liger-kernel 0.6.0__py3-none-any.whl → 0.6.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/dpo_loss.py +54 -3
- liger_kernel/ops/fused_add_rms_norm.py +412 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +21 -13
- liger_kernel/ops/layer_norm.py +126 -89
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/rms_norm.py +2 -2
- liger_kernel/ops/rope.py +1 -1
- liger_kernel/transformers/__init__.py +20 -0
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/functional.py +7 -0
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +3 -0
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/gemma3.py +1 -1
- liger_kernel/transformers/model/glm4v.py +150 -0
- liger_kernel/transformers/model/loss_utils.py +2 -0
- liger_kernel/transformers/model/mllama.py +4 -2
- liger_kernel/transformers/model/phi3.py +8 -159
- liger_kernel/transformers/model/smollm3.py +189 -0
- liger_kernel/transformers/monkey_patch.py +185 -32
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/METADATA +12 -14
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/RECORD +26 -19
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/WHEEL +0 -0
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/licenses/LICENSE +0 -0
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/licenses/NOTICE +0 -0
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/top_level.txt +0 -0
|
@@ -2,6 +2,7 @@ from typing import Optional
|
|
|
2
2
|
|
|
3
3
|
from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
|
|
4
4
|
from liger_kernel.ops.dyt import LigerDyTFunction
|
|
5
|
+
from liger_kernel.ops.fused_add_rms_norm import LigerFusedAddRMSNormFunction
|
|
5
6
|
from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
|
|
6
7
|
from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
|
|
7
8
|
from liger_kernel.ops.fused_neighborhood_attention import LigerFusedNeighborhoodAttentionFunction
|
|
@@ -63,6 +64,7 @@ def liger_fused_linear_cross_entropy(
|
|
|
63
64
|
reduction: str = "mean",
|
|
64
65
|
softcap: Optional[float] = None,
|
|
65
66
|
return_z_loss: bool = False,
|
|
67
|
+
accum_dtype=None,
|
|
66
68
|
):
|
|
67
69
|
loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
|
|
68
70
|
input,
|
|
@@ -76,6 +78,7 @@ def liger_fused_linear_cross_entropy(
|
|
|
76
78
|
reduction,
|
|
77
79
|
softcap,
|
|
78
80
|
return_z_loss,
|
|
81
|
+
accum_dtype,
|
|
79
82
|
)
|
|
80
83
|
if not return_z_loss:
|
|
81
84
|
return loss
|
|
@@ -253,6 +256,10 @@ def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama",
|
|
|
253
256
|
return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
|
|
254
257
|
|
|
255
258
|
|
|
259
|
+
def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
|
|
260
|
+
return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
|
|
261
|
+
|
|
262
|
+
|
|
256
263
|
def liger_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
257
264
|
return LigerRopeFunction.apply(q, k, cos, sin, position_ids, unsqueeze_dim)
|
|
258
265
|
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
|
|
4
|
+
from liger_kernel.ops.fused_add_rms_norm import LigerFusedAddRMSNormFunction
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class LigerFusedAddRMSNorm(nn.Module):
|
|
8
|
+
def __init__(
|
|
9
|
+
self,
|
|
10
|
+
hidden_size,
|
|
11
|
+
eps=1e-6,
|
|
12
|
+
offset=0.0,
|
|
13
|
+
casting_mode="llama",
|
|
14
|
+
init_fn="ones",
|
|
15
|
+
in_place=False,
|
|
16
|
+
):
|
|
17
|
+
super().__init__()
|
|
18
|
+
assert init_fn in [
|
|
19
|
+
"ones",
|
|
20
|
+
"zeros",
|
|
21
|
+
], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
|
|
22
|
+
self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
|
|
23
|
+
self.variance_epsilon, self.offset, self.casting_mode, self.in_place = (eps, offset, casting_mode, in_place)
|
|
24
|
+
|
|
25
|
+
def forward(self, hidden_states, residual):
|
|
26
|
+
return LigerFusedAddRMSNormFunction.apply(
|
|
27
|
+
hidden_states,
|
|
28
|
+
residual,
|
|
29
|
+
self.weight,
|
|
30
|
+
self.variance_epsilon,
|
|
31
|
+
self.offset,
|
|
32
|
+
self.casting_mode,
|
|
33
|
+
self.in_place,
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
def extra_repr(self):
|
|
37
|
+
return (
|
|
38
|
+
f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}"
|
|
39
|
+
)
|
|
@@ -15,6 +15,7 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
15
15
|
reduction: str = "mean",
|
|
16
16
|
softcap: Optional[float] = None,
|
|
17
17
|
return_z_loss: bool = False,
|
|
18
|
+
accum_dtype: Optional[torch.dtype] = None,
|
|
18
19
|
):
|
|
19
20
|
super().__init__()
|
|
20
21
|
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
@@ -32,6 +33,7 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
32
33
|
self.reduction = reduction
|
|
33
34
|
self.softcap = softcap
|
|
34
35
|
self.return_z_loss = return_z_loss
|
|
36
|
+
self.accum_dtype = accum_dtype
|
|
35
37
|
|
|
36
38
|
def forward(self, lin_weight, _input, target, bias=None):
|
|
37
39
|
loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
|
|
@@ -46,6 +48,7 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
46
48
|
self.reduction,
|
|
47
49
|
self.softcap,
|
|
48
50
|
self.return_z_loss,
|
|
51
|
+
self.accum_dtype,
|
|
49
52
|
)
|
|
50
53
|
if not self.return_z_loss:
|
|
51
54
|
return loss
|
|
@@ -0,0 +1,93 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Liger Kernel implementation of Llama4 Rotary Position Embedding (RoPE).
|
|
3
|
+
Supports both text and vision RoPE variants with fused operations for optimal performance.
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from liger_kernel.ops.llama4_rope import LigerLlama4RopeFunction
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def liger_llama4_text_rotary_pos_emb(
|
|
12
|
+
xq: torch.Tensor,
|
|
13
|
+
xk: torch.Tensor,
|
|
14
|
+
freqs_cis: torch.Tensor,
|
|
15
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
16
|
+
"""
|
|
17
|
+
Liger-optimized implementation of Llama4 text rotary position embedding.
|
|
18
|
+
|
|
19
|
+
This implementation uses a fused Triton kernel for complex multiplication,
|
|
20
|
+
providing significant performance improvements over the original PyTorch implementation.
|
|
21
|
+
|
|
22
|
+
Args:
|
|
23
|
+
xq (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
|
24
|
+
xk (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
|
25
|
+
freqs_cis (torch.Tensor): Complex frequency tensor from Llama4TextRotaryEmbedding
|
|
26
|
+
|
|
27
|
+
Returns:
|
|
28
|
+
Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
|
|
29
|
+
"""
|
|
30
|
+
# Use fused Triton kernel for complex RoPE
|
|
31
|
+
return LigerLlama4RopeFunction.apply(xq, xk, freqs_cis)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def liger_llama4_vision_rotary_pos_emb(
|
|
35
|
+
query: torch.Tensor,
|
|
36
|
+
key: torch.Tensor,
|
|
37
|
+
freqs_ci: torch.Tensor,
|
|
38
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
39
|
+
"""
|
|
40
|
+
Liger-optimized implementation of Llama4 vision rotary position embedding.
|
|
41
|
+
|
|
42
|
+
This implementation uses the same fused Triton kernel as text RoPE,
|
|
43
|
+
providing performance improvements for vision transformer attention.
|
|
44
|
+
|
|
45
|
+
Args:
|
|
46
|
+
query (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
|
47
|
+
key (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
|
48
|
+
freqs_ci (torch.Tensor): Complex frequency tensor for 2D positions
|
|
49
|
+
|
|
50
|
+
Returns:
|
|
51
|
+
Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
|
|
52
|
+
"""
|
|
53
|
+
# Handle broadcasting for vision RoPE
|
|
54
|
+
if freqs_ci.dim() == 3:
|
|
55
|
+
try:
|
|
56
|
+
# Try the regular 3D expansion
|
|
57
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
|
58
|
+
except RuntimeError as e:
|
|
59
|
+
if "expand" in str(e) and "4" in str(e):
|
|
60
|
+
# The tensor is actually 4D internally, handle it differently
|
|
61
|
+
freqs_ci = freqs_ci.squeeze(1) # Remove the middle dimension
|
|
62
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
|
63
|
+
else:
|
|
64
|
+
raise e
|
|
65
|
+
elif freqs_ci.dim() == 4: # (1, seq_len, 1, head_dim//2) - already properly shaped
|
|
66
|
+
# Squeeze the middle dimension to get (1, seq_len, head_dim//2)
|
|
67
|
+
freqs_ci = freqs_ci.squeeze(2)
|
|
68
|
+
elif freqs_ci.dim() == 2: # (seq_len, head_dim//2) - needs expansion
|
|
69
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
|
70
|
+
else:
|
|
71
|
+
raise ValueError(f"Unexpected freqs_ci shape: {freqs_ci.shape}")
|
|
72
|
+
|
|
73
|
+
# Use the same fused kernel as text RoPE
|
|
74
|
+
return LigerLlama4RopeFunction.apply(query, key, freqs_ci)
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
# Note: We only patch the functions, not the classes
|
|
78
|
+
# The original Llama4TextRotaryEmbedding and Llama4VisionRotaryEmbedding classes remain unchanged
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
# Convenience functions for monkey patching
|
|
82
|
+
def apply_liger_llama4_rope_full(modeling_module):
|
|
83
|
+
"""
|
|
84
|
+
Apply Liger optimizations to Llama4 RoPE functions.
|
|
85
|
+
|
|
86
|
+
Args:
|
|
87
|
+
modeling_module: The transformers modeling module to patch
|
|
88
|
+
"""
|
|
89
|
+
# Replace the text RoPE function
|
|
90
|
+
modeling_module.apply_rotary_emb = liger_llama4_text_rotary_pos_emb
|
|
91
|
+
|
|
92
|
+
# Replace the vision RoPE function
|
|
93
|
+
modeling_module.vision_apply_rotary_emb = liger_llama4_vision_rotary_pos_emb
|
|
@@ -255,7 +255,7 @@ def multimodal_forward(
|
|
|
255
255
|
shift_labels = shift_labels.view(-1).to(hidden_device)
|
|
256
256
|
|
|
257
257
|
lce = LigerFusedLinearCrossEntropyLoss()
|
|
258
|
-
loss = lce(self.
|
|
258
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
259
259
|
else:
|
|
260
260
|
logits = self.lm_head(kept_hidden_states)
|
|
261
261
|
if labels is not None:
|
|
@@ -0,0 +1,150 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
9
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
|
10
|
+
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
15
|
+
def lce_forward(
|
|
16
|
+
self,
|
|
17
|
+
input_ids: torch.LongTensor = None,
|
|
18
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
19
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
20
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
21
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
22
|
+
labels: Optional[torch.LongTensor] = None,
|
|
23
|
+
use_cache: Optional[bool] = None,
|
|
24
|
+
output_attentions: Optional[bool] = None,
|
|
25
|
+
output_hidden_states: Optional[bool] = None,
|
|
26
|
+
return_dict: Optional[bool] = None,
|
|
27
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
28
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
29
|
+
skip_logits: Optional[bool] = None,
|
|
30
|
+
**kwargs,
|
|
31
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
32
|
+
r"""
|
|
33
|
+
Args:
|
|
34
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
35
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
36
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
37
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
38
|
+
|
|
39
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
40
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
41
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
42
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
43
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
44
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
45
|
+
|
|
46
|
+
Returns:
|
|
47
|
+
|
|
48
|
+
Example:
|
|
49
|
+
|
|
50
|
+
```python
|
|
51
|
+
>>> from PIL import Image
|
|
52
|
+
>>> from transformers import AutoTokenizer, Glm4vForConditionalGeneration
|
|
53
|
+
|
|
54
|
+
>>> MODEL_PATH = "THUDM/GLM-4.1V-9B-Thinking"
|
|
55
|
+
>>> messages = [
|
|
56
|
+
{
|
|
57
|
+
"role": "user",
|
|
58
|
+
"content": [
|
|
59
|
+
{
|
|
60
|
+
"type": "image",
|
|
61
|
+
"url": "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png"
|
|
62
|
+
},
|
|
63
|
+
{
|
|
64
|
+
"type": "text",
|
|
65
|
+
"text": "describe this image"
|
|
66
|
+
}
|
|
67
|
+
],
|
|
68
|
+
}
|
|
69
|
+
]
|
|
70
|
+
>>> processor = AutoProcessor.from_pretrained(MODEL_PATH, use_fast=True)
|
|
71
|
+
>>> model = Glm4vForConditionalGeneration.from_pretrained(
|
|
72
|
+
pretrained_model_name_or_path=MODEL_PATH,
|
|
73
|
+
torch_dtype=torch.bfloat16,
|
|
74
|
+
device_map="auto",
|
|
75
|
+
)
|
|
76
|
+
>>> inputs = processor.apply_chat_template(
|
|
77
|
+
messages,
|
|
78
|
+
tokenize=True,
|
|
79
|
+
add_generation_prompt=True,
|
|
80
|
+
return_dict=True,
|
|
81
|
+
return_tensors="pt"
|
|
82
|
+
).to(model.device)
|
|
83
|
+
>>> generated_ids = model.generate(**inputs, max_new_tokens=8192)
|
|
84
|
+
output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False)
|
|
85
|
+
<think>Got it, let's describe the image. First, there's a vintage car, specifically a Volkswagen Beetle
|
|
86
|
+
```"""
|
|
87
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
88
|
+
output_hidden_states = (
|
|
89
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
90
|
+
)
|
|
91
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
92
|
+
|
|
93
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
94
|
+
outputs = self.model(
|
|
95
|
+
input_ids=input_ids,
|
|
96
|
+
attention_mask=attention_mask,
|
|
97
|
+
position_ids=position_ids,
|
|
98
|
+
past_key_values=past_key_values,
|
|
99
|
+
inputs_embeds=inputs_embeds,
|
|
100
|
+
use_cache=use_cache,
|
|
101
|
+
output_attentions=output_attentions,
|
|
102
|
+
output_hidden_states=output_hidden_states,
|
|
103
|
+
return_dict=return_dict,
|
|
104
|
+
cache_position=cache_position,
|
|
105
|
+
**kwargs,
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
hidden_states = outputs[0]
|
|
109
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
110
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
111
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
112
|
+
|
|
113
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
114
|
+
logits = None
|
|
115
|
+
loss = None
|
|
116
|
+
|
|
117
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
118
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
119
|
+
|
|
120
|
+
if skip_logits is None:
|
|
121
|
+
# By default, if in training mode, don't materialize logits
|
|
122
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
123
|
+
|
|
124
|
+
if skip_logits:
|
|
125
|
+
loss = LigerForCausalLMLoss(
|
|
126
|
+
hidden_states=kept_hidden_states,
|
|
127
|
+
lm_head_weight=self.lm_head.weight,
|
|
128
|
+
labels=labels,
|
|
129
|
+
shift_labels=shift_labels,
|
|
130
|
+
hidden_size=self.config.hidden_size,
|
|
131
|
+
**kwargs,
|
|
132
|
+
)
|
|
133
|
+
|
|
134
|
+
else:
|
|
135
|
+
logits = self.lm_head(kept_hidden_states)
|
|
136
|
+
if labels is not None:
|
|
137
|
+
loss = self.loss_function(
|
|
138
|
+
logits=logits,
|
|
139
|
+
labels=labels,
|
|
140
|
+
vocab_size=self.config.vocab_size,
|
|
141
|
+
**kwargs,
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
return CausalLMOutputWithPast(
|
|
145
|
+
loss=loss,
|
|
146
|
+
logits=logits,
|
|
147
|
+
past_key_values=outputs.past_key_values,
|
|
148
|
+
hidden_states=outputs.hidden_states,
|
|
149
|
+
attentions=outputs.attentions,
|
|
150
|
+
)
|
|
@@ -13,6 +13,7 @@ def fixed_fused_linear_cross_entropy(
|
|
|
13
13
|
num_items_in_batch: Optional[int] = None,
|
|
14
14
|
ignore_index: int = -100,
|
|
15
15
|
final_logit_softcapping: Optional[float] = None,
|
|
16
|
+
accum_dtype: Optional[torch.dtype] = None,
|
|
16
17
|
**kwargs,
|
|
17
18
|
):
|
|
18
19
|
reduction = "sum" if num_items_in_batch is not None else "mean"
|
|
@@ -23,6 +24,7 @@ def fixed_fused_linear_cross_entropy(
|
|
|
23
24
|
reduction=reduction,
|
|
24
25
|
ignore_index=ignore_index,
|
|
25
26
|
softcap=final_logit_softcapping,
|
|
27
|
+
accum_dtype=accum_dtype,
|
|
26
28
|
)
|
|
27
29
|
if reduction == "sum":
|
|
28
30
|
loss = loss / num_items_in_batch
|
|
@@ -190,7 +190,9 @@ def lce_forward(
|
|
|
190
190
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
191
191
|
)
|
|
192
192
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
193
|
-
|
|
193
|
+
# Filter out accum_dtype from kwargs for model call as MllamaTextModel doesn't accept it in transformers 4.49.0
|
|
194
|
+
# but preserve it for loss function calls
|
|
195
|
+
model_kwargs = {k: v for k, v in kwargs.items() if k != "accum_dtype"}
|
|
194
196
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
195
197
|
outputs = self.model(
|
|
196
198
|
input_ids=input_ids,
|
|
@@ -206,7 +208,7 @@ def lce_forward(
|
|
|
206
208
|
output_hidden_states=output_hidden_states,
|
|
207
209
|
return_dict=return_dict,
|
|
208
210
|
cache_position=cache_position,
|
|
209
|
-
**
|
|
211
|
+
**model_kwargs,
|
|
210
212
|
)
|
|
211
213
|
|
|
212
214
|
hidden_states = outputs[0]
|
|
@@ -5,131 +5,12 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from
|
|
8
|
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
|
9
9
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
10
|
-
from transformers.utils.deprecation import deprecate_kwarg
|
|
11
10
|
|
|
12
|
-
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
13
11
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
14
12
|
|
|
15
13
|
|
|
16
|
-
def lce_forward_deprecated(
|
|
17
|
-
self,
|
|
18
|
-
input_ids: torch.LongTensor = None,
|
|
19
|
-
attention_mask: Optional[torch.Tensor] = None,
|
|
20
|
-
position_ids: Optional[torch.LongTensor] = None,
|
|
21
|
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
22
|
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
23
|
-
labels: Optional[torch.LongTensor] = None,
|
|
24
|
-
use_cache: Optional[bool] = None,
|
|
25
|
-
output_attentions: Optional[bool] = None,
|
|
26
|
-
output_hidden_states: Optional[bool] = None,
|
|
27
|
-
return_dict: Optional[bool] = None,
|
|
28
|
-
cache_position: Optional[torch.LongTensor] = None,
|
|
29
|
-
skip_logits: Optional[bool] = None,
|
|
30
|
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
31
|
-
r"""
|
|
32
|
-
Copy paste phi3 forward from transfomers v4.44.2 but replace torch cross entropy with liger fused linear cross entropy
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
Args:
|
|
36
|
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
37
|
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
38
|
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
39
|
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
40
|
-
|
|
41
|
-
Returns:
|
|
42
|
-
|
|
43
|
-
Example:
|
|
44
|
-
|
|
45
|
-
```python
|
|
46
|
-
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
|
47
|
-
|
|
48
|
-
>>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
|
49
|
-
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
|
50
|
-
|
|
51
|
-
>>> prompt = "This is an example script ."
|
|
52
|
-
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
53
|
-
|
|
54
|
-
>>> # Generate
|
|
55
|
-
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
56
|
-
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
57
|
-
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
|
|
58
|
-
```"""
|
|
59
|
-
|
|
60
|
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
61
|
-
output_hidden_states = (
|
|
62
|
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
63
|
-
)
|
|
64
|
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
65
|
-
|
|
66
|
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
67
|
-
outputs = self.model(
|
|
68
|
-
input_ids=input_ids,
|
|
69
|
-
attention_mask=attention_mask,
|
|
70
|
-
position_ids=position_ids,
|
|
71
|
-
past_key_values=past_key_values,
|
|
72
|
-
inputs_embeds=inputs_embeds,
|
|
73
|
-
use_cache=use_cache,
|
|
74
|
-
output_attentions=output_attentions,
|
|
75
|
-
output_hidden_states=output_hidden_states,
|
|
76
|
-
return_dict=return_dict,
|
|
77
|
-
)
|
|
78
|
-
|
|
79
|
-
hidden_states = outputs[0]
|
|
80
|
-
|
|
81
|
-
loss = None
|
|
82
|
-
logits = None
|
|
83
|
-
|
|
84
|
-
if skip_logits and labels is None:
|
|
85
|
-
raise ValueError("skip_logits is True, but labels is None")
|
|
86
|
-
|
|
87
|
-
if skip_logits is None:
|
|
88
|
-
# By default, if in training mode, don't materialize logits
|
|
89
|
-
skip_logits = self.training and labels is not None
|
|
90
|
-
|
|
91
|
-
if skip_logits:
|
|
92
|
-
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
93
|
-
shift_labels = labels[..., 1:].contiguous()
|
|
94
|
-
|
|
95
|
-
# flatten tokens
|
|
96
|
-
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
97
|
-
shift_labels = shift_labels.view(-1)
|
|
98
|
-
|
|
99
|
-
lce = LigerFusedLinearCrossEntropyLoss()
|
|
100
|
-
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
101
|
-
else:
|
|
102
|
-
logits = self.lm_head(hidden_states)
|
|
103
|
-
|
|
104
|
-
loss = None
|
|
105
|
-
if labels is not None:
|
|
106
|
-
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
|
107
|
-
logits = logits.float()
|
|
108
|
-
# Shift so that tokens < n predict n
|
|
109
|
-
shift_logits = logits[..., :-1, :].contiguous()
|
|
110
|
-
shift_labels = labels[..., 1:].contiguous()
|
|
111
|
-
# Flatten the tokens
|
|
112
|
-
loss_fct = CrossEntropyLoss()
|
|
113
|
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
114
|
-
shift_labels = shift_labels.view(-1)
|
|
115
|
-
# Enable model parallelism
|
|
116
|
-
shift_labels = shift_labels.to(shift_logits.device)
|
|
117
|
-
loss = loss_fct(shift_logits, shift_labels)
|
|
118
|
-
|
|
119
|
-
if not return_dict:
|
|
120
|
-
output = (logits,) + outputs[1:]
|
|
121
|
-
return (loss,) + output if loss is not None else output
|
|
122
|
-
|
|
123
|
-
return CausalLMOutputWithPast(
|
|
124
|
-
loss=loss,
|
|
125
|
-
logits=logits,
|
|
126
|
-
past_key_values=outputs.past_key_values,
|
|
127
|
-
hidden_states=outputs.hidden_states,
|
|
128
|
-
attentions=outputs.attentions,
|
|
129
|
-
)
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
133
14
|
def lce_forward(
|
|
134
15
|
self,
|
|
135
16
|
input_ids: torch.LongTensor = None,
|
|
@@ -148,73 +29,41 @@ def lce_forward(
|
|
|
148
29
|
**kwargs,
|
|
149
30
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
150
31
|
r"""
|
|
151
|
-
Args:
|
|
152
|
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
153
|
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
154
|
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
155
|
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
156
|
-
|
|
157
|
-
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
158
|
-
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
159
|
-
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
160
|
-
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
161
|
-
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
162
|
-
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
163
|
-
|
|
164
|
-
Returns:
|
|
165
|
-
|
|
166
32
|
Example:
|
|
167
33
|
|
|
168
34
|
```python
|
|
169
35
|
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
|
170
36
|
|
|
171
|
-
>>> model = Phi3ForCausalLM.from_pretrained("
|
|
172
|
-
>>> tokenizer = AutoTokenizer.from_pretrained("
|
|
37
|
+
>>> model = Phi3ForCausalLM.from_pretrained("meta-phi3/Phi3-2-7b-hf")
|
|
38
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-phi3/Phi3-2-7b-hf")
|
|
173
39
|
|
|
174
|
-
>>> prompt = "
|
|
40
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
175
41
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
176
42
|
|
|
177
43
|
>>> # Generate
|
|
178
44
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
179
45
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
180
|
-
|
|
46
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
181
47
|
```"""
|
|
182
48
|
|
|
183
|
-
from transformers.models.phi3.modeling_phi3 import logging
|
|
184
|
-
|
|
185
|
-
logger = logging.get_logger(__name__)
|
|
186
|
-
|
|
187
|
-
if (
|
|
188
|
-
use_cache
|
|
189
|
-
and self.config.rope_scaling
|
|
190
|
-
and cache_position is not None
|
|
191
|
-
and cache_position[0] == self.config.original_max_position_embeddings
|
|
192
|
-
):
|
|
193
|
-
logger.warning(
|
|
194
|
-
f"If you are not using the generate method, you may encounter nonsensical outputs after the {self.config.original_max_position_embeddings}th token, as the KV cache needs to be recomputed."
|
|
195
|
-
)
|
|
196
|
-
|
|
197
49
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
198
50
|
output_hidden_states = (
|
|
199
51
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
200
52
|
)
|
|
201
53
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
202
54
|
|
|
203
|
-
|
|
204
|
-
outputs = self.model(
|
|
55
|
+
outputs: BaseModelOutputWithPast = self.model(
|
|
205
56
|
input_ids=input_ids,
|
|
206
57
|
attention_mask=attention_mask,
|
|
207
58
|
position_ids=position_ids,
|
|
208
59
|
past_key_values=past_key_values,
|
|
209
60
|
inputs_embeds=inputs_embeds,
|
|
210
61
|
use_cache=use_cache,
|
|
211
|
-
|
|
212
|
-
output_hidden_states=output_hidden_states,
|
|
213
|
-
return_dict=return_dict,
|
|
62
|
+
cache_position=cache_position,
|
|
214
63
|
**kwargs,
|
|
215
64
|
)
|
|
216
65
|
|
|
217
|
-
hidden_states = outputs
|
|
66
|
+
hidden_states = outputs.last_hidden_state
|
|
218
67
|
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
219
68
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
220
69
|
kept_hidden_states = hidden_states[:, slice_indices, :]
|