liger-kernel 0.6.0__py3-none-any.whl → 0.6.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/dpo_loss.py +54 -3
- liger_kernel/ops/fused_add_rms_norm.py +412 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +21 -13
- liger_kernel/ops/layer_norm.py +126 -89
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/rms_norm.py +2 -2
- liger_kernel/ops/rope.py +1 -1
- liger_kernel/transformers/__init__.py +20 -0
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/functional.py +7 -0
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +3 -0
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/gemma3.py +1 -1
- liger_kernel/transformers/model/glm4v.py +150 -0
- liger_kernel/transformers/model/loss_utils.py +2 -0
- liger_kernel/transformers/model/mllama.py +4 -2
- liger_kernel/transformers/model/phi3.py +8 -159
- liger_kernel/transformers/model/smollm3.py +189 -0
- liger_kernel/transformers/monkey_patch.py +185 -32
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/METADATA +12 -14
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/RECORD +26 -19
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/WHEEL +0 -0
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/licenses/LICENSE +0 -0
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/licenses/NOTICE +0 -0
- {liger_kernel-0.6.0.dist-info → liger_kernel-0.6.2.dist-info}/top_level.txt +0 -0
|
@@ -13,6 +13,7 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
13
13
|
ref_chosen_logps=None,
|
|
14
14
|
ref_rejected_logps=None,
|
|
15
15
|
beta=0.1,
|
|
16
|
+
loss_type="sigmoid",
|
|
16
17
|
):
|
|
17
18
|
"""
|
|
18
19
|
Paper: https://arxiv.org/pdf/2305.18290
|
|
@@ -48,8 +49,50 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
48
49
|
chosen_rewards = beta * chosen_logratios
|
|
49
50
|
rejected_rewards = beta * rejected_logratios
|
|
50
51
|
|
|
51
|
-
|
|
52
|
-
|
|
52
|
+
if loss_type == "sigmoid":
|
|
53
|
+
logits_diff = beta * (chosen_logratios - rejected_logratios)
|
|
54
|
+
loss = -F.logsigmoid(logits_diff).sum() / (full_target.shape[0] // 2)
|
|
55
|
+
|
|
56
|
+
elif loss_type == "apo_zero":
|
|
57
|
+
# Eqn (7) of the APO paper (https://huggingface.co/papers/2408.06266)
|
|
58
|
+
# Use this loss when you believe the chosen outputs are better than your model's default output
|
|
59
|
+
losses_chosen = 1 - F.sigmoid(beta * chosen_logratios) # Increase chosen likelihood
|
|
60
|
+
losses_rejected = F.sigmoid(beta * rejected_logratios)
|
|
61
|
+
losses = losses_chosen + losses_rejected
|
|
62
|
+
loss = losses.sum() / (full_target.shape[0] // 2)
|
|
63
|
+
|
|
64
|
+
elif loss_type == "apo_down":
|
|
65
|
+
# Eqn (8) of the APO paper (https://huggingface.co/papers/2408.06266)
|
|
66
|
+
# Use this loss when you believe the chosen outputs are worse than your model's default output.
|
|
67
|
+
# Decrease chosen likelihood and decrease rejected likelihood more
|
|
68
|
+
losses_chosen = F.sigmoid(beta * chosen_logratios)
|
|
69
|
+
losses_rejected = 1 - F.sigmoid(beta * (chosen_logratios - rejected_logratios))
|
|
70
|
+
losses = losses_chosen + losses_rejected
|
|
71
|
+
loss = losses.sum() / (full_target.shape[0] // 2)
|
|
72
|
+
|
|
73
|
+
elif loss_type == "sppo_hard":
|
|
74
|
+
# In the paper (https://huggingface.co/papers/2405.00675), SPPO employs a soft probability approach,
|
|
75
|
+
# estimated using the PairRM score. The probability calculation is conducted outside of the trainer class.
|
|
76
|
+
# The version described here is the hard probability version, where P in Equation (4.7) of Algorithm 1 is
|
|
77
|
+
# set to 1 for the winner and 0 for the loser.
|
|
78
|
+
a = chosen_logps - ref_chosen_logps
|
|
79
|
+
b = rejected_logps - ref_rejected_logps
|
|
80
|
+
losses = (a - 0.5 / beta) ** 2 + (b + 0.5 / beta) ** 2
|
|
81
|
+
loss = losses.sum() / (full_target.shape[0] // 2)
|
|
82
|
+
|
|
83
|
+
elif loss_type == "nca_pair":
|
|
84
|
+
losses = (
|
|
85
|
+
-F.logsigmoid(chosen_rewards)
|
|
86
|
+
- 0.5 * F.logsigmoid(-chosen_rewards)
|
|
87
|
+
- 0.5 * F.logsigmoid(-rejected_rewards)
|
|
88
|
+
)
|
|
89
|
+
loss = losses.sum() / (full_target.shape[0] // 2)
|
|
90
|
+
|
|
91
|
+
else:
|
|
92
|
+
raise ValueError(
|
|
93
|
+
f"Unsupported loss_type: {loss_type}. Supported types are: sigmoid, apo_zero, apo_down, sppo_hard, nca_pair"
|
|
94
|
+
)
|
|
95
|
+
|
|
53
96
|
return loss, chosen_rewards, rejected_rewards
|
|
54
97
|
|
|
55
98
|
@classmethod
|
|
@@ -70,6 +113,7 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
70
113
|
use_ref_model=True,
|
|
71
114
|
average_log_prob=False,
|
|
72
115
|
chunk_size=1,
|
|
116
|
+
loss_type="sigmoid",
|
|
73
117
|
):
|
|
74
118
|
"""
|
|
75
119
|
Fused linear layer with DPO loss.
|
|
@@ -108,12 +152,13 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
108
152
|
ref_bias=ref_bias,
|
|
109
153
|
average_log_prob=average_log_prob,
|
|
110
154
|
chunk_size=chunk_size,
|
|
155
|
+
loss_type=loss_type,
|
|
111
156
|
)
|
|
112
157
|
|
|
113
158
|
@staticmethod
|
|
114
159
|
def backward(ctx, *grad_output):
|
|
115
160
|
grads = LigerFusedLinearPreferenceBase.backward(ctx, grad_output)[:4]
|
|
116
|
-
return *grads, None, None, None, None, None, None, None, None, None, None
|
|
161
|
+
return *grads, None, None, None, None, None, None, None, None, None, None, None
|
|
117
162
|
|
|
118
163
|
|
|
119
164
|
class LigerFusedLinearDPOLoss(torch.nn.Module):
|
|
@@ -130,6 +175,7 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
|
|
|
130
175
|
use_ref_model: bool = True,
|
|
131
176
|
average_log_prob: bool = False,
|
|
132
177
|
chunk_size: int = 1,
|
|
178
|
+
loss_type: str = "sigmoid",
|
|
133
179
|
):
|
|
134
180
|
"""
|
|
135
181
|
Args:
|
|
@@ -149,6 +195,10 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
|
|
|
149
195
|
self.use_ref_model = use_ref_model
|
|
150
196
|
self.average_log_prob = average_log_prob
|
|
151
197
|
self.chunk_size = chunk_size
|
|
198
|
+
self.loss_type = loss_type
|
|
199
|
+
supported_loss_types = {"sigmoid", "apo_zero", "apo_down", "sppo_hard", "nca_pair"}
|
|
200
|
+
if self.loss_type not in supported_loss_types:
|
|
201
|
+
raise ValueError(f"Unsupported loss_type: {self.loss_type}. Supported types are: {supported_loss_types}")
|
|
152
202
|
|
|
153
203
|
def forward(
|
|
154
204
|
self,
|
|
@@ -175,4 +225,5 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
|
|
|
175
225
|
self.use_ref_model,
|
|
176
226
|
self.average_log_prob,
|
|
177
227
|
self.chunk_size,
|
|
228
|
+
self.loss_type,
|
|
178
229
|
)
|
|
@@ -0,0 +1,412 @@
|
|
|
1
|
+
import math
|
|
2
|
+
import operator
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
import triton
|
|
6
|
+
import triton.language as tl
|
|
7
|
+
|
|
8
|
+
from liger_kernel.ops.utils import calculate_settings
|
|
9
|
+
from liger_kernel.ops.utils import compare_version
|
|
10
|
+
from liger_kernel.ops.utils import ensure_contiguous
|
|
11
|
+
from liger_kernel.ops.utils import torch_to_triton_dtype
|
|
12
|
+
|
|
13
|
+
if compare_version("triton", operator.ge, "3.0.0"):
|
|
14
|
+
try:
|
|
15
|
+
# typical import path with dispatch available
|
|
16
|
+
from triton.language.extra.libdevice import rsqrt
|
|
17
|
+
except ModuleNotFoundError:
|
|
18
|
+
# for working with NGC containers
|
|
19
|
+
from triton.language.extra.cuda.libdevice import rsqrt
|
|
20
|
+
else:
|
|
21
|
+
from triton.language.math import rsqrt
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
_CASTING_MODE_NONE: tl.constexpr = tl.constexpr(-1)
|
|
25
|
+
_CASTING_MODE_LLAMA: tl.constexpr = tl.constexpr(0)
|
|
26
|
+
_CASTING_MODE_GEMMA: tl.constexpr = tl.constexpr(1)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@triton.jit
|
|
30
|
+
def _fused_add_rms_norm_forward_kernel(
|
|
31
|
+
Y_ptr,
|
|
32
|
+
Y_row_stride,
|
|
33
|
+
S_ptr, # output residual
|
|
34
|
+
S_row_stride,
|
|
35
|
+
X_ptr,
|
|
36
|
+
X_row_stride,
|
|
37
|
+
R_ptr, # input residual
|
|
38
|
+
R_row_stride,
|
|
39
|
+
W_ptr,
|
|
40
|
+
W_row_stride,
|
|
41
|
+
RSTD_ptr,
|
|
42
|
+
RSTD_row_stride,
|
|
43
|
+
n_cols,
|
|
44
|
+
eps,
|
|
45
|
+
offset,
|
|
46
|
+
casting_mode: tl.constexpr, # constexpr so the `if` blocks can be optimized out
|
|
47
|
+
BLOCK_SIZE: tl.constexpr,
|
|
48
|
+
):
|
|
49
|
+
"""
|
|
50
|
+
This kernel computes the following:
|
|
51
|
+
1. hidden_states = residual + hidden_states
|
|
52
|
+
2. residual = hidden_states
|
|
53
|
+
3. hidden_states = rmsnorm(hidden_states)
|
|
54
|
+
|
|
55
|
+
This is a commonly used pattern in the decoder layers of LLMs.
|
|
56
|
+
Some examples:
|
|
57
|
+
1. https://github.com/huggingface/transformers/blob/0dc2df5ddafe3cb5824ad24e85beba13e0aa6726/src/transformers/models/qwen3/modeling_qwen3.py#L271
|
|
58
|
+
2. https://github.com/huggingface/transformers/blob/0dc2df5ddafe3cb5824ad24e85beba13e0aa6726/src/transformers/models/llama4/modeling_llama4.py#L393
|
|
59
|
+
|
|
60
|
+
This kernel is inspired by the rms_norm forward kernel, and is adapted to support the residual addition in the forward pass.
|
|
61
|
+
The backward pass is also adapted to support the residual addition in the backward pass.
|
|
62
|
+
"""
|
|
63
|
+
|
|
64
|
+
row_idx = tl.program_id(0).to(tl.int64)
|
|
65
|
+
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
66
|
+
mask = col_offsets < n_cols
|
|
67
|
+
|
|
68
|
+
Y_ptr += row_idx * Y_row_stride
|
|
69
|
+
S_ptr += row_idx * S_row_stride
|
|
70
|
+
X_ptr += row_idx * X_row_stride
|
|
71
|
+
R_ptr += row_idx * R_row_stride
|
|
72
|
+
RSTD_ptr += row_idx * RSTD_row_stride
|
|
73
|
+
|
|
74
|
+
X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0)
|
|
75
|
+
R_row = tl.load(R_ptr + col_offsets, mask=mask, other=0)
|
|
76
|
+
S_row = X_row + R_row
|
|
77
|
+
tl.store(S_ptr + col_offsets, S_row, mask=mask)
|
|
78
|
+
S_row_dtype = S_row.dtype
|
|
79
|
+
W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0)
|
|
80
|
+
|
|
81
|
+
# On Llama, only rstd is computed on fp32
|
|
82
|
+
if casting_mode == _CASTING_MODE_LLAMA:
|
|
83
|
+
S_row = S_row.to(tl.float32)
|
|
84
|
+
|
|
85
|
+
# Gemma computes everything on fp32, and then casts back the output to the original dtype
|
|
86
|
+
if casting_mode == _CASTING_MODE_GEMMA:
|
|
87
|
+
W_row = W_row.to(tl.float32)
|
|
88
|
+
S_row = S_row.to(tl.float32)
|
|
89
|
+
|
|
90
|
+
if casting_mode == _CASTING_MODE_NONE:
|
|
91
|
+
eps = eps.to(S_row_dtype)
|
|
92
|
+
offset = offset.to(S_row_dtype)
|
|
93
|
+
|
|
94
|
+
mean_square = tl.sum(S_row * S_row, axis=0) / n_cols
|
|
95
|
+
rstd = rsqrt(mean_square + eps)
|
|
96
|
+
|
|
97
|
+
# We can save time by caching rms with minimal memory overhead
|
|
98
|
+
# because rms is much smaller compared to X_row, as rms is for each row.
|
|
99
|
+
# However, on the computation side, it can save 4 operations (*, sum, /, sqrt).
|
|
100
|
+
tl.store(RSTD_ptr, rstd)
|
|
101
|
+
|
|
102
|
+
S_row = S_row * rstd
|
|
103
|
+
|
|
104
|
+
# On Llama, the multiplication with the weight is done on the original dtype
|
|
105
|
+
if casting_mode == _CASTING_MODE_LLAMA:
|
|
106
|
+
S_row = S_row.to(S_row_dtype)
|
|
107
|
+
|
|
108
|
+
Y_row = S_row * (offset + W_row)
|
|
109
|
+
|
|
110
|
+
if casting_mode == _CASTING_MODE_GEMMA:
|
|
111
|
+
Y_row = Y_row.to(S_row_dtype)
|
|
112
|
+
|
|
113
|
+
tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
@triton.jit
|
|
117
|
+
def _fused_add_rms_norm_backward_kernel(
|
|
118
|
+
dY_ptr,
|
|
119
|
+
dY_row_stride,
|
|
120
|
+
dS_out_ptr,
|
|
121
|
+
dS_out_row_stride,
|
|
122
|
+
dX_ptr,
|
|
123
|
+
dX_row_stride,
|
|
124
|
+
X_ptr,
|
|
125
|
+
X_row_stride,
|
|
126
|
+
X_dtype: tl.constexpr,
|
|
127
|
+
W_ptr,
|
|
128
|
+
W_row_stride,
|
|
129
|
+
RSTD_ptr,
|
|
130
|
+
RSTD_row_stride,
|
|
131
|
+
dW_ptr,
|
|
132
|
+
dW_row_stride,
|
|
133
|
+
n_rows,
|
|
134
|
+
n_cols,
|
|
135
|
+
offset,
|
|
136
|
+
rows_per_program: tl.constexpr,
|
|
137
|
+
casting_mode: tl.constexpr,
|
|
138
|
+
BLOCK_SIZE: tl.constexpr,
|
|
139
|
+
has_dS_out: tl.constexpr,
|
|
140
|
+
):
|
|
141
|
+
"""
|
|
142
|
+
This kernel is adapted from the rms_norm backward kernel, and is adapted to support the residual
|
|
143
|
+
addition in the backward pass. For the following code pattern:
|
|
144
|
+
1. hidden_states = residual + hidden_states
|
|
145
|
+
2. residual = hidden_states
|
|
146
|
+
3. hidden_states = rmsnorm(hidden_states)
|
|
147
|
+
|
|
148
|
+
The gradient of hidden_states and residual comes out be exactly same. The value of this gradient is
|
|
149
|
+
the sum of the gradient of the hidden_states in step 3 and the gradient of the residual in step 2.
|
|
150
|
+
|
|
151
|
+
The backward pass computation logic is same as the rms_norm backward kernel, except that the gradient
|
|
152
|
+
of the hidden_states in step 3 and the gradient of the residual in step 2 are summed up.
|
|
153
|
+
"""
|
|
154
|
+
|
|
155
|
+
row_block_id = tl.program_id(0).to(tl.int64)
|
|
156
|
+
row_start = row_block_id * rows_per_program
|
|
157
|
+
row_end = min((row_block_id + 1) * rows_per_program, n_rows)
|
|
158
|
+
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
159
|
+
mask = col_offsets < n_cols
|
|
160
|
+
|
|
161
|
+
dW_row = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
|
|
162
|
+
|
|
163
|
+
dY_ptr += row_start * dY_row_stride
|
|
164
|
+
dX_ptr += row_start * dX_row_stride
|
|
165
|
+
if has_dS_out:
|
|
166
|
+
dS_out_ptr += row_start * dS_out_row_stride
|
|
167
|
+
|
|
168
|
+
X_ptr += row_start * X_row_stride
|
|
169
|
+
RSTD_ptr += row_start
|
|
170
|
+
|
|
171
|
+
W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0.0)
|
|
172
|
+
W_row = W_row + offset
|
|
173
|
+
|
|
174
|
+
for _ in range(row_start, row_end):
|
|
175
|
+
dY_row = tl.load(dY_ptr + col_offsets, mask=mask, other=0.0)
|
|
176
|
+
X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0.0)
|
|
177
|
+
|
|
178
|
+
# Get cached rms
|
|
179
|
+
rstd_row = tl.load(RSTD_ptr)
|
|
180
|
+
|
|
181
|
+
X_row = X_row.to(tl.float32)
|
|
182
|
+
|
|
183
|
+
# Different bacward graphs for different casting modes
|
|
184
|
+
if casting_mode == _CASTING_MODE_LLAMA:
|
|
185
|
+
m = (dY_row * W_row).to(tl.float32)
|
|
186
|
+
|
|
187
|
+
elif casting_mode == _CASTING_MODE_GEMMA:
|
|
188
|
+
dY_row = dY_row.to(tl.float32)
|
|
189
|
+
m = dY_row * W_row
|
|
190
|
+
else:
|
|
191
|
+
m = dY_row * W_row
|
|
192
|
+
|
|
193
|
+
dX_row = rstd_row * m
|
|
194
|
+
|
|
195
|
+
if has_dS_out:
|
|
196
|
+
dS_out_row = tl.load(dS_out_ptr + col_offsets, mask=mask, other=0.0)
|
|
197
|
+
dX_row += (rstd_row) * (
|
|
198
|
+
-(1 / n_cols) * rstd_row * rstd_row * tl.sum(m * X_row, axis=0) * X_row
|
|
199
|
+
) + dS_out_row
|
|
200
|
+
dS_out_ptr += dS_out_row_stride
|
|
201
|
+
else:
|
|
202
|
+
dX_row += (rstd_row) * (-(1 / n_cols) * rstd_row * rstd_row * tl.sum(m * X_row, axis=0) * X_row)
|
|
203
|
+
|
|
204
|
+
# calculate the gradient of W
|
|
205
|
+
if casting_mode == _CASTING_MODE_LLAMA:
|
|
206
|
+
dW_row += dY_row * (X_row * rstd_row).to(X_dtype)
|
|
207
|
+
else:
|
|
208
|
+
# here X_row is already in fp32 (see previous if block)
|
|
209
|
+
dW_row += dY_row * (X_row * rstd_row)
|
|
210
|
+
|
|
211
|
+
tl.store(dX_ptr + col_offsets, dX_row.to(X_dtype), mask=mask)
|
|
212
|
+
|
|
213
|
+
dY_ptr += dY_row_stride
|
|
214
|
+
dX_ptr += dX_row_stride
|
|
215
|
+
X_ptr += X_row_stride
|
|
216
|
+
RSTD_ptr += RSTD_row_stride
|
|
217
|
+
|
|
218
|
+
tl.store(dW_ptr + row_block_id * dW_row_stride + col_offsets, dW_row, mask=mask)
|
|
219
|
+
|
|
220
|
+
|
|
221
|
+
_str_to_casting_mode = {
|
|
222
|
+
"llama": _CASTING_MODE_LLAMA.value,
|
|
223
|
+
"gemma": _CASTING_MODE_GEMMA.value,
|
|
224
|
+
"none": _CASTING_MODE_NONE.value,
|
|
225
|
+
}
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
def fused_add_rms_norm_forward(X, R, W, eps, offset, casting_mode):
|
|
229
|
+
if not isinstance(casting_mode, int):
|
|
230
|
+
assert casting_mode in _str_to_casting_mode, f"Invalid casting mode: {casting_mode}"
|
|
231
|
+
casting_mode = _str_to_casting_mode[casting_mode]
|
|
232
|
+
else:
|
|
233
|
+
assert casting_mode in _str_to_casting_mode.values(), f"Invalid casting mode: {casting_mode}"
|
|
234
|
+
|
|
235
|
+
shape = X.shape
|
|
236
|
+
dim = shape[-1]
|
|
237
|
+
X = X.view(-1, dim)
|
|
238
|
+
R = R.view(-1, dim)
|
|
239
|
+
n_rows, n_cols = X.shape
|
|
240
|
+
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
|
|
241
|
+
|
|
242
|
+
Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
|
|
243
|
+
S = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
|
|
244
|
+
# RSTD is to cache rstd for each row
|
|
245
|
+
# RSTD is always computed/stored in fp32 if we are using Llama or Gemma casting mode
|
|
246
|
+
rstd_dtype = torch.float32 if casting_mode in (_CASTING_MODE_LLAMA.value, _CASTING_MODE_GEMMA.value) else X.dtype
|
|
247
|
+
RSTD = torch.empty(n_rows, dtype=rstd_dtype, device=X.device)
|
|
248
|
+
|
|
249
|
+
# Check constraints.
|
|
250
|
+
assert X.shape[1] == W.shape[0], "Incompatible hidden size dimension between tensor1.shape[1] and tensor2.shape[0]"
|
|
251
|
+
|
|
252
|
+
# XPU-specific optimization
|
|
253
|
+
kernel_args = {}
|
|
254
|
+
if X.device.type == "xpu":
|
|
255
|
+
kernel_args["grf_mode"] = "large"
|
|
256
|
+
|
|
257
|
+
# TODO: add _block_fused_add_rms_norm_forward_kernel
|
|
258
|
+
_fused_add_rms_norm_forward_kernel[(n_rows,)](
|
|
259
|
+
Y,
|
|
260
|
+
Y.stride(0),
|
|
261
|
+
S,
|
|
262
|
+
S.stride(0),
|
|
263
|
+
X,
|
|
264
|
+
X.stride(0),
|
|
265
|
+
R,
|
|
266
|
+
R.stride(0),
|
|
267
|
+
W,
|
|
268
|
+
W.stride(0),
|
|
269
|
+
RSTD,
|
|
270
|
+
RSTD.stride(0),
|
|
271
|
+
n_cols,
|
|
272
|
+
eps,
|
|
273
|
+
offset,
|
|
274
|
+
casting_mode,
|
|
275
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
276
|
+
num_warps=num_warps,
|
|
277
|
+
**kernel_args, # XPU-specific optimization
|
|
278
|
+
)
|
|
279
|
+
|
|
280
|
+
return Y.view(*shape), S.view(*shape), RSTD, BLOCK_SIZE, num_warps, casting_mode
|
|
281
|
+
|
|
282
|
+
|
|
283
|
+
def fused_add_rms_norm_backward(dY, dS_out, S, W, RSTD, offset, casting_mode, BLOCK_SIZE, num_warps, in_place):
|
|
284
|
+
shape = dY.shape
|
|
285
|
+
dim = shape[-1]
|
|
286
|
+
dY = dY.view(-1, dim)
|
|
287
|
+
dS_out = dS_out.view(-1, dim)
|
|
288
|
+
S = S.view(-1, dim)
|
|
289
|
+
n_rows, n_cols = dY.shape
|
|
290
|
+
|
|
291
|
+
sm_count = 1
|
|
292
|
+
if S.device.type == "cuda":
|
|
293
|
+
sm_count = torch.cuda.get_device_properties(S.device).multi_processor_count
|
|
294
|
+
elif S.device.type == "xpu":
|
|
295
|
+
sm_count = torch.xpu.get_device_properties(S.device).gpu_eu_count
|
|
296
|
+
|
|
297
|
+
# fp32 for numerical stability especially.
|
|
298
|
+
_dW = torch.empty((sm_count, n_cols), dtype=torch.float32, device=W.device)
|
|
299
|
+
|
|
300
|
+
if n_cols > BLOCK_SIZE:
|
|
301
|
+
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
|
302
|
+
rows_per_program = math.ceil(n_rows / sm_count)
|
|
303
|
+
grid = (sm_count,)
|
|
304
|
+
|
|
305
|
+
if in_place is True:
|
|
306
|
+
dX = dY
|
|
307
|
+
else:
|
|
308
|
+
dX = torch.empty_like(dY)
|
|
309
|
+
|
|
310
|
+
# XPU-specific optimization
|
|
311
|
+
kernel_args = {}
|
|
312
|
+
if S.device.type == "xpu":
|
|
313
|
+
kernel_args["grf_mode"] = "large"
|
|
314
|
+
|
|
315
|
+
# TODO: add _block_fused_add_rms_norm_backward_kernel
|
|
316
|
+
_fused_add_rms_norm_backward_kernel[grid](
|
|
317
|
+
dY,
|
|
318
|
+
dY.stride(0),
|
|
319
|
+
dS_out,
|
|
320
|
+
dS_out.stride(0),
|
|
321
|
+
dX,
|
|
322
|
+
dX.stride(0),
|
|
323
|
+
S,
|
|
324
|
+
S.stride(0),
|
|
325
|
+
torch_to_triton_dtype[S.dtype],
|
|
326
|
+
W,
|
|
327
|
+
W.stride(0),
|
|
328
|
+
RSTD,
|
|
329
|
+
RSTD.stride(0),
|
|
330
|
+
_dW,
|
|
331
|
+
_dW.stride(0),
|
|
332
|
+
n_rows,
|
|
333
|
+
n_cols,
|
|
334
|
+
offset,
|
|
335
|
+
rows_per_program,
|
|
336
|
+
casting_mode,
|
|
337
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
338
|
+
num_warps=num_warps,
|
|
339
|
+
has_dS_out=dS_out is not None,
|
|
340
|
+
**kernel_args, # XPU-specific optimization
|
|
341
|
+
)
|
|
342
|
+
|
|
343
|
+
dX = dX.view(*shape)
|
|
344
|
+
dW = _dW.sum(dim=0).to(W.dtype)
|
|
345
|
+
|
|
346
|
+
return dX, dX, dW # dR is equal to dX
|
|
347
|
+
|
|
348
|
+
|
|
349
|
+
class LigerFusedAddRMSNormFunction(torch.autograd.Function):
|
|
350
|
+
"""
|
|
351
|
+
Performs a fused operation that first adds a residual tensor to the hidden_states tensor (`X`), then applies RMSNorm (Root Mean Square Normalization) to the result using the weight tensor `W`, with optional offset and casting mode.
|
|
352
|
+
|
|
353
|
+
This class implements the following sequence, commonly used in transformer decoder layers:
|
|
354
|
+
1. hidden_states = residual + hidden_states
|
|
355
|
+
2. residual = hidden_states (after addition)
|
|
356
|
+
3. hidden_states = rmsnorm(hidden_states)
|
|
357
|
+
|
|
358
|
+
Both the normalized hidden_states and the updated residual are returned as outputs.
|
|
359
|
+
|
|
360
|
+
Some models use an 'offset' to shift the weight tensor `W` by a constant value. For example, Gemma
|
|
361
|
+
uses an offset of 1.0, so the computation becomes `(X / RMS(X)) * (W + 1.0)` instead of the usual
|
|
362
|
+
`(X / RMS(X)) * W`. You can pass the offset value as an argument to the forward function.
|
|
363
|
+
|
|
364
|
+
In addition, different models cast their inputs at different places during RMSNorm computation. For
|
|
365
|
+
example, Gemma casts everything to fp32 before starting the computation, while Llama casts only the
|
|
366
|
+
inverse RMS to fp32. You can specify the casting mode using the `casting_mode` argument. We currently
|
|
367
|
+
support the following casting modes (they match HuggingFace Transformers' implementations):
|
|
368
|
+
- 'llama': matches the Llama implementation, where only the inverse RMS is computed on fp32.
|
|
369
|
+
- 'gemma': matches the Gemma implementation, where everything is cast to fp32, then computed, then cast back to the original dtype.
|
|
370
|
+
- 'none': no casting is done. The computation is done in the original dtype. This saves memory and is slightly faster, but has more error w.r.t. the original implementation.
|
|
371
|
+
|
|
372
|
+
The `in_place` option determines whether to modify dY in-place to store dX. This defaults to `True` to save memory.
|
|
373
|
+
"""
|
|
374
|
+
|
|
375
|
+
@staticmethod
|
|
376
|
+
@ensure_contiguous
|
|
377
|
+
def forward(ctx, X, R, W, eps, offset=0.0, casting_mode="llama", in_place=False):
|
|
378
|
+
"""
|
|
379
|
+
X: (B, T, H) or (BxT, H)
|
|
380
|
+
W: (H,)
|
|
381
|
+
"""
|
|
382
|
+
# TODO: add row_mode
|
|
383
|
+
Y, S, RSTD, BLOCK_SIZE, num_warps, casting_mode = fused_add_rms_norm_forward(X, R, W, eps, offset, casting_mode)
|
|
384
|
+
ctx.offset = offset
|
|
385
|
+
ctx.casting_mode = casting_mode
|
|
386
|
+
ctx.in_place = in_place
|
|
387
|
+
ctx.BLOCK_SIZE = BLOCK_SIZE
|
|
388
|
+
ctx.num_warps = num_warps
|
|
389
|
+
ctx.save_for_backward(S, W, RSTD)
|
|
390
|
+
return Y, S
|
|
391
|
+
|
|
392
|
+
@staticmethod
|
|
393
|
+
@ensure_contiguous
|
|
394
|
+
def backward(ctx, dY, dS_out):
|
|
395
|
+
"""
|
|
396
|
+
Y: (B, T, H) or (BxT, H)
|
|
397
|
+
"""
|
|
398
|
+
S, W, RSTD = ctx.saved_tensors
|
|
399
|
+
dX, dR, dW = fused_add_rms_norm_backward(
|
|
400
|
+
dY,
|
|
401
|
+
dS_out,
|
|
402
|
+
S,
|
|
403
|
+
W,
|
|
404
|
+
RSTD,
|
|
405
|
+
ctx.offset,
|
|
406
|
+
ctx.casting_mode,
|
|
407
|
+
ctx.BLOCK_SIZE,
|
|
408
|
+
ctx.num_warps,
|
|
409
|
+
ctx.in_place,
|
|
410
|
+
)
|
|
411
|
+
|
|
412
|
+
return dX, dR, dW, None, None, None, None, None
|
|
@@ -25,6 +25,7 @@ def fused_linear_cross_entropy_forward(
|
|
|
25
25
|
reduction="mean",
|
|
26
26
|
softcap=None,
|
|
27
27
|
return_z_loss=False,
|
|
28
|
+
accum_dtype=None,
|
|
28
29
|
):
|
|
29
30
|
assert isinstance(return_z_loss, bool), f"return_z_loss must be True or False. Got: {return_z_loss}"
|
|
30
31
|
device = _input.device
|
|
@@ -44,10 +45,16 @@ def fused_linear_cross_entropy_forward(
|
|
|
44
45
|
chunk_size = triton.next_power_of_2(triton.cdiv(BT, inc_factor)) # (BT + inc_factor - 1) // inc_factor
|
|
45
46
|
num_chunks = triton.cdiv(BT, chunk_size) # (BT + chunk_size - 1) // chunk_size
|
|
46
47
|
|
|
47
|
-
grad_weight = torch.zeros_like(weight, device=device) if weight.requires_grad else None
|
|
48
48
|
grad_input = torch.zeros_like(_input, device=device)
|
|
49
|
-
|
|
50
|
-
# we use fp32 for loss accumulator
|
|
49
|
+
|
|
50
|
+
# we use fp32 for loss and gradients accumulator
|
|
51
|
+
if accum_dtype is None:
|
|
52
|
+
grad_weight = torch.zeros_like(weight, device=device) if weight.requires_grad else None
|
|
53
|
+
grad_bias = torch.zeros_like(bias, device=device) if bias is not None else None
|
|
54
|
+
else:
|
|
55
|
+
grad_weight = torch.zeros_like(weight, dtype=accum_dtype, device=device) if weight.requires_grad else None
|
|
56
|
+
grad_bias = torch.zeros_like(bias, dtype=accum_dtype, device=device) if bias is not None else None
|
|
57
|
+
|
|
51
58
|
loss_1d = torch.zeros(BT, dtype=torch.float32, device=device)
|
|
52
59
|
z_loss_1d = torch.zeros(BT, dtype=_input.dtype, device=_input.device) if return_z_loss else None
|
|
53
60
|
|
|
@@ -124,16 +131,7 @@ def fused_linear_cross_entropy_forward(
|
|
|
124
131
|
grad_input[start_idx:end_idx] = grad_logits_chunk @ weight
|
|
125
132
|
|
|
126
133
|
if grad_weight is not None:
|
|
127
|
-
torch.
|
|
128
|
-
input=grad_weight,
|
|
129
|
-
mat1=logits_chunk.t().to(
|
|
130
|
-
_input_chunk.dtype
|
|
131
|
-
), # In an autocast scenario without bias, differing logits_chunk data types will cause an addmm operation error.
|
|
132
|
-
mat2=_input_chunk,
|
|
133
|
-
out=grad_weight,
|
|
134
|
-
alpha=1.0,
|
|
135
|
-
beta=1.0,
|
|
136
|
-
)
|
|
134
|
+
grad_weight += torch.mm(grad_logits_chunk.t(), _input_chunk).float()
|
|
137
135
|
|
|
138
136
|
if bias is not None:
|
|
139
137
|
torch.add(
|
|
@@ -151,6 +149,11 @@ def fused_linear_cross_entropy_forward(
|
|
|
151
149
|
else:
|
|
152
150
|
loss = torch.sum(loss_1d)
|
|
153
151
|
z_loss = torch.sum(z_loss_1d) if return_z_loss else None
|
|
152
|
+
|
|
153
|
+
# Cast back to original dtype
|
|
154
|
+
grad_weight = grad_weight.to(weight.dtype) if grad_weight is not None else None
|
|
155
|
+
grad_bias = grad_bias.to(bias.dtype) if grad_bias is not None else None
|
|
156
|
+
|
|
154
157
|
return loss, z_loss, grad_input, grad_weight, grad_bias
|
|
155
158
|
|
|
156
159
|
|
|
@@ -217,6 +220,7 @@ class LigerFusedLinearCrossEntropyFunction(torch.autograd.Function):
|
|
|
217
220
|
reduction="mean",
|
|
218
221
|
softcap=None,
|
|
219
222
|
return_z_loss: bool = False,
|
|
223
|
+
accum_dtype=None,
|
|
220
224
|
):
|
|
221
225
|
"""
|
|
222
226
|
Fusing the last linear layer with cross-entropy loss
|
|
@@ -235,6 +239,8 @@ class LigerFusedLinearCrossEntropyFunction(torch.autograd.Function):
|
|
|
235
239
|
ignore_index: the index to ignore in the target
|
|
236
240
|
label_smoothing (float): The amount of smoothing when computing the loss, where 0.0 means no smoothing.
|
|
237
241
|
reduction: reduction to apply
|
|
242
|
+
accum_dtype (torch.dtype): the dtype of intermediate result buffers for weight and bias gradient accumulations.
|
|
243
|
+
Recommended to set `accum_dtype` to higher precision, e.g. `torch.float32`, if the training is unstable with original dtype. Default: `None`, performing accumulations in original dtype
|
|
238
244
|
"""
|
|
239
245
|
|
|
240
246
|
loss, z_loss, grad_input, grad_weight, grad_bias = fused_linear_cross_entropy_forward(
|
|
@@ -249,6 +255,7 @@ class LigerFusedLinearCrossEntropyFunction(torch.autograd.Function):
|
|
|
249
255
|
reduction=reduction,
|
|
250
256
|
softcap=softcap,
|
|
251
257
|
return_z_loss=return_z_loss,
|
|
258
|
+
accum_dtype=accum_dtype,
|
|
252
259
|
)
|
|
253
260
|
# downcast to dtype and store for backward
|
|
254
261
|
ctx.save_for_backward(
|
|
@@ -280,4 +287,5 @@ class LigerFusedLinearCrossEntropyFunction(torch.autograd.Function):
|
|
|
280
287
|
None,
|
|
281
288
|
None,
|
|
282
289
|
None,
|
|
290
|
+
None,
|
|
283
291
|
)
|