27
+ inputs_embeds: Optional[torch.FloatTensor] = None,
28
+ pixel_values: Optional[torch.FloatTensor] = None,
29
+ pixel_attention_mask: Optional[torch.BoolTensor] = None,
30
+ image_hidden_states: Optional[torch.FloatTensor] = None,
31
+ labels: Optional[torch.LongTensor] = None,
32
+ use_cache: Optional[bool] = None,
33
+ output_attentions: Optional[bool] = None,
34
+ output_hidden_states: Optional[bool] = None,
35
+ cache_position: Optional[torch.LongTensor] = None,
36
+ return_dict: Optional[bool] = None,
37
+ logits_to_keep: Union[int, torch.Tensor] = 0,
38
+ skip_logits: Optional[bool] = None, # Added argument for liger-kernel
39
+ **lm_kwargs: Unpack["TransformersKwargs"], # renamed from kwargs
40
+ ) -> Union[tuple, SmolVLMCausalLMOutputWithPast]:
41
+ r"""
42
+ pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
43
+ Mask to avoid performing attention on padding pixel indices.
44
+ image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
45
+ The hidden states of the image encoder after modality projection.
46
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
47
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
48
+ config.vocab_size]` or `model.image_token_id`. Tokens with indices set to `model.image_token_id` are
49
+ ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
50
+
51
+ Example:
52
+
53
+ ```python
54
+ >>> import requests
55
+ >>> import torch
56
+ >>> from PIL import Image
57
+ >>> from io import BytesIO
58
+
59
+ >>> from transformers import AutoProcessor, AutoModelForImageTextToText
60
+ >>> from transformers.image_utils import load_image
61
+
62
+ >>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible
63
+ >>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
64
+ >>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg")
65
+ >>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg")
66
+
67
+ >>> processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
68
+ >>> model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct", dtype=torch.bfloat16, device_map="auto")
69
+
70
+ >>> # Create inputs
71
+ >>> messages = [
72
+ ... {
73
+ ... "role": "user",
74
+ ... "content": [
75
+ ... {"type": "video", "path": path/to/video},
76
+ ... {"type": "text", "text": "What is happening in this video?"},
77
+ ... ]
78
+ ... }
79
+ ... ]
80
+
81
+ >>> inputs = processor.apply_chat_template([messages], add_generation_prompt=True)
82
+
83
+ >>> # Generate
84
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=256)
85
+ >>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
86
+
87
+ >>> print(generated_texts)
88
+ ```"""
89
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
90
+ output_hidden_states = (
91
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
92
+ )
93
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
94
+
95
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
96
+ outputs = self.model(
97
+ input_ids=input_ids,
98
+ attention_mask=attention_mask,
99
+ position_ids=position_ids,
100
+ past_key_values=past_key_values,
101
+ inputs_embeds=inputs_embeds,
102
+ pixel_values=pixel_values,
103
+ pixel_attention_mask=pixel_attention_mask,
104
+ image_hidden_states=image_hidden_states,
105
+ use_cache=use_cache,
106
+ output_attentions=output_attentions,
107
+ output_hidden_states=output_hidden_states,
108
+ cache_position=cache_position,
109
+ return_dict=True,
110
+ **lm_kwargs,
111
+ )
112
+
113
+ # Copied from llava.py
114
+ hidden_states = outputs[0]
115
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
116
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
117
+ kept_hidden_states = hidden_states[:, slice_indices, :]
118
+
119
+ shift_labels = lm_kwargs.pop("shift_labels", None)
120
+ logits = None
121
+ loss = None
122
+
123
+ if skip_logits and labels is None and shift_labels is None:
124
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
125
+
126
+ if skip_logits is None:
127
+ # By default, if in training mode, don't materialize logits
128
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
129
+
130
+ if skip_logits:
131
+ loss = LigerForCausalLMLoss(
132
+ hidden_states=kept_hidden_states,
133
+ lm_head_weight=self.lm_head.weight,
134
+ labels=labels,
135
+ shift_labels=shift_labels,
136
+ hidden_size=self.config.text_config.hidden_size,
137
+ **lm_kwargs,
138
+ )
139
+
140
+ else:
141
+ logits = self.lm_head(kept_hidden_states)
142
+ if labels is not None or shift_labels is not None:
143
+ loss = self.loss_function(
144
+ logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
145
+ )
146
+
147
+ if not return_dict:
148
+ output = (logits,) + outputs[1:]
149
+ return (loss,) + output if loss is not None else output
150
+
151
+ return SmolVLMCausalLMOutputWithPast(
152
+ loss=loss,
153
+ logits=logits,
154
+ past_key_values=outputs.past_key_values,
155
+ hidden_states=outputs.hidden_states,
156
+ attentions=outputs.attentions,
157
+ image_hidden_states=outputs.image_hidden_states,
158
+ )