liger-kernel 0.6.1__py3-none-any.whl → 0.6.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. liger_kernel/chunked_loss/dpo_loss.py +54 -3
  2. liger_kernel/chunked_loss/fused_linear_ppo.py +4 -0
  3. liger_kernel/chunked_loss/grpo_loss.py +38 -4
  4. liger_kernel/chunked_loss/jsd_loss.py +5 -2
  5. liger_kernel/ops/cross_entropy.py +59 -53
  6. liger_kernel/ops/fused_linear_cross_entropy.py +83 -17
  7. liger_kernel/ops/layer_norm.py +4 -6
  8. liger_kernel/ops/llama4_rope.py +225 -0
  9. liger_kernel/ops/poly_norm.py +386 -0
  10. liger_kernel/transformers/__init__.py +32 -0
  11. liger_kernel/transformers/experimental/__init__.py +5 -0
  12. liger_kernel/transformers/functional.py +9 -0
  13. liger_kernel/transformers/fused_linear_cross_entropy.py +8 -1
  14. liger_kernel/transformers/llama4_rope.py +93 -0
  15. liger_kernel/transformers/model/falcon_h1.py +108 -0
  16. liger_kernel/transformers/model/gemma.py +2 -1
  17. liger_kernel/transformers/model/gemma2.py +8 -2
  18. liger_kernel/transformers/model/gemma3.py +27 -2
  19. liger_kernel/transformers/model/glm4.py +2 -1
  20. liger_kernel/transformers/model/glm4v.py +151 -0
  21. liger_kernel/transformers/model/glm4v_moe.py +153 -0
  22. liger_kernel/transformers/model/internvl.py +150 -0
  23. liger_kernel/transformers/model/llama.py +2 -1
  24. liger_kernel/transformers/model/llama4.py +2 -1
  25. liger_kernel/transformers/model/llava.py +6 -2
  26. liger_kernel/transformers/model/loss_utils.py +3 -0
  27. liger_kernel/transformers/model/mistral.py +2 -1
  28. liger_kernel/transformers/model/mixtral.py +8 -2
  29. liger_kernel/transformers/model/mllama.py +6 -3
  30. liger_kernel/transformers/model/olmo2.py +2 -1
  31. liger_kernel/transformers/model/paligemma.py +19 -0
  32. liger_kernel/transformers/model/phi3.py +10 -160
  33. liger_kernel/transformers/model/qwen2.py +2 -1
  34. liger_kernel/transformers/model/qwen2_5_vl.py +7 -2
  35. liger_kernel/transformers/model/qwen2_vl.py +7 -2
  36. liger_kernel/transformers/model/qwen3.py +2 -1
  37. liger_kernel/transformers/model/qwen3_moe.py +8 -2
  38. liger_kernel/transformers/model/qwen3_next.py +134 -0
  39. liger_kernel/transformers/model/smollm3.py +2 -1
  40. liger_kernel/transformers/model/smolvlm.py +158 -0
  41. liger_kernel/transformers/monkey_patch.py +552 -23
  42. liger_kernel/transformers/multi_token_attention.py +1 -1
  43. liger_kernel/transformers/poly_norm.py +42 -0
  44. liger_kernel/transformers/rms_norm.py +7 -0
  45. {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/METADATA +14 -11
  46. {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/RECORD +50 -39
  47. {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/WHEEL +0 -0
  48. {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/licenses/LICENSE +0 -0
  49. {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/licenses/NOTICE +0 -0
  50. {liger_kernel-0.6.1.dist-info → liger_kernel-0.6.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,153 @@
1
+ from typing import Optional
2
+ from typing import Tuple
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from transformers.models.glm4v_moe.modeling_glm4v_moe import Glm4vMoeCausalLMOutputWithPast
8
+ from transformers.utils.deprecation import deprecate_kwarg
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+
12
+
13
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
14
+ def lce_forward(
15
+ self,
16
+ input_ids: torch.LongTensor = None,
17
+ attention_mask: Optional[torch.Tensor] = None,
18
+ position_ids: Optional[torch.LongTensor] = None,
19
+ past_key_values: Optional[list[torch.FloatTensor]] = None,
20
+ inputs_embeds: Optional[torch.FloatTensor] = None,
21
+ labels: Optional[torch.LongTensor] = None,
22
+ pixel_values: Optional[torch.Tensor] = None,
23
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
24
+ image_grid_thw: Optional[torch.LongTensor] = None,
25
+ video_grid_thw: Optional[torch.LongTensor] = None,
26
+ rope_deltas: Optional[torch.LongTensor] = None,
27
+ cache_position: Optional[torch.LongTensor] = None,
28
+ logits_to_keep: Union[int, torch.Tensor] = 0,
29
+ skip_logits: Optional[bool] = None,
30
+ **kwargs,
31
+ ) -> Union[Tuple, Glm4vMoeCausalLMOutputWithPast]:
32
+ r"""
33
+ Args:
34
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
35
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
36
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
37
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
38
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
39
+ The temporal, height and width of feature shape of each image in LLM.
40
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
41
+ The temporal, height and width of feature shape of each video in LLM.
42
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
43
+ The rope index difference between sequence length and multimodal rope.
44
+
45
+
46
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
47
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
48
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
49
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
50
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
51
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
52
+
53
+ Example:
54
+
55
+ ```python
56
+ >>> from transformers import AutoProcessor, Glm4vMoeForConditionalGeneration
57
+ >>> import torch
58
+
59
+ >>> MODEL_PATH = "zai-org/GLM-4.5V"
60
+ >>> messages = [
61
+ {
62
+ "role": "user",
63
+ "content": [
64
+ {
65
+ "type": "image",
66
+ "url": "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png"
67
+ },
68
+ {
69
+ "type": "text",
70
+ "text": "describe this image"
71
+ }
72
+ ],
73
+ }
74
+ ]
75
+ >>> processor = AutoProcessor.from_pretrained(MODEL_PATH)
76
+ >>> model = Glm4vMoeForConditionalGeneration.from_pretrained(
77
+ pretrained_model_name_or_path=MODEL_PATH,
78
+ dtype="auto",
79
+ device_map="auto",
80
+ )
81
+ >>> inputs = processor.apply_chat_template(
82
+ messages,
83
+ tokenize=True,
84
+ add_generation_prompt=True,
85
+ return_dict=True,
86
+ return_tensors="pt"
87
+ ).to(model.device)
88
+ >>> inputs.pop("token_type_ids", None)
89
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=8192)
90
+ >>> output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False)
91
+ ```
92
+ """
93
+
94
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
95
+ outputs = self.model(
96
+ input_ids=input_ids,
97
+ pixel_values=pixel_values,
98
+ pixel_values_videos=pixel_values_videos,
99
+ image_grid_thw=image_grid_thw,
100
+ video_grid_thw=video_grid_thw,
101
+ position_ids=position_ids,
102
+ attention_mask=attention_mask,
103
+ past_key_values=past_key_values,
104
+ inputs_embeds=inputs_embeds,
105
+ cache_position=cache_position,
106
+ **kwargs,
107
+ )
108
+
109
+ hidden_states = outputs[0]
110
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
111
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
112
+ kept_hidden_states = hidden_states[:, slice_indices, :]
113
+
114
+ shift_labels = kwargs.pop("shift_labels", None)
115
+ logits = None
116
+ loss = None
117
+
118
+ if skip_logits and labels is None and shift_labels is None:
119
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
120
+
121
+ if skip_logits is None:
122
+ # By default, if in training mode, don't materialize logits
123
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
124
+
125
+ if skip_logits:
126
+ loss = LigerForCausalLMLoss(
127
+ hidden_states=kept_hidden_states,
128
+ lm_head_weight=self.lm_head.weight,
129
+ labels=labels,
130
+ shift_labels=shift_labels,
131
+ hidden_size=self.config.hidden_size,
132
+ **kwargs,
133
+ )
134
+
135
+ else:
136
+ logits = self.lm_head(kept_hidden_states)
137
+ if labels is not None or shift_labels is not None:
138
+ loss = self.loss_function(
139
+ logits=logits,
140
+ labels=labels,
141
+ shift_labels=shift_labels,
142
+ vocab_size=self.config.vocab_size,
143
+ **kwargs,
144
+ )
145
+
146
+ return Glm4vMoeCausalLMOutputWithPast(
147
+ loss=loss,
148
+ logits=logits,
149
+ past_key_values=outputs.past_key_values,
150
+ hidden_states=outputs.hidden_states,
151
+ attentions=outputs.attentions,
152
+ rope_deltas=outputs.rope_deltas,
153
+ )
@@ -0,0 +1,150 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.models.internvl.modeling_internvl import InternVLCausalLMOutputWithPast
9
+ from transformers.utils import can_return_tuple
10
+
11
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
12
+
13
+
14
+ # Copied from https://github.com/huggingface/transformers/blob/d888bd435d0c0eaabaabad5b33d52af518c7187c/src/transformers/models/internvl/modeling_internvl.py#L862
15
+ @can_return_tuple
16
+ def lce_forward(
17
+ self,
18
+ input_ids: torch.LongTensor = None,
19
+ pixel_values: Optional[torch.FloatTensor] = None,
20
+ attention_mask: Optional[torch.Tensor] = None,
21
+ position_ids: Optional[torch.LongTensor] = None,
22
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
23
+ inputs_embeds: Optional[torch.FloatTensor] = None,
24
+ vision_feature_layer: Optional[Union[int, List[int]]] = None,
25
+ vision_feature_select_strategy: Optional[str] = None,
26
+ labels: Optional[torch.LongTensor] = None,
27
+ use_cache: Optional[bool] = None,
28
+ output_attentions: Optional[bool] = None,
29
+ output_hidden_states: Optional[bool] = None,
30
+ return_dict: Optional[bool] = None,
31
+ cache_position: Optional[torch.LongTensor] = None,
32
+ logits_to_keep: Union[int, torch.Tensor] = 0,
33
+ image_sizes: Optional[torch.Tensor] = None,
34
+ skip_logits: Optional[bool] = None, # Added argument for liger-kernel
35
+ **lm_kwargs, # renamed from kwargs
36
+ ) -> Union[Tuple, InternVLCausalLMOutputWithPast]:
37
+ r"""
38
+ Example:
39
+
40
+ ```python
41
+ >>> import torch
42
+ >>> from transformers import AutoProcessor, AutoModelForImageTextToText
43
+
44
+ >>> torch_device = "cuda"
45
+ >>> processor = AutoProcessor.from_pretrained("OpenGVLab/InternVL3-1B-hf")
46
+ >>> model = AutoModelForImageTextToText.from_pretrained(
47
+ ... "OpenGVLab/InternVL3-1B-hf", dtype=torch.bfloat16, device_map=torch_device
48
+ ... )
49
+
50
+ >>> messages = [
51
+ ... {
52
+ ... "role": "user",
53
+ ... "content": [
54
+ ... {
55
+ ... "type": "image",
56
+ ... "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
57
+ ... },
58
+ ... {
59
+ ... "type": "image",
60
+ ... "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
61
+ ... },
62
+ ... {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
63
+ ... ],
64
+ ... },
65
+ ... ]
66
+
67
+ >>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(torch_device)
68
+ >>> generate_ids = model.generate(**inputs, max_new_tokens=200)
69
+ >>> print(processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True))
70
+ The images depict the Statue of Liberty and the Golden Gate Bridge.
71
+ ```"""
72
+
73
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
74
+ output_hidden_states = (
75
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
76
+ )
77
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
78
+ vision_feature_layer = (
79
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
80
+ )
81
+ vision_feature_select_strategy = (
82
+ vision_feature_select_strategy
83
+ if vision_feature_select_strategy is not None
84
+ else self.config.vision_feature_select_strategy
85
+ )
86
+
87
+ outputs = self.model(
88
+ input_ids=input_ids,
89
+ pixel_values=pixel_values,
90
+ attention_mask=attention_mask,
91
+ position_ids=position_ids,
92
+ past_key_values=past_key_values,
93
+ inputs_embeds=inputs_embeds,
94
+ vision_feature_layer=vision_feature_layer,
95
+ vision_feature_select_strategy=vision_feature_select_strategy,
96
+ use_cache=use_cache,
97
+ output_attentions=output_attentions,
98
+ output_hidden_states=output_hidden_states,
99
+ return_dict=return_dict,
100
+ cache_position=cache_position,
101
+ image_sizes=image_sizes,
102
+ **lm_kwargs,
103
+ )
104
+
105
+ # Copied from llava.py
106
+ hidden_states = outputs[0]
107
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
108
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
109
+ kept_hidden_states = hidden_states[:, slice_indices, :]
110
+
111
+ shift_labels = lm_kwargs.pop("shift_labels", None)
112
+ logits = None
113
+ loss = None
114
+
115
+ if skip_logits and labels is None and shift_labels is None:
116
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
117
+
118
+ if skip_logits is None:
119
+ # By default, if in training mode, don't materialize logits
120
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
121
+
122
+ if skip_logits:
123
+ loss = LigerForCausalLMLoss(
124
+ hidden_states=kept_hidden_states,
125
+ lm_head_weight=self.lm_head.weight,
126
+ labels=labels,
127
+ shift_labels=shift_labels,
128
+ hidden_size=self.config.text_config.hidden_size,
129
+ **lm_kwargs,
130
+ )
131
+
132
+ else:
133
+ logits = self.lm_head(kept_hidden_states)
134
+ if labels is not None:
135
+ loss = self.loss_function(
136
+ logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
137
+ )
138
+
139
+ if not return_dict:
140
+ output = (logits,) + outputs[1:]
141
+ return (loss,) + output if loss is not None else output
142
+
143
+ return InternVLCausalLMOutputWithPast(
144
+ loss=loss,
145
+ logits=logits,
146
+ past_key_values=outputs.past_key_values,
147
+ hidden_states=outputs.hidden_states,
148
+ attentions=outputs.attentions,
149
+ image_hidden_states=outputs.image_hidden_states,
150
+ )
@@ -248,10 +248,11 @@ def lce_forward(
248
248
 
249
249
  else:
250
250
  logits = self.lm_head(kept_hidden_states)
251
- if labels is not None:
251
+ if labels is not None or shift_labels is not None:
252
252
  loss = self.loss_function(
253
253
  logits=logits,
254
254
  labels=labels,
255
+ shift_labels=shift_labels,
255
256
  vocab_size=self.config.vocab_size,
256
257
  **kwargs,
257
258
  )
@@ -91,10 +91,11 @@ def lce_forward(
91
91
 
92
92
  else: # if in inference mode materialize logits
93
93
  logits = self.lm_head(kept_hidden_states)
94
- if labels is not None:
94
+ if labels is not None or shift_labels is not None:
95
95
  loss = self.loss_function(
96
96
  logits=logits,
97
97
  labels=labels,
98
+ shift_labels=shift_labels,
98
99
  vocab_size=self.config.vocab_size,
99
100
  **kwargs,
100
101
  )
@@ -313,9 +313,13 @@ def lce_forward(
313
313
 
314
314
  else:
315
315
  logits = self.lm_head(kept_hidden_states)
316
- if labels is not None:
316
+ if labels is not None or shift_labels is not None:
317
317
  loss = self.loss_function(
318
- logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
318
+ logits=logits,
319
+ labels=labels,
320
+ shift_labels=shift_labels,
321
+ vocab_size=self.config.text_config.vocab_size,
322
+ **lm_kwargs,
319
323
  )
320
324
 
321
325
  if not return_dict:
@@ -13,6 +13,7 @@ def fixed_fused_linear_cross_entropy(
13
13
  num_items_in_batch: Optional[int] = None,
14
14
  ignore_index: int = -100,
15
15
  final_logit_softcapping: Optional[float] = None,
16
+ accum_dtype: Optional[torch.dtype] = None,
16
17
  **kwargs,
17
18
  ):
18
19
  reduction = "sum" if num_items_in_batch is not None else "mean"
@@ -23,6 +24,8 @@ def fixed_fused_linear_cross_entropy(
23
24
  reduction=reduction,
24
25
  ignore_index=ignore_index,
25
26
  softcap=final_logit_softcapping,
27
+ accum_dtype=accum_dtype,
28
+ **kwargs,
26
29
  )
27
30
  if reduction == "sum":
28
31
  loss = loss / num_items_in_batch
@@ -115,10 +115,11 @@ def lce_forward(
115
115
  logits = self.lm_head(kept_hidden_states)
116
116
 
117
117
  loss = None
118
- if labels is not None:
118
+ if labels is not None or shift_labels is not None:
119
119
  loss = self.loss_function(
120
120
  logits=logits,
121
121
  labels=labels,
122
+ shift_labels=shift_labels,
122
123
  vocab_size=self.config.vocab_size,
123
124
  **kwargs,
124
125
  )
@@ -248,8 +248,14 @@ def lce_forward(
248
248
  logits = self.lm_head(kept_hidden_states)
249
249
 
250
250
  loss = None
251
- if labels is not None:
252
- loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
251
+ if labels is not None or shift_labels is not None:
252
+ loss = self.loss_function(
253
+ logits=logits,
254
+ labels=labels,
255
+ shift_labels=shift_labels,
256
+ vocab_size=self.vocab_size,
257
+ **kwargs,
258
+ )
253
259
  aux_loss = None
254
260
  if output_router_logits:
255
261
  aux_loss = load_balancing_loss_func(
@@ -190,7 +190,9 @@ def lce_forward(
190
190
  output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
191
191
  )
192
192
  return_dict = return_dict if return_dict is not None else self.config.use_return_dict
193
-
193
+ # Filter out accum_dtype from kwargs for model call as MllamaTextModel doesn't accept it in transformers 4.49.0
194
+ # but preserve it for loss function calls
195
+ model_kwargs = {k: v for k, v in kwargs.items() if k != "accum_dtype"}
194
196
  # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
195
197
  outputs = self.model(
196
198
  input_ids=input_ids,
@@ -206,7 +208,7 @@ def lce_forward(
206
208
  output_hidden_states=output_hidden_states,
207
209
  return_dict=return_dict,
208
210
  cache_position=cache_position,
209
- **kwargs,
211
+ **model_kwargs,
210
212
  )
211
213
 
212
214
  hidden_states = outputs[0]
@@ -237,10 +239,11 @@ def lce_forward(
237
239
 
238
240
  else:
239
241
  logits = self.lm_head(kept_hidden_states)
240
- if labels is not None:
242
+ if labels is not None or shift_labels is not None:
241
243
  loss = self.loss_function(
242
244
  logits=logits,
243
245
  labels=labels,
246
+ shift_labels=shift_labels,
244
247
  vocab_size=self.config.vocab_size,
245
248
  **kwargs,
246
249
  )
@@ -111,10 +111,11 @@ def lce_forward(
111
111
 
112
112
  else:
113
113
  logits = self.lm_head(kept_hidden_states)
114
- if labels is not None:
114
+ if labels is not None or shift_labels is not None:
115
115
  loss = self.loss_function(
116
116
  logits=logits,
117
117
  labels=labels,
118
+ shift_labels=shift_labels,
118
119
  vocab_size=self.config.vocab_size,
119
120
  **kwargs,
120
121
  )
@@ -379,6 +379,25 @@ def lce_forward(
379
379
  # Flatten the tokens
380
380
  loss_fct = CrossEntropyLoss()
381
381
 
382
+ flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
383
+ flat_labels = shift_labels.view(-1).to(shift_logits.device)
384
+ loss = loss_fct(flat_logits, flat_labels)
385
+ elif shift_labels is not None:
386
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
387
+ logits = logits.float()
388
+ shift_logits = logits[..., :-1, :]
389
+ if attention_mask is not None:
390
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
391
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
392
+ shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
393
+ shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
394
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
395
+ else:
396
+ shift_logits = shift_logits.contiguous()
397
+ shift_labels = shift_labels.contiguous()
398
+ # Flatten the tokens
399
+ loss_fct = CrossEntropyLoss()
400
+
382
401
  flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
383
402
  flat_labels = shift_labels.view(-1).to(shift_logits.device)
384
403
  loss = loss_fct(flat_logits, flat_labels)