liger-kernel 0.6.1__py3-none-any.whl → 0.6.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/dpo_loss.py +54 -3
- liger_kernel/chunked_loss/fused_linear_ppo.py +4 -0
- liger_kernel/chunked_loss/grpo_loss.py +38 -4
- liger_kernel/chunked_loss/jsd_loss.py +5 -2
- liger_kernel/ops/cross_entropy.py +59 -53
- liger_kernel/ops/fused_linear_cross_entropy.py +83 -17
- liger_kernel/ops/layer_norm.py +4 -6
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/poly_norm.py +386 -0
- liger_kernel/transformers/__init__.py +32 -0
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/functional.py +9 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +8 -1
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +108 -0
- liger_kernel/transformers/model/gemma.py +2 -1
- liger_kernel/transformers/model/gemma2.py +8 -2
- liger_kernel/transformers/model/gemma3.py +27 -2
- liger_kernel/transformers/model/glm4.py +2 -1
- liger_kernel/transformers/model/glm4v.py +151 -0
- liger_kernel/transformers/model/glm4v_moe.py +153 -0
- liger_kernel/transformers/model/internvl.py +150 -0
- liger_kernel/transformers/model/llama.py +2 -1
- liger_kernel/transformers/model/llama4.py +2 -1
- liger_kernel/transformers/model/llava.py +6 -2
- liger_kernel/transformers/model/loss_utils.py +3 -0
- liger_kernel/transformers/model/mistral.py +2 -1
- liger_kernel/transformers/model/mixtral.py +8 -2
- liger_kernel/transformers/model/mllama.py +6 -3
- liger_kernel/transformers/model/olmo2.py +2 -1
- liger_kernel/transformers/model/paligemma.py +19 -0
- liger_kernel/transformers/model/phi3.py +10 -160
- liger_kernel/transformers/model/qwen2.py +2 -1
- liger_kernel/transformers/model/qwen2_5_vl.py +7 -2
- liger_kernel/transformers/model/qwen2_vl.py +7 -2
- liger_kernel/transformers/model/qwen3.py +2 -1
- liger_kernel/transformers/model/qwen3_moe.py +8 -2
- liger_kernel/transformers/model/qwen3_next.py +134 -0
- liger_kernel/transformers/model/smollm3.py +2 -1
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +552 -23
- liger_kernel/transformers/multi_token_attention.py +1 -1
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/rms_norm.py +7 -0
- {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/METADATA +14 -11
- {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/RECORD +50 -39
- {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/WHEEL +0 -0
- {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/licenses/LICENSE +0 -0
- {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/licenses/NOTICE +0 -0
- {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/top_level.txt +0 -0
|
@@ -10,9 +10,16 @@ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinea
|
|
|
10
10
|
from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # noqa: F401
|
|
11
11
|
from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
|
|
12
12
|
from liger_kernel.transformers.jsd import LigerJSD # noqa: F401
|
|
13
|
+
from liger_kernel.transformers.kl_div import LigerKLDIVLoss # noqa: F401
|
|
13
14
|
from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
|
|
15
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
|
|
16
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
|
|
17
|
+
from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
|
|
18
|
+
from liger_kernel.transformers.poly_norm import LigerPolyNorm # noqa: F401
|
|
14
19
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
|
|
15
20
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
|
|
21
|
+
from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
|
|
22
|
+
from liger_kernel.transformers.sparsemax import LigerSparsemax # noqa: F401
|
|
16
23
|
from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
|
|
17
24
|
from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
|
|
18
25
|
from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
|
|
@@ -24,12 +31,16 @@ if TYPE_CHECKING:
|
|
|
24
31
|
from liger_kernel.transformers.auto_model import AutoLigerKernelForCausalLM # noqa: F401
|
|
25
32
|
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa: F401
|
|
26
33
|
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
|
|
34
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_falcon_h1 # noqa: F401
|
|
27
35
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
|
|
28
36
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
|
|
29
37
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
|
|
30
38
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
|
|
31
39
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
|
|
40
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
|
|
41
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
|
|
32
42
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
|
43
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
|
|
33
44
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
|
34
45
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
|
|
35
46
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
|
|
@@ -44,7 +55,9 @@ if TYPE_CHECKING:
|
|
|
44
55
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
|
45
56
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
|
|
46
57
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
|
|
58
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_next # noqa: F401
|
|
47
59
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
|
|
60
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smolvlm # noqa: F401
|
|
48
61
|
|
|
49
62
|
|
|
50
63
|
# Check if 'transformers' is installed
|
|
@@ -82,12 +95,16 @@ def __getattr__(name: str):
|
|
|
82
95
|
monkey_patch_symbols = {
|
|
83
96
|
"_apply_liger_kernel",
|
|
84
97
|
"_apply_liger_kernel_to_instance",
|
|
98
|
+
"apply_liger_kernel_to_falcon_h1",
|
|
85
99
|
"apply_liger_kernel_to_gemma",
|
|
86
100
|
"apply_liger_kernel_to_gemma2",
|
|
87
101
|
"apply_liger_kernel_to_gemma3",
|
|
88
102
|
"apply_liger_kernel_to_gemma3_text",
|
|
89
103
|
"apply_liger_kernel_to_glm4",
|
|
104
|
+
"apply_liger_kernel_to_glm4v",
|
|
105
|
+
"apply_liger_kernel_to_glm4v_moe",
|
|
90
106
|
"apply_liger_kernel_to_granite",
|
|
107
|
+
"apply_liger_kernel_to_internvl",
|
|
91
108
|
"apply_liger_kernel_to_llama",
|
|
92
109
|
"apply_liger_kernel_to_llava",
|
|
93
110
|
"apply_liger_kernel_to_llama4",
|
|
@@ -102,7 +119,9 @@ def __getattr__(name: str):
|
|
|
102
119
|
"apply_liger_kernel_to_qwen2_vl",
|
|
103
120
|
"apply_liger_kernel_to_qwen3",
|
|
104
121
|
"apply_liger_kernel_to_qwen3_moe",
|
|
122
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
105
123
|
"apply_liger_kernel_to_smollm3",
|
|
124
|
+
"apply_liger_kernel_to_smolvlm",
|
|
106
125
|
}
|
|
107
126
|
|
|
108
127
|
if name in monkey_patch_symbols:
|
|
@@ -123,13 +142,20 @@ __all__ = [
|
|
|
123
142
|
"LigerJSD",
|
|
124
143
|
"LigerLayerNorm",
|
|
125
144
|
"LigerFusedAddRMSNorm",
|
|
145
|
+
"LigerPolyNorm",
|
|
126
146
|
"LigerRMSNorm",
|
|
127
147
|
"liger_rotary_pos_emb",
|
|
148
|
+
"liger_llama4_text_rotary_pos_emb",
|
|
149
|
+
"liger_llama4_vision_rotary_pos_emb",
|
|
128
150
|
"LigerBlockSparseTop2MLP",
|
|
129
151
|
"LigerPhi3SwiGLUMLP",
|
|
130
152
|
"LigerQwen3MoeSwiGLUMLP",
|
|
131
153
|
"LigerSwiGLUMLP",
|
|
132
154
|
"LigerTVDLoss",
|
|
155
|
+
"LigerKLDIVLoss",
|
|
156
|
+
"LigerMultiTokenAttention",
|
|
157
|
+
"LigerSoftmax",
|
|
158
|
+
"LigerSparsemax",
|
|
133
159
|
]
|
|
134
160
|
|
|
135
161
|
# Add transformer-dependent symbols only if available
|
|
@@ -139,12 +165,16 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
139
165
|
"AutoLigerKernelForCausalLM",
|
|
140
166
|
"_apply_liger_kernel",
|
|
141
167
|
"_apply_liger_kernel_to_instance",
|
|
168
|
+
"apply_liger_kernel_to_falcon_h1",
|
|
142
169
|
"apply_liger_kernel_to_gemma",
|
|
143
170
|
"apply_liger_kernel_to_gemma2",
|
|
144
171
|
"apply_liger_kernel_to_gemma3",
|
|
145
172
|
"apply_liger_kernel_to_gemma3_text",
|
|
146
173
|
"apply_liger_kernel_to_glm4",
|
|
174
|
+
"apply_liger_kernel_to_glm4v",
|
|
175
|
+
"apply_liger_kernel_to_glm4v_moe",
|
|
147
176
|
"apply_liger_kernel_to_granite",
|
|
177
|
+
"apply_liger_kernel_to_internvl",
|
|
148
178
|
"apply_liger_kernel_to_llama",
|
|
149
179
|
"apply_liger_kernel_to_llava",
|
|
150
180
|
"apply_liger_kernel_to_llama4",
|
|
@@ -159,6 +189,8 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
159
189
|
"apply_liger_kernel_to_qwen2_vl",
|
|
160
190
|
"apply_liger_kernel_to_qwen3",
|
|
161
191
|
"apply_liger_kernel_to_qwen3_moe",
|
|
192
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
162
193
|
"apply_liger_kernel_to_smollm3",
|
|
194
|
+
"apply_liger_kernel_to_smolvlm",
|
|
163
195
|
]
|
|
164
196
|
)
|
|
@@ -12,6 +12,7 @@ from liger_kernel.ops.jsd import LigerJSDFunction
|
|
|
12
12
|
from liger_kernel.ops.kl_div import LigerKLDivLossFunction
|
|
13
13
|
from liger_kernel.ops.layer_norm import LigerLayerNormFunction
|
|
14
14
|
from liger_kernel.ops.multi_token_attention import LigerMultiTokenAttentionFunction
|
|
15
|
+
from liger_kernel.ops.poly_norm import LigerPolyNormFunction
|
|
15
16
|
from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
|
|
16
17
|
from liger_kernel.ops.rms_norm import LigerRMSNormFunction
|
|
17
18
|
from liger_kernel.ops.rope import LigerRopeFunction
|
|
@@ -64,6 +65,8 @@ def liger_fused_linear_cross_entropy(
|
|
|
64
65
|
reduction: str = "mean",
|
|
65
66
|
softcap: Optional[float] = None,
|
|
66
67
|
return_z_loss: bool = False,
|
|
68
|
+
accum_dtype=None,
|
|
69
|
+
use_token_scaling: bool = False,
|
|
67
70
|
):
|
|
68
71
|
loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
|
|
69
72
|
input,
|
|
@@ -77,6 +80,8 @@ def liger_fused_linear_cross_entropy(
|
|
|
77
80
|
reduction,
|
|
78
81
|
softcap,
|
|
79
82
|
return_z_loss,
|
|
83
|
+
accum_dtype,
|
|
84
|
+
use_token_scaling,
|
|
80
85
|
)
|
|
81
86
|
if not return_z_loss:
|
|
82
87
|
return loss
|
|
@@ -254,6 +259,10 @@ def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama",
|
|
|
254
259
|
return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
|
|
255
260
|
|
|
256
261
|
|
|
262
|
+
def liger_poly_norm(X, W, B, eps=1e-6, in_place=True):
|
|
263
|
+
return LigerPolyNormFunction.apply(X, W, B, eps, in_place)
|
|
264
|
+
|
|
265
|
+
|
|
257
266
|
def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
|
|
258
267
|
return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
|
|
259
268
|
|
|
@@ -15,6 +15,8 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
15
15
|
reduction: str = "mean",
|
|
16
16
|
softcap: Optional[float] = None,
|
|
17
17
|
return_z_loss: bool = False,
|
|
18
|
+
accum_dtype: Optional[torch.dtype] = None,
|
|
19
|
+
use_token_scaling: bool = False,
|
|
18
20
|
):
|
|
19
21
|
super().__init__()
|
|
20
22
|
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
@@ -23,7 +25,8 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
23
25
|
assert reduction in {
|
|
24
26
|
"mean",
|
|
25
27
|
"sum",
|
|
26
|
-
|
|
28
|
+
"none",
|
|
29
|
+
}, f"reduction must be 'mean' or 'sum' or 'none'. Got: {reduction}"
|
|
27
30
|
assert softcap is None or softcap > 0, f"softcap must greater than 0.0 or None. Got: {softcap}"
|
|
28
31
|
self.ce_weight = ce_weight
|
|
29
32
|
self.ignore_index = ignore_index
|
|
@@ -32,6 +35,8 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
32
35
|
self.reduction = reduction
|
|
33
36
|
self.softcap = softcap
|
|
34
37
|
self.return_z_loss = return_z_loss
|
|
38
|
+
self.accum_dtype = accum_dtype
|
|
39
|
+
self.use_token_scaling = use_token_scaling
|
|
35
40
|
|
|
36
41
|
def forward(self, lin_weight, _input, target, bias=None):
|
|
37
42
|
loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
|
|
@@ -46,6 +51,8 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
46
51
|
self.reduction,
|
|
47
52
|
self.softcap,
|
|
48
53
|
self.return_z_loss,
|
|
54
|
+
self.accum_dtype,
|
|
55
|
+
self.use_token_scaling,
|
|
49
56
|
)
|
|
50
57
|
if not self.return_z_loss:
|
|
51
58
|
return loss
|
|
@@ -0,0 +1,93 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Liger Kernel implementation of Llama4 Rotary Position Embedding (RoPE).
|
|
3
|
+
Supports both text and vision RoPE variants with fused operations for optimal performance.
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from liger_kernel.ops.llama4_rope import LigerLlama4RopeFunction
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def liger_llama4_text_rotary_pos_emb(
|
|
12
|
+
xq: torch.Tensor,
|
|
13
|
+
xk: torch.Tensor,
|
|
14
|
+
freqs_cis: torch.Tensor,
|
|
15
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
16
|
+
"""
|
|
17
|
+
Liger-optimized implementation of Llama4 text rotary position embedding.
|
|
18
|
+
|
|
19
|
+
This implementation uses a fused Triton kernel for complex multiplication,
|
|
20
|
+
providing significant performance improvements over the original PyTorch implementation.
|
|
21
|
+
|
|
22
|
+
Args:
|
|
23
|
+
xq (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
|
24
|
+
xk (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
|
25
|
+
freqs_cis (torch.Tensor): Complex frequency tensor from Llama4TextRotaryEmbedding
|
|
26
|
+
|
|
27
|
+
Returns:
|
|
28
|
+
Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
|
|
29
|
+
"""
|
|
30
|
+
# Use fused Triton kernel for complex RoPE
|
|
31
|
+
return LigerLlama4RopeFunction.apply(xq, xk, freqs_cis)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def liger_llama4_vision_rotary_pos_emb(
|
|
35
|
+
query: torch.Tensor,
|
|
36
|
+
key: torch.Tensor,
|
|
37
|
+
freqs_ci: torch.Tensor,
|
|
38
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
39
|
+
"""
|
|
40
|
+
Liger-optimized implementation of Llama4 vision rotary position embedding.
|
|
41
|
+
|
|
42
|
+
This implementation uses the same fused Triton kernel as text RoPE,
|
|
43
|
+
providing performance improvements for vision transformer attention.
|
|
44
|
+
|
|
45
|
+
Args:
|
|
46
|
+
query (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
|
47
|
+
key (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
|
48
|
+
freqs_ci (torch.Tensor): Complex frequency tensor for 2D positions
|
|
49
|
+
|
|
50
|
+
Returns:
|
|
51
|
+
Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
|
|
52
|
+
"""
|
|
53
|
+
# Handle broadcasting for vision RoPE
|
|
54
|
+
if freqs_ci.dim() == 3:
|
|
55
|
+
try:
|
|
56
|
+
# Try the regular 3D expansion
|
|
57
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
|
58
|
+
except RuntimeError as e:
|
|
59
|
+
if "expand" in str(e) and "4" in str(e):
|
|
60
|
+
# The tensor is actually 4D internally, handle it differently
|
|
61
|
+
freqs_ci = freqs_ci.squeeze(1) # Remove the middle dimension
|
|
62
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
|
63
|
+
else:
|
|
64
|
+
raise e
|
|
65
|
+
elif freqs_ci.dim() == 4: # (1, seq_len, 1, head_dim//2) - already properly shaped
|
|
66
|
+
# Squeeze the middle dimension to get (1, seq_len, head_dim//2)
|
|
67
|
+
freqs_ci = freqs_ci.squeeze(2)
|
|
68
|
+
elif freqs_ci.dim() == 2: # (seq_len, head_dim//2) - needs expansion
|
|
69
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
|
70
|
+
else:
|
|
71
|
+
raise ValueError(f"Unexpected freqs_ci shape: {freqs_ci.shape}")
|
|
72
|
+
|
|
73
|
+
# Use the same fused kernel as text RoPE
|
|
74
|
+
return LigerLlama4RopeFunction.apply(query, key, freqs_ci)
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
# Note: We only patch the functions, not the classes
|
|
78
|
+
# The original Llama4TextRotaryEmbedding and Llama4VisionRotaryEmbedding classes remain unchanged
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
# Convenience functions for monkey patching
|
|
82
|
+
def apply_liger_llama4_rope_full(modeling_module):
|
|
83
|
+
"""
|
|
84
|
+
Apply Liger optimizations to Llama4 RoPE functions.
|
|
85
|
+
|
|
86
|
+
Args:
|
|
87
|
+
modeling_module: The transformers modeling module to patch
|
|
88
|
+
"""
|
|
89
|
+
# Replace the text RoPE function
|
|
90
|
+
modeling_module.apply_rotary_emb = liger_llama4_text_rotary_pos_emb
|
|
91
|
+
|
|
92
|
+
# Replace the vision RoPE function
|
|
93
|
+
modeling_module.vision_apply_rotary_emb = liger_llama4_vision_rotary_pos_emb
|
|
@@ -0,0 +1,108 @@
|
|
|
1
|
+
from typing import TYPE_CHECKING
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Union
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
8
|
+
|
|
9
|
+
if TYPE_CHECKING:
|
|
10
|
+
from transformers.models.falcon_h1.modeling_falcon_h1 import FalconHybridMambaAttentionDynamicCache
|
|
11
|
+
|
|
12
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def lce_forward(
|
|
16
|
+
self,
|
|
17
|
+
input_ids: torch.LongTensor = None,
|
|
18
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
19
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
20
|
+
past_key_values: Optional["FalconHybridMambaAttentionDynamicCache"] = None,
|
|
21
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
22
|
+
labels: Optional[torch.LongTensor] = None,
|
|
23
|
+
use_cache: Optional[bool] = None,
|
|
24
|
+
output_attentions: Optional[bool] = None,
|
|
25
|
+
output_hidden_states: Optional[bool] = None,
|
|
26
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
27
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
28
|
+
skip_logits: Optional[bool] = None,
|
|
29
|
+
**kwargs,
|
|
30
|
+
) -> Union[tuple, CausalLMOutputWithPast]:
|
|
31
|
+
r"""
|
|
32
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
33
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
34
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
35
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
36
|
+
|
|
37
|
+
Example:
|
|
38
|
+
|
|
39
|
+
```python
|
|
40
|
+
>>> from transformers import AutoTokenizer, FalconH1ForCausalLM
|
|
41
|
+
|
|
42
|
+
>>> model = FalconH1ForCausalLM.from_pretrained("...")
|
|
43
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("...")
|
|
44
|
+
|
|
45
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
46
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
47
|
+
|
|
48
|
+
>>> # Generate
|
|
49
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
50
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
51
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
52
|
+
```"""
|
|
53
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
54
|
+
output_hidden_states = (
|
|
55
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
56
|
+
)
|
|
57
|
+
|
|
58
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
59
|
+
outputs = self.model(
|
|
60
|
+
input_ids=input_ids,
|
|
61
|
+
attention_mask=attention_mask,
|
|
62
|
+
position_ids=position_ids,
|
|
63
|
+
past_key_values=past_key_values,
|
|
64
|
+
inputs_embeds=inputs_embeds,
|
|
65
|
+
use_cache=use_cache,
|
|
66
|
+
output_attentions=output_attentions,
|
|
67
|
+
output_hidden_states=output_hidden_states,
|
|
68
|
+
cache_position=cache_position,
|
|
69
|
+
**kwargs,
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
hidden_states = outputs[0]
|
|
73
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
74
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
75
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
76
|
+
|
|
77
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
78
|
+
logits = None
|
|
79
|
+
loss = None
|
|
80
|
+
# if in training mode, don't materialize logits
|
|
81
|
+
if skip_logits and labels is None:
|
|
82
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
83
|
+
|
|
84
|
+
if skip_logits is None:
|
|
85
|
+
# By default, if in training mode, don't materialize logits
|
|
86
|
+
skip_logits = self.training and labels is not None
|
|
87
|
+
|
|
88
|
+
if skip_logits:
|
|
89
|
+
loss = LigerForCausalLMLoss(
|
|
90
|
+
hidden_states=kept_hidden_states,
|
|
91
|
+
lm_head_weight=self.lm_head.weight,
|
|
92
|
+
labels=labels,
|
|
93
|
+
shift_labels=shift_labels,
|
|
94
|
+
hidden_size=self.config.hidden_size,
|
|
95
|
+
**kwargs,
|
|
96
|
+
)
|
|
97
|
+
else:
|
|
98
|
+
logits = self.lm_head(kept_hidden_states)
|
|
99
|
+
if labels is not None or shift_labels is not None:
|
|
100
|
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
|
101
|
+
|
|
102
|
+
return CausalLMOutputWithPast(
|
|
103
|
+
loss=loss,
|
|
104
|
+
logits=logits,
|
|
105
|
+
past_key_values=outputs.past_key_values,
|
|
106
|
+
hidden_states=outputs.hidden_states,
|
|
107
|
+
attentions=outputs.attentions,
|
|
108
|
+
)
|
|
@@ -228,10 +228,11 @@ def lce_forward(
|
|
|
228
228
|
)
|
|
229
229
|
else:
|
|
230
230
|
logits = self.lm_head(kept_hidden_states)
|
|
231
|
-
if labels is not None:
|
|
231
|
+
if labels is not None or shift_labels is not None:
|
|
232
232
|
loss = self.loss_function(
|
|
233
233
|
logits=logits,
|
|
234
234
|
labels=labels,
|
|
235
|
+
shift_labels=shift_labels,
|
|
235
236
|
vocab_size=self.config.vocab_size,
|
|
236
237
|
**kwargs,
|
|
237
238
|
)
|
|
@@ -252,8 +252,14 @@ def lce_forward(
|
|
|
252
252
|
logits = logits * self.config.final_logit_softcapping
|
|
253
253
|
|
|
254
254
|
loss = None
|
|
255
|
-
if labels is not None:
|
|
256
|
-
loss = self.loss_function(
|
|
255
|
+
if labels is not None or shift_labels is not None:
|
|
256
|
+
loss = self.loss_function(
|
|
257
|
+
logits=logits,
|
|
258
|
+
labels=labels,
|
|
259
|
+
shift_labels=shift_labels,
|
|
260
|
+
vocab_size=self.vocab_size,
|
|
261
|
+
**kwargs,
|
|
262
|
+
)
|
|
257
263
|
|
|
258
264
|
if not return_dict:
|
|
259
265
|
output = (logits,) + outputs[1:]
|
|
@@ -119,8 +119,14 @@ def causal_forward(
|
|
|
119
119
|
logits = logits / self.config.final_logit_softcapping
|
|
120
120
|
logits = torch.tanh(logits)
|
|
121
121
|
logits = logits * self.config.final_logit_softcapping
|
|
122
|
-
if labels is not None:
|
|
123
|
-
loss = self.loss_function(
|
|
122
|
+
if labels is not None or shift_labels is not None:
|
|
123
|
+
loss = self.loss_function(
|
|
124
|
+
logits=logits,
|
|
125
|
+
labels=labels,
|
|
126
|
+
shift_labels=shift_labels,
|
|
127
|
+
vocab_size=self.vocab_size,
|
|
128
|
+
**loss_kwargs,
|
|
129
|
+
)
|
|
124
130
|
|
|
125
131
|
if not return_dict:
|
|
126
132
|
output = (logits,) + outputs[1:]
|
|
@@ -275,6 +281,25 @@ def multimodal_forward(
|
|
|
275
281
|
# Flatten the tokens
|
|
276
282
|
loss_fct = nn.CrossEntropyLoss()
|
|
277
283
|
|
|
284
|
+
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
|
|
285
|
+
flat_labels = shift_labels.view(-1).to(shift_logits.device)
|
|
286
|
+
loss = loss_fct(flat_logits, flat_labels)
|
|
287
|
+
elif shift_labels is not None:
|
|
288
|
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
|
289
|
+
logits = logits.float()
|
|
290
|
+
shift_logits = logits[..., :-1, :]
|
|
291
|
+
if attention_mask is not None:
|
|
292
|
+
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
|
293
|
+
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
|
294
|
+
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
|
|
295
|
+
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
|
|
296
|
+
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
|
|
297
|
+
else:
|
|
298
|
+
shift_logits = shift_logits.contiguous()
|
|
299
|
+
shift_labels = shift_labels.contiguous()
|
|
300
|
+
# Flatten the tokens
|
|
301
|
+
loss_fct = nn.CrossEntropyLoss()
|
|
302
|
+
|
|
278
303
|
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
|
|
279
304
|
flat_labels = shift_labels.view(-1).to(shift_logits.device)
|
|
280
305
|
loss = loss_fct(flat_logits, flat_labels)
|
|
@@ -111,10 +111,11 @@ def lce_forward(
|
|
|
111
111
|
|
|
112
112
|
else:
|
|
113
113
|
logits = self.lm_head(kept_hidden_states)
|
|
114
|
-
if labels is not None:
|
|
114
|
+
if labels is not None or shift_labels is not None:
|
|
115
115
|
loss = self.loss_function(
|
|
116
116
|
logits=logits,
|
|
117
117
|
labels=labels,
|
|
118
|
+
shift_labels=shift_labels,
|
|
118
119
|
vocab_size=self.config.vocab_size,
|
|
119
120
|
**kwargs,
|
|
120
121
|
)
|
|
@@ -0,0 +1,151 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
9
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
|
10
|
+
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
15
|
+
def lce_forward(
|
|
16
|
+
self,
|
|
17
|
+
input_ids: torch.LongTensor = None,
|
|
18
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
19
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
20
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
21
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
22
|
+
labels: Optional[torch.LongTensor] = None,
|
|
23
|
+
use_cache: Optional[bool] = None,
|
|
24
|
+
output_attentions: Optional[bool] = None,
|
|
25
|
+
output_hidden_states: Optional[bool] = None,
|
|
26
|
+
return_dict: Optional[bool] = None,
|
|
27
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
28
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
29
|
+
skip_logits: Optional[bool] = None,
|
|
30
|
+
**kwargs,
|
|
31
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
32
|
+
r"""
|
|
33
|
+
Args:
|
|
34
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
35
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
36
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
37
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
38
|
+
|
|
39
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
40
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
41
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
42
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
43
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
44
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
45
|
+
|
|
46
|
+
Returns:
|
|
47
|
+
|
|
48
|
+
Example:
|
|
49
|
+
|
|
50
|
+
```python
|
|
51
|
+
>>> from PIL import Image
|
|
52
|
+
>>> from transformers import AutoTokenizer, Glm4vForConditionalGeneration
|
|
53
|
+
|
|
54
|
+
>>> MODEL_PATH = "THUDM/GLM-4.1V-9B-Thinking"
|
|
55
|
+
>>> messages = [
|
|
56
|
+
{
|
|
57
|
+
"role": "user",
|
|
58
|
+
"content": [
|
|
59
|
+
{
|
|
60
|
+
"type": "image",
|
|
61
|
+
"url": "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png"
|
|
62
|
+
},
|
|
63
|
+
{
|
|
64
|
+
"type": "text",
|
|
65
|
+
"text": "describe this image"
|
|
66
|
+
}
|
|
67
|
+
],
|
|
68
|
+
}
|
|
69
|
+
]
|
|
70
|
+
>>> processor = AutoProcessor.from_pretrained(MODEL_PATH, use_fast=True)
|
|
71
|
+
>>> model = Glm4vForConditionalGeneration.from_pretrained(
|
|
72
|
+
pretrained_model_name_or_path=MODEL_PATH,
|
|
73
|
+
dtype=torch.bfloat16,
|
|
74
|
+
device_map="auto",
|
|
75
|
+
)
|
|
76
|
+
>>> inputs = processor.apply_chat_template(
|
|
77
|
+
messages,
|
|
78
|
+
tokenize=True,
|
|
79
|
+
add_generation_prompt=True,
|
|
80
|
+
return_dict=True,
|
|
81
|
+
return_tensors="pt"
|
|
82
|
+
).to(model.device)
|
|
83
|
+
>>> generated_ids = model.generate(**inputs, max_new_tokens=8192)
|
|
84
|
+
output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False)
|
|
85
|
+
<think>Got it, let's describe the image. First, there's a vintage car, specifically a Volkswagen Beetle
|
|
86
|
+
```"""
|
|
87
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
88
|
+
output_hidden_states = (
|
|
89
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
90
|
+
)
|
|
91
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
92
|
+
|
|
93
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
94
|
+
outputs = self.model(
|
|
95
|
+
input_ids=input_ids,
|
|
96
|
+
attention_mask=attention_mask,
|
|
97
|
+
position_ids=position_ids,
|
|
98
|
+
past_key_values=past_key_values,
|
|
99
|
+
inputs_embeds=inputs_embeds,
|
|
100
|
+
use_cache=use_cache,
|
|
101
|
+
output_attentions=output_attentions,
|
|
102
|
+
output_hidden_states=output_hidden_states,
|
|
103
|
+
return_dict=return_dict,
|
|
104
|
+
cache_position=cache_position,
|
|
105
|
+
**kwargs,
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
hidden_states = outputs[0]
|
|
109
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
110
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
111
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
112
|
+
|
|
113
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
114
|
+
logits = None
|
|
115
|
+
loss = None
|
|
116
|
+
|
|
117
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
118
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
119
|
+
|
|
120
|
+
if skip_logits is None:
|
|
121
|
+
# By default, if in training mode, don't materialize logits
|
|
122
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
123
|
+
|
|
124
|
+
if skip_logits:
|
|
125
|
+
loss = LigerForCausalLMLoss(
|
|
126
|
+
hidden_states=kept_hidden_states,
|
|
127
|
+
lm_head_weight=self.lm_head.weight,
|
|
128
|
+
labels=labels,
|
|
129
|
+
shift_labels=shift_labels,
|
|
130
|
+
hidden_size=self.config.hidden_size,
|
|
131
|
+
**kwargs,
|
|
132
|
+
)
|
|
133
|
+
|
|
134
|
+
else:
|
|
135
|
+
logits = self.lm_head(kept_hidden_states)
|
|
136
|
+
if labels is not None or shift_labels is not None:
|
|
137
|
+
loss = self.loss_function(
|
|
138
|
+
logits=logits,
|
|
139
|
+
labels=labels,
|
|
140
|
+
shift_labels=shift_labels,
|
|
141
|
+
vocab_size=self.config.vocab_size,
|
|
142
|
+
**kwargs,
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
return CausalLMOutputWithPast(
|
|
146
|
+
loss=loss,
|
|
147
|
+
logits=logits,
|
|
148
|
+
past_key_values=outputs.past_key_values,
|
|
149
|
+
hidden_states=outputs.hidden_states,
|
|
150
|
+
attentions=outputs.attentions,
|
|
151
|
+
)
|