liger-kernel 0.6.0__py3-none-any.whl → 0.6.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/dpo_loss.py +54 -3
- liger_kernel/ops/fused_add_rms_norm.py +412 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +21 -13
- liger_kernel/ops/layer_norm.py +126 -89
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/rms_norm.py +2 -2
- liger_kernel/ops/rope.py +1 -1
- liger_kernel/transformers/__init__.py +20 -0
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/functional.py +7 -0
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +3 -0
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/gemma3.py +1 -1
- liger_kernel/transformers/model/glm4v.py +150 -0
- liger_kernel/transformers/model/loss_utils.py +2 -0
- liger_kernel/transformers/model/mllama.py +4 -2
- liger_kernel/transformers/model/phi3.py +8 -159
- liger_kernel/transformers/model/smollm3.py +189 -0
- liger_kernel/transformers/monkey_patch.py +185 -32
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/METADATA +12 -14
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/RECORD +26 -19
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/WHEEL +0 -0
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/licenses/LICENSE +0 -0
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/licenses/NOTICE +0 -0
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/top_level.txt +0 -0
liger_kernel/ops/layer_norm.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
|
1
|
-
import math
|
|
2
1
|
import operator
|
|
3
2
|
|
|
4
3
|
import torch
|
|
@@ -43,30 +42,45 @@ def _layer_norm_forward_kernel(
|
|
|
43
42
|
https://arxiv.org/abs/1607.06450
|
|
44
43
|
https://github.com/karpathy/llm.c/blob/master/doc/layernorm/layernorm.md
|
|
45
44
|
"""
|
|
46
|
-
row_idx = tl.program_id(0)
|
|
45
|
+
row_idx = tl.program_id(0).to(tl.int64)
|
|
47
46
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
48
47
|
mask = col_offsets < n_cols
|
|
49
48
|
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
49
|
+
# Pre-load weights and bias in fp32 to avoid repeated conversions
|
|
50
|
+
W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0.0)
|
|
51
|
+
B_row = tl.load(B_ptr + col_offsets, mask=mask, other=0.0)
|
|
52
|
+
W_f32 = W_row.to(tl.float32)
|
|
53
|
+
B_f32 = B_row.to(tl.float32)
|
|
54
|
+
|
|
55
|
+
# Calculate pointers for this row
|
|
56
|
+
row_X_ptr = X_ptr + row_idx * X_row_stride
|
|
57
|
+
row_Y_ptr = Y_ptr + row_idx * Y_row_stride
|
|
58
|
+
row_Mean_ptr = Mean_ptr + row_idx * Mean_row_stride
|
|
59
|
+
row_RSTD_ptr = RSTD_ptr + row_idx * RSTD_row_stride
|
|
60
|
+
|
|
61
|
+
# Load input data and convert to fp32 for numerical stability
|
|
62
|
+
X_row = tl.load(row_X_ptr + col_offsets, mask=mask, other=0.0)
|
|
63
|
+
X_f32 = X_row.to(tl.float32)
|
|
64
|
+
|
|
65
|
+
# Compute statistics in fp32 for numerical stability
|
|
66
|
+
n_cols_f32 = n_cols.to(tl.float32)
|
|
67
|
+
mean = tl.sum(X_f32, axis=0) / n_cols_f32
|
|
68
|
+
X_centered = X_f32 - mean
|
|
69
|
+
# Apply mask to variance calculation to exclude contributions from masked elements
|
|
70
|
+
X_centered_masked = tl.where(mask, X_centered, 0.0)
|
|
71
|
+
var = tl.sum(X_centered_masked * X_centered_masked, axis=0) / n_cols_f32
|
|
62
72
|
rstd = rsqrt(var + eps)
|
|
63
73
|
|
|
64
|
-
|
|
65
|
-
tl.store(
|
|
74
|
+
# Store statistics (convert back to original dtype only once)
|
|
75
|
+
tl.store(row_Mean_ptr, mean.to(X_row.dtype))
|
|
76
|
+
tl.store(row_RSTD_ptr, rstd.to(X_row.dtype))
|
|
66
77
|
|
|
67
|
-
|
|
78
|
+
# Fused normalization and affine transformation
|
|
79
|
+
# Y = (X - mean) * rstd * W + B = X_centered * rstd * W + B
|
|
80
|
+
Y_f32 = X_centered * rstd * W_f32 + B_f32
|
|
68
81
|
|
|
69
|
-
|
|
82
|
+
# Store output (single conversion back to original dtype)
|
|
83
|
+
tl.store(row_Y_ptr + col_offsets, Y_f32.to(X_row.dtype), mask=mask)
|
|
70
84
|
|
|
71
85
|
|
|
72
86
|
@triton.jit
|
|
@@ -81,73 +95,87 @@ def _layer_norm_backward_kernel(
|
|
|
81
95
|
DY_ptr, # pointer to output grad, shape (n_rows, n_cols)
|
|
82
96
|
stride_x, # stride of each row in input
|
|
83
97
|
stride_dx, # stride of each row in input grad
|
|
84
|
-
stride_dw, # stride of each row in weights grad
|
|
85
|
-
stride_db, # stride of each row in bias grad
|
|
86
98
|
stride_dy, # stride of each row in output grad
|
|
87
|
-
n_rows,
|
|
88
99
|
n_cols,
|
|
89
|
-
rows_per_program: tl.constexpr,
|
|
90
100
|
BLOCK_SIZE: tl.constexpr,
|
|
91
101
|
dtype: tl.constexpr,
|
|
102
|
+
atomic_dtype: tl.constexpr,
|
|
92
103
|
):
|
|
93
104
|
"""
|
|
94
105
|
References:
|
|
95
106
|
https://arxiv.org/abs/1607.06450
|
|
96
107
|
https://github.com/karpathy/llm.c/blob/master/doc/layernorm/layernorm.md
|
|
97
|
-
https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
|
|
98
|
-
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/triton/layer_norm.py
|
|
99
108
|
"""
|
|
100
|
-
|
|
101
|
-
row_start = row_block_id * rows_per_program
|
|
102
|
-
row_end = min((row_block_id + 1) * rows_per_program, n_rows)
|
|
109
|
+
row_idx = tl.program_id(0).to(tl.int64)
|
|
103
110
|
cols = tl.arange(0, BLOCK_SIZE)
|
|
104
111
|
mask = cols < n_cols
|
|
105
112
|
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
tl.store(
|
|
139
|
-
|
|
113
|
+
# Pre-load weights once (same optimization as forward pass)
|
|
114
|
+
w = tl.load(W_ptr + cols, mask=mask, other=0.0)
|
|
115
|
+
w_f32 = w.to(tl.float32)
|
|
116
|
+
n_cols_f32 = n_cols.to(tl.float32)
|
|
117
|
+
|
|
118
|
+
# Calculate pointers for this specific row
|
|
119
|
+
row_X_ptr = X_ptr + row_idx * stride_x
|
|
120
|
+
row_DX_ptr = DX_ptr + row_idx * stride_dx
|
|
121
|
+
row_DY_ptr = DY_ptr + row_idx * stride_dy
|
|
122
|
+
row_Mean_ptr = Mean_ptr + row_idx
|
|
123
|
+
row_RSTD_ptr = RSTD_ptr + row_idx
|
|
124
|
+
|
|
125
|
+
# Load data for this row
|
|
126
|
+
x = tl.load(row_X_ptr + cols, mask=mask, other=0.0)
|
|
127
|
+
dy = tl.load(row_DY_ptr + cols, mask=mask, other=0.0)
|
|
128
|
+
mean = tl.load(row_Mean_ptr)
|
|
129
|
+
rstd = tl.load(row_RSTD_ptr)
|
|
130
|
+
|
|
131
|
+
# Convert to fp32 for numerical stability
|
|
132
|
+
x_f32 = x.to(tl.float32)
|
|
133
|
+
dy_f32 = dy.to(tl.float32)
|
|
134
|
+
mean_f32 = mean.to(tl.float32)
|
|
135
|
+
rstd_f32 = rstd.to(tl.float32)
|
|
136
|
+
|
|
137
|
+
# Compute backward pass for this row
|
|
138
|
+
x_hat = (x_f32 - mean_f32) * rstd_f32
|
|
139
|
+
wdy = w_f32 * dy_f32
|
|
140
|
+
c1 = tl.sum(x_hat * wdy, axis=0) / n_cols_f32
|
|
141
|
+
c2 = tl.sum(wdy, axis=0) / n_cols_f32
|
|
142
|
+
dx = (wdy - (x_hat * c1 + c2)) * rstd_f32
|
|
143
|
+
|
|
144
|
+
# Store input gradient
|
|
145
|
+
tl.store(row_DX_ptr + cols, dx.to(dtype), mask=mask)
|
|
146
|
+
|
|
147
|
+
# Accumulate weight and bias gradients using atomic operations
|
|
148
|
+
dw = dy_f32 * x_hat
|
|
149
|
+
db = dy_f32
|
|
150
|
+
tl.atomic_add(DW_ptr + cols, dw.to(atomic_dtype), mask=mask)
|
|
151
|
+
tl.atomic_add(DB_ptr + cols, db.to(atomic_dtype), mask=mask)
|
|
140
152
|
|
|
141
153
|
|
|
142
154
|
def layer_norm_forward(X, W, B, eps):
|
|
155
|
+
"""
|
|
156
|
+
Args:
|
|
157
|
+
X: Input tensor of shape (..., hidden_size)
|
|
158
|
+
W: Weight tensor of shape (hidden_size,)
|
|
159
|
+
B: Bias tensor of shape (hidden_size,)
|
|
160
|
+
eps: Small constant for numerical stability
|
|
161
|
+
|
|
162
|
+
Returns:
|
|
163
|
+
Tuple of (output, input, mean, rstd, block_size, num_warps)
|
|
164
|
+
"""
|
|
143
165
|
shape = X.shape
|
|
144
166
|
dim = shape[-1]
|
|
145
167
|
X = X.view(-1, dim)
|
|
146
168
|
n_rows, n_cols = X.shape
|
|
169
|
+
|
|
170
|
+
# Calculate optimal block size and warp configuration
|
|
147
171
|
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
|
|
172
|
+
|
|
173
|
+
# Allocate output tensors
|
|
148
174
|
Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
|
|
149
175
|
Mean = torch.empty(n_rows, dtype=X.dtype, device=X.device)
|
|
150
176
|
RSTD = torch.empty(n_rows, dtype=X.dtype, device=X.device)
|
|
177
|
+
|
|
178
|
+
# Validate input dimensions
|
|
151
179
|
if X.shape[1] != W.shape[0]:
|
|
152
180
|
raise ValueError(
|
|
153
181
|
f"Incompatible dimensions: input feature size (X.shape[1]={X.shape[1]}) "
|
|
@@ -159,7 +187,9 @@ def layer_norm_forward(X, W, B, eps):
|
|
|
159
187
|
if X.device.type == "xpu":
|
|
160
188
|
kernel_args["grf_mode"] = "large"
|
|
161
189
|
|
|
162
|
-
|
|
190
|
+
# Launch kernel with one thread block per row for optimal performance
|
|
191
|
+
grid = (n_rows,)
|
|
192
|
+
_layer_norm_forward_kernel[grid](
|
|
163
193
|
Y,
|
|
164
194
|
Y.stride(0),
|
|
165
195
|
X,
|
|
@@ -176,35 +206,43 @@ def layer_norm_forward(X, W, B, eps):
|
|
|
176
206
|
eps,
|
|
177
207
|
BLOCK_SIZE=BLOCK_SIZE,
|
|
178
208
|
num_warps=num_warps,
|
|
179
|
-
**kernel_args,
|
|
209
|
+
**kernel_args,
|
|
180
210
|
)
|
|
211
|
+
|
|
181
212
|
return Y.view(*shape), X, Mean, RSTD, BLOCK_SIZE, num_warps
|
|
182
213
|
|
|
183
214
|
|
|
184
215
|
def layer_norm_backward(dY, X, W, B, Mean, RSTD):
|
|
216
|
+
"""
|
|
217
|
+
Args:
|
|
218
|
+
dY: Gradient of output
|
|
219
|
+
X: Input tensor
|
|
220
|
+
W: Weight tensor
|
|
221
|
+
B: Bias tensor
|
|
222
|
+
Mean: Pre-computed mean
|
|
223
|
+
RSTD: Pre-computed reciprocal standard deviation
|
|
224
|
+
|
|
225
|
+
Returns:
|
|
226
|
+
Tuple of (input_grad, weight_grad, bias_grad)
|
|
227
|
+
"""
|
|
185
228
|
shape = dY.shape
|
|
186
229
|
dim = shape[-1]
|
|
187
230
|
dY = dY.view(-1, dim)
|
|
188
231
|
n_rows, n_cols = dY.shape
|
|
189
232
|
|
|
190
|
-
|
|
191
|
-
if X.device.type == "cuda":
|
|
192
|
-
sm_count = torch.cuda.get_device_properties(X.device).multi_processor_count
|
|
193
|
-
elif X.device.type == "xpu":
|
|
194
|
-
sm_count = torch.xpu.get_device_properties(X.device).gpu_eu_count
|
|
195
|
-
|
|
233
|
+
# Allocate gradient tensors
|
|
196
234
|
DX = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
|
|
197
|
-
|
|
198
|
-
|
|
235
|
+
# Use float32 for weight/bias gradients if bfloat16 (due to atomic_add limitation)
|
|
236
|
+
grad_dtype = torch.float32 if W.dtype == torch.bfloat16 else W.dtype
|
|
237
|
+
DW = torch.zeros(n_cols, dtype=grad_dtype, device=W.device)
|
|
238
|
+
DB = torch.zeros(n_cols, dtype=grad_dtype, device=W.device)
|
|
199
239
|
|
|
240
|
+
# Calculate optimal block size and warp configuration
|
|
200
241
|
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
|
|
201
242
|
if n_cols > BLOCK_SIZE:
|
|
202
|
-
raise RuntimeError(
|
|
203
|
-
f"Feature dimension {n_cols} exceeds maximum supported size of {BLOCK_SIZE}. Consider using a smaller feature dimension."
|
|
204
|
-
)
|
|
243
|
+
raise RuntimeError(f"Feature dimension {n_cols} exceeds maximum supported size of {BLOCK_SIZE}.")
|
|
205
244
|
|
|
206
|
-
|
|
207
|
-
grid = (sm_count,)
|
|
245
|
+
# Determine dtype for triton operations
|
|
208
246
|
triton_dtype = (
|
|
209
247
|
tl.float32
|
|
210
248
|
if X.dtype == torch.float32
|
|
@@ -212,41 +250,40 @@ def layer_norm_backward(dY, X, W, B, Mean, RSTD):
|
|
|
212
250
|
if X.dtype == torch.bfloat16
|
|
213
251
|
else tl.float16
|
|
214
252
|
if X.dtype == torch.float16
|
|
215
|
-
else tl.float32 # fallback
|
|
253
|
+
else tl.float32 # fallback
|
|
216
254
|
)
|
|
217
255
|
|
|
256
|
+
# Use float32 for atomic operations if bfloat16 is not supported
|
|
257
|
+
atomic_dtype = tl.float32 if triton_dtype == tl.bfloat16 else triton_dtype
|
|
258
|
+
|
|
259
|
+
kernel_args = {"num_warps": num_warps}
|
|
218
260
|
# XPU-specific optimization
|
|
219
|
-
kernel_args = {}
|
|
220
261
|
if X.device.type == "xpu":
|
|
221
262
|
kernel_args.update({"grf_mode": "large", "num_warps": 32, "num_stages": 4})
|
|
222
263
|
|
|
264
|
+
# Launch kernel with one thread block per row for optimal performance
|
|
265
|
+
grid = (n_rows,)
|
|
223
266
|
_layer_norm_backward_kernel[grid](
|
|
224
267
|
X,
|
|
225
268
|
W,
|
|
226
269
|
Mean,
|
|
227
270
|
RSTD,
|
|
228
271
|
DX,
|
|
229
|
-
|
|
230
|
-
|
|
272
|
+
DW,
|
|
273
|
+
DB,
|
|
231
274
|
dY,
|
|
232
275
|
X.stride(0),
|
|
233
276
|
DX.stride(0),
|
|
234
|
-
_DW.stride(0),
|
|
235
|
-
_DB.stride(0),
|
|
236
277
|
dY.stride(0),
|
|
237
|
-
n_rows,
|
|
238
278
|
n_cols,
|
|
239
|
-
rows_per_program,
|
|
240
279
|
BLOCK_SIZE=BLOCK_SIZE,
|
|
241
280
|
dtype=triton_dtype,
|
|
242
|
-
|
|
281
|
+
atomic_dtype=atomic_dtype,
|
|
282
|
+
**kernel_args,
|
|
243
283
|
)
|
|
244
284
|
|
|
245
|
-
DW = _DW.sum(dim=0).to(W.dtype)
|
|
246
|
-
DB = _DB.sum(dim=0).to(W.dtype)
|
|
247
|
-
|
|
248
285
|
DX = DX.view(*shape)
|
|
249
|
-
return DX, DW, DB
|
|
286
|
+
return DX, DW.to(W.dtype), DB.to(W.dtype)
|
|
250
287
|
|
|
251
288
|
|
|
252
289
|
class LigerLayerNormFunction(torch.autograd.Function):
|
|
@@ -0,0 +1,225 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import triton
|
|
3
|
+
import triton.language as tl
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def _prepare_freqs(freqs_cis: torch.Tensor, seq_len: int, head_dim_half: int):
|
|
7
|
+
# Split or unpack complex frequencies into real and imag parts
|
|
8
|
+
if freqs_cis.is_complex():
|
|
9
|
+
freqs_real = freqs_cis.real
|
|
10
|
+
freqs_imag = freqs_cis.imag
|
|
11
|
+
else:
|
|
12
|
+
# Already split: last dim should be 2*head_dim_half
|
|
13
|
+
if freqs_cis.shape[-1] == 2 * head_dim_half:
|
|
14
|
+
freqs_real = freqs_cis[..., :head_dim_half]
|
|
15
|
+
freqs_imag = freqs_cis[..., head_dim_half:]
|
|
16
|
+
else:
|
|
17
|
+
raise ValueError(
|
|
18
|
+
f"Unexpected freqs_cis shape for non-complex input: {freqs_cis.shape}, expected last dim = {2 * head_dim_half}"
|
|
19
|
+
)
|
|
20
|
+
|
|
21
|
+
# Canonicalize to shape (seq_len, head_dim_half):
|
|
22
|
+
# 1) Ensure the last dimension is head_dim_half
|
|
23
|
+
if freqs_real.shape[-1] != head_dim_half:
|
|
24
|
+
raise ValueError(f"Unexpected last dim for freqs: {freqs_real.shape[-1]} (expected {head_dim_half})")
|
|
25
|
+
# 2) Flatten all leading dims to a single row dimension
|
|
26
|
+
freqs_real = freqs_real.reshape(-1, head_dim_half)
|
|
27
|
+
freqs_imag = freqs_imag.reshape(-1, head_dim_half)
|
|
28
|
+
# 3) If we have fewer rows than seq_len, allow broadcasting when single row
|
|
29
|
+
if freqs_real.shape[0] < seq_len:
|
|
30
|
+
if freqs_real.shape[0] == 1:
|
|
31
|
+
freqs_real = freqs_real.expand(seq_len, -1)
|
|
32
|
+
freqs_imag = freqs_imag.expand(seq_len, -1)
|
|
33
|
+
else:
|
|
34
|
+
raise ValueError(f"Insufficient rows in freqs: {freqs_real.shape[0]} < seq_len={seq_len}")
|
|
35
|
+
# 4) If we have more rows than seq_len (e.g., batch present), take the first seq_len rows
|
|
36
|
+
elif freqs_real.shape[0] > seq_len:
|
|
37
|
+
freqs_real = freqs_real[:seq_len]
|
|
38
|
+
freqs_imag = freqs_imag[:seq_len]
|
|
39
|
+
|
|
40
|
+
return freqs_real, freqs_imag
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def _maybe_to_dtype(t: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
|
|
44
|
+
return t if t.dtype == dtype else t.to(dtype)
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
def _maybe_contiguous(t: torch.Tensor) -> torch.Tensor:
|
|
48
|
+
return t if t.is_contiguous() else t.contiguous()
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def _cast_and_contiguous(q, k, freqs_real, freqs_imag):
|
|
52
|
+
# Choose compute dtype: use fp32 only when inputs are fp32; otherwise keep input dtype for performance
|
|
53
|
+
compute_dtype = torch.float32 if q.dtype == torch.float32 else q.dtype
|
|
54
|
+
|
|
55
|
+
# Make sure q/k share the same dtype before casting to compute dtype
|
|
56
|
+
if k.dtype != q.dtype:
|
|
57
|
+
k = k.to(q.dtype)
|
|
58
|
+
|
|
59
|
+
q = _maybe_contiguous(_maybe_to_dtype(q, compute_dtype))
|
|
60
|
+
k = _maybe_contiguous(_maybe_to_dtype(k, compute_dtype))
|
|
61
|
+
freqs_real = _maybe_contiguous(_maybe_to_dtype(freqs_real, compute_dtype))
|
|
62
|
+
freqs_imag = _maybe_contiguous(_maybe_to_dtype(freqs_imag, compute_dtype))
|
|
63
|
+
return q, k, freqs_real, freqs_imag
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
@triton.jit
|
|
67
|
+
def _llama4_rope_kernel(
|
|
68
|
+
q_ptr,
|
|
69
|
+
k_ptr,
|
|
70
|
+
freqs_real_ptr,
|
|
71
|
+
freqs_imag_ptr,
|
|
72
|
+
q_row_stride,
|
|
73
|
+
k_row_stride,
|
|
74
|
+
q_head_stride,
|
|
75
|
+
k_head_stride,
|
|
76
|
+
freqs_row_stride,
|
|
77
|
+
seq_len,
|
|
78
|
+
batch_size,
|
|
79
|
+
imag_sign,
|
|
80
|
+
head_dim_half: tl.constexpr,
|
|
81
|
+
n_q_heads: tl.constexpr,
|
|
82
|
+
n_k_heads: tl.constexpr,
|
|
83
|
+
BLOCK_SIZE: tl.constexpr,
|
|
84
|
+
):
|
|
85
|
+
"""
|
|
86
|
+
H100-optimized RoPE kernel with improved parallelization across heads and dimensions.
|
|
87
|
+
Grid: (batch*seq, head)
|
|
88
|
+
"""
|
|
89
|
+
# 2D grid
|
|
90
|
+
pid_bs = tl.program_id(0) # over batch*seq
|
|
91
|
+
pid_h = tl.program_id(1) # over heads
|
|
92
|
+
|
|
93
|
+
batch_idx = pid_bs // seq_len
|
|
94
|
+
seq_idx = pid_bs % seq_len
|
|
95
|
+
|
|
96
|
+
# Bounds check
|
|
97
|
+
if batch_idx >= batch_size or seq_idx >= seq_len:
|
|
98
|
+
return
|
|
99
|
+
|
|
100
|
+
# Base pointers for this (batch, seq) position
|
|
101
|
+
base_offset = batch_idx * seq_len + seq_idx
|
|
102
|
+
q_base = q_ptr + base_offset * q_row_stride
|
|
103
|
+
k_base = k_ptr + base_offset * k_row_stride
|
|
104
|
+
|
|
105
|
+
# Tiling over dim/2
|
|
106
|
+
for d_start in tl.static_range(0, head_dim_half, BLOCK_SIZE):
|
|
107
|
+
d_indices = d_start + tl.arange(0, BLOCK_SIZE)
|
|
108
|
+
mask_d = d_indices < head_dim_half
|
|
109
|
+
|
|
110
|
+
# Load frequencies once per tile (freqs layout: [seq_len, head_dim_half])
|
|
111
|
+
freq_idx = d_indices
|
|
112
|
+
freqs_real = tl.load(freqs_real_ptr + seq_idx * freqs_row_stride + freq_idx, mask=mask_d, other=0.0)
|
|
113
|
+
freqs_imag = tl.load(freqs_imag_ptr + seq_idx * freqs_row_stride + freq_idx, mask=mask_d, other=0.0)
|
|
114
|
+
freqs_imag = freqs_imag * imag_sign
|
|
115
|
+
|
|
116
|
+
# Process one query head per program in pid_h
|
|
117
|
+
if pid_h < n_q_heads:
|
|
118
|
+
q_head_ptr = q_base + pid_h * q_head_stride
|
|
119
|
+
q_real = tl.load(q_head_ptr + d_indices * 2, mask=mask_d, other=0.0)
|
|
120
|
+
q_imag = tl.load(q_head_ptr + d_indices * 2 + 1, mask=mask_d, other=0.0)
|
|
121
|
+
|
|
122
|
+
# Complex multiply with FMAs: (a+ib)*(c+i d) = (a*c - b*d) + i(a*d + b*c)
|
|
123
|
+
new_q_real = tl.math.fma(q_real, freqs_real, -(q_imag * freqs_imag))
|
|
124
|
+
new_q_imag = tl.math.fma(q_real, freqs_imag, q_imag * freqs_real)
|
|
125
|
+
|
|
126
|
+
tl.store(q_head_ptr + d_indices * 2, new_q_real, mask=mask_d)
|
|
127
|
+
tl.store(q_head_ptr + d_indices * 2 + 1, new_q_imag, mask=mask_d)
|
|
128
|
+
|
|
129
|
+
# Process one key head per program in pid_h
|
|
130
|
+
if pid_h < n_k_heads:
|
|
131
|
+
k_head_ptr = k_base + pid_h * k_head_stride
|
|
132
|
+
k_real = tl.load(k_head_ptr + d_indices * 2, mask=mask_d, other=0.0)
|
|
133
|
+
k_imag = tl.load(k_head_ptr + d_indices * 2 + 1, mask=mask_d, other=0.0)
|
|
134
|
+
|
|
135
|
+
new_k_real = tl.math.fma(k_real, freqs_real, -(k_imag * freqs_imag))
|
|
136
|
+
new_k_imag = tl.math.fma(k_real, freqs_imag, k_imag * freqs_real)
|
|
137
|
+
|
|
138
|
+
tl.store(k_head_ptr + d_indices * 2, new_k_real, mask=mask_d)
|
|
139
|
+
tl.store(k_head_ptr + d_indices * 2 + 1, new_k_imag, mask=mask_d)
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
def _select_kernel_meta(head_dim_half: int):
|
|
143
|
+
# Heuristic tuning for block size and num_warps
|
|
144
|
+
if head_dim_half >= 256:
|
|
145
|
+
return 128, 8
|
|
146
|
+
if head_dim_half >= 96:
|
|
147
|
+
return 128, 4
|
|
148
|
+
if head_dim_half >= 48:
|
|
149
|
+
return 64, 4
|
|
150
|
+
if head_dim_half >= 24:
|
|
151
|
+
return 32, 2
|
|
152
|
+
return 16, 2
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
def llama4_rope_forward(q, k, freqs_cis, BLOCK_SIZE: int = None, imag_sign: float = 1.0):
|
|
156
|
+
# Save original dtype for casting back
|
|
157
|
+
original_dtype = q.dtype
|
|
158
|
+
|
|
159
|
+
batch_size, seq_len, n_q_heads, head_dim = q.shape
|
|
160
|
+
_, _, n_k_heads, _ = k.shape
|
|
161
|
+
head_dim_half = head_dim // 2
|
|
162
|
+
|
|
163
|
+
# Prepare frequencies
|
|
164
|
+
freqs_real, freqs_imag = _prepare_freqs(freqs_cis, seq_len, head_dim_half)
|
|
165
|
+
|
|
166
|
+
# Cast to appropriate dtype and make contiguous only when needed
|
|
167
|
+
q, k, freqs_real, freqs_imag = _cast_and_contiguous(q, k, freqs_real, freqs_imag)
|
|
168
|
+
|
|
169
|
+
# H100-optimized meta-params
|
|
170
|
+
if BLOCK_SIZE is None:
|
|
171
|
+
BLOCK_SIZE, num_warps = _select_kernel_meta(head_dim_half)
|
|
172
|
+
else:
|
|
173
|
+
# Provide a default num_warps if caller pins BLOCK_SIZE
|
|
174
|
+
_, num_warps = _select_kernel_meta(head_dim_half)
|
|
175
|
+
|
|
176
|
+
# 2D grid: one program per (batch, seq, head)
|
|
177
|
+
n_heads_max = max(n_q_heads, n_k_heads)
|
|
178
|
+
grid = (batch_size * seq_len, n_heads_max)
|
|
179
|
+
|
|
180
|
+
# Launch kernel
|
|
181
|
+
_llama4_rope_kernel[grid](
|
|
182
|
+
q,
|
|
183
|
+
k,
|
|
184
|
+
freqs_real,
|
|
185
|
+
freqs_imag,
|
|
186
|
+
q.stride(1),
|
|
187
|
+
k.stride(1),
|
|
188
|
+
q.stride(2),
|
|
189
|
+
k.stride(2),
|
|
190
|
+
freqs_real.stride(0),
|
|
191
|
+
seq_len,
|
|
192
|
+
batch_size,
|
|
193
|
+
imag_sign,
|
|
194
|
+
head_dim_half,
|
|
195
|
+
n_q_heads,
|
|
196
|
+
n_k_heads,
|
|
197
|
+
BLOCK_SIZE,
|
|
198
|
+
num_warps=num_warps,
|
|
199
|
+
num_stages=2,
|
|
200
|
+
)
|
|
201
|
+
|
|
202
|
+
# Cast back to original dtype only if it differs from compute dtype
|
|
203
|
+
if q.dtype != original_dtype:
|
|
204
|
+
q = q.to(original_dtype)
|
|
205
|
+
if k.dtype != original_dtype:
|
|
206
|
+
k = k.to(original_dtype)
|
|
207
|
+
|
|
208
|
+
return q, k
|
|
209
|
+
|
|
210
|
+
|
|
211
|
+
class LigerLlama4RopeFunction(torch.autograd.Function):
|
|
212
|
+
@staticmethod
|
|
213
|
+
def forward(ctx, q, k, freqs_cis, BLOCK_SIZE: int = None):
|
|
214
|
+
q_out, k_out = llama4_rope_forward(q, k, freqs_cis, BLOCK_SIZE, imag_sign=1.0)
|
|
215
|
+
ctx.save_for_backward(freqs_cis.detach() if isinstance(freqs_cis, torch.Tensor) else freqs_cis)
|
|
216
|
+
ctx.BLOCK_SIZE = BLOCK_SIZE
|
|
217
|
+
return q_out, k_out
|
|
218
|
+
|
|
219
|
+
@staticmethod
|
|
220
|
+
def backward(ctx, dq, dk):
|
|
221
|
+
(freqs_cis,) = ctx.saved_tensors
|
|
222
|
+
BLOCK_SIZE = getattr(ctx, "BLOCK_SIZE", None)
|
|
223
|
+
# Use imag_sign=-1.0 for conjugate without materializing a new tensor
|
|
224
|
+
dq_out, dk_out = llama4_rope_forward(dq, dk, freqs_cis, BLOCK_SIZE, imag_sign=-1.0)
|
|
225
|
+
return dq_out, dk_out, None
|
liger_kernel/ops/rms_norm.py
CHANGED
|
@@ -63,7 +63,7 @@ def _rms_norm_forward_kernel(
|
|
|
63
63
|
3. https://arxiv.org/pdf/1910.07467
|
|
64
64
|
"""
|
|
65
65
|
|
|
66
|
-
row_idx = tl.program_id(0)
|
|
66
|
+
row_idx = tl.program_id(0).to(tl.int64)
|
|
67
67
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
68
68
|
mask = col_offsets < n_cols
|
|
69
69
|
|
|
@@ -137,7 +137,7 @@ def _rms_norm_backward_kernel(
|
|
|
137
137
|
dw = sum(dy * (x / RMS)). summation over BxT dimension
|
|
138
138
|
"""
|
|
139
139
|
|
|
140
|
-
row_block_id = tl.program_id(0)
|
|
140
|
+
row_block_id = tl.program_id(0).to(tl.int64)
|
|
141
141
|
row_start = row_block_id * rows_per_program
|
|
142
142
|
row_end = min((row_block_id + 1) * rows_per_program, n_rows)
|
|
143
143
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
liger_kernel/ops/rope.py
CHANGED
|
@@ -32,7 +32,7 @@ def _triton_rope(
|
|
|
32
32
|
|
|
33
33
|
# cos size: (1, seq_len, head_dim) or (bsz, seq_len, head_dim)
|
|
34
34
|
# stride: (seq_len * head_dim, head_dim, 1)
|
|
35
|
-
pid = tl.program_id(0)
|
|
35
|
+
pid = tl.program_id(0).to(tl.int64)
|
|
36
36
|
|
|
37
37
|
# locate start address
|
|
38
38
|
q_ptr = q_ptr + pid * q_row_stride
|
|
@@ -5,13 +5,20 @@ from typing import TYPE_CHECKING
|
|
|
5
5
|
# Always-safe imports (independent of 'transformers')
|
|
6
6
|
from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss # noqa: F401
|
|
7
7
|
from liger_kernel.transformers.dyt import LigerDyT # noqa: F401
|
|
8
|
+
from liger_kernel.transformers.fused_add_rms_norm import LigerFusedAddRMSNorm # noqa: F401
|
|
8
9
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss # noqa: F401
|
|
9
10
|
from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # noqa: F401
|
|
10
11
|
from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
|
|
11
12
|
from liger_kernel.transformers.jsd import LigerJSD # noqa: F401
|
|
13
|
+
from liger_kernel.transformers.kl_div import LigerKLDIVLoss # noqa: F401
|
|
12
14
|
from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
|
|
15
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
|
|
16
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
|
|
17
|
+
from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
|
|
13
18
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
|
|
14
19
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
|
|
20
|
+
from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
|
|
21
|
+
from liger_kernel.transformers.sparsemax import LigerSparsemax # noqa: F401
|
|
15
22
|
from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
|
|
16
23
|
from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
|
|
17
24
|
from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
|
|
@@ -28,6 +35,7 @@ if TYPE_CHECKING:
|
|
|
28
35
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
|
|
29
36
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
|
|
30
37
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
|
|
38
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
|
|
31
39
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
|
32
40
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
|
33
41
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
|
|
@@ -43,6 +51,7 @@ if TYPE_CHECKING:
|
|
|
43
51
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
|
44
52
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
|
|
45
53
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
|
|
54
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
|
|
46
55
|
|
|
47
56
|
|
|
48
57
|
# Check if 'transformers' is installed
|
|
@@ -85,6 +94,7 @@ def __getattr__(name: str):
|
|
|
85
94
|
"apply_liger_kernel_to_gemma3",
|
|
86
95
|
"apply_liger_kernel_to_gemma3_text",
|
|
87
96
|
"apply_liger_kernel_to_glm4",
|
|
97
|
+
"apply_liger_kernel_to_glm4v",
|
|
88
98
|
"apply_liger_kernel_to_granite",
|
|
89
99
|
"apply_liger_kernel_to_llama",
|
|
90
100
|
"apply_liger_kernel_to_llava",
|
|
@@ -100,6 +110,7 @@ def __getattr__(name: str):
|
|
|
100
110
|
"apply_liger_kernel_to_qwen2_vl",
|
|
101
111
|
"apply_liger_kernel_to_qwen3",
|
|
102
112
|
"apply_liger_kernel_to_qwen3_moe",
|
|
113
|
+
"apply_liger_kernel_to_smollm3",
|
|
103
114
|
}
|
|
104
115
|
|
|
105
116
|
if name in monkey_patch_symbols:
|
|
@@ -119,13 +130,20 @@ __all__ = [
|
|
|
119
130
|
"LigerGEGLUMLP",
|
|
120
131
|
"LigerJSD",
|
|
121
132
|
"LigerLayerNorm",
|
|
133
|
+
"LigerFusedAddRMSNorm",
|
|
122
134
|
"LigerRMSNorm",
|
|
123
135
|
"liger_rotary_pos_emb",
|
|
136
|
+
"liger_llama4_text_rotary_pos_emb",
|
|
137
|
+
"liger_llama4_vision_rotary_pos_emb",
|
|
124
138
|
"LigerBlockSparseTop2MLP",
|
|
125
139
|
"LigerPhi3SwiGLUMLP",
|
|
126
140
|
"LigerQwen3MoeSwiGLUMLP",
|
|
127
141
|
"LigerSwiGLUMLP",
|
|
128
142
|
"LigerTVDLoss",
|
|
143
|
+
"LigerKLDIVLoss",
|
|
144
|
+
"LigerMultiTokenAttention",
|
|
145
|
+
"LigerSoftmax",
|
|
146
|
+
"LigerSparsemax",
|
|
129
147
|
]
|
|
130
148
|
|
|
131
149
|
# Add transformer-dependent symbols only if available
|
|
@@ -140,6 +158,7 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
140
158
|
"apply_liger_kernel_to_gemma3",
|
|
141
159
|
"apply_liger_kernel_to_gemma3_text",
|
|
142
160
|
"apply_liger_kernel_to_glm4",
|
|
161
|
+
"apply_liger_kernel_to_glm4v",
|
|
143
162
|
"apply_liger_kernel_to_granite",
|
|
144
163
|
"apply_liger_kernel_to_llama",
|
|
145
164
|
"apply_liger_kernel_to_llava",
|
|
@@ -155,5 +174,6 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
155
174
|
"apply_liger_kernel_to_qwen2_vl",
|
|
156
175
|
"apply_liger_kernel_to_qwen3",
|
|
157
176
|
"apply_liger_kernel_to_qwen3_moe",
|
|
177
|
+
"apply_liger_kernel_to_smollm3",
|
|
158
178
|
]
|
|
159
179
|
)
|