liger-kernel 0.5.9__py3-none-any.whl → 0.6.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/__init__.py +1 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +127 -0
- liger_kernel/chunked_loss/dpo_loss.py +1 -1
- liger_kernel/chunked_loss/functional.py +2 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
- liger_kernel/chunked_loss/jsd_loss.py +2 -2
- liger_kernel/ops/dyt.py +111 -179
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +1 -1
- liger_kernel/ops/grpo_loss.py +310 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/rms_norm.py +265 -54
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +1 -1
- liger_kernel/transformers/__init__.py +8 -0
- liger_kernel/transformers/dyt.py +5 -3
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +70 -0
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/grpo_loss.py +98 -0
- liger_kernel/transformers/model/gemma.py +25 -16
- liger_kernel/transformers/model/gemma2.py +27 -14
- liger_kernel/transformers/model/gemma3.py +62 -106
- liger_kernel/transformers/model/glm4.py +16 -13
- liger_kernel/transformers/model/llama.py +81 -18
- liger_kernel/transformers/model/llama4.py +108 -0
- liger_kernel/transformers/model/llava.py +95 -132
- liger_kernel/transformers/model/mistral.py +13 -14
- liger_kernel/transformers/model/mixtral.py +16 -15
- liger_kernel/transformers/model/mllama.py +16 -14
- liger_kernel/transformers/model/olmo2.py +16 -13
- liger_kernel/transformers/model/paligemma.py +8 -9
- liger_kernel/transformers/model/phi3.py +25 -16
- liger_kernel/transformers/model/qwen2.py +24 -15
- liger_kernel/transformers/model/qwen2_5_vl.py +41 -97
- liger_kernel/transformers/model/qwen2_vl.py +38 -106
- liger_kernel/transformers/model/qwen3.py +11 -9
- liger_kernel/transformers/model/qwen3_moe.py +132 -0
- liger_kernel/transformers/monkey_patch.py +424 -81
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/rms_norm.py +40 -4
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +21 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
- liger_kernel/utils.py +11 -0
- {liger_kernel-0.5.9.dist-info → liger_kernel-0.6.0.dist-info}/METADATA +41 -21
- liger_kernel-0.6.0.dist-info/RECORD +97 -0
- {liger_kernel-0.5.9.dist-info → liger_kernel-0.6.0.dist-info}/WHEEL +1 -1
- liger_kernel/transformers/gema3_rms.py +0 -8
- liger_kernel-0.5.9.dist-info/RECORD +0 -84
- {liger_kernel-0.5.9.dist-info → liger_kernel-0.6.0.dist-info}/licenses/LICENSE +0 -0
- {liger_kernel-0.5.9.dist-info → liger_kernel-0.6.0.dist-info}/licenses/NOTICE +0 -0
- {liger_kernel-0.5.9.dist-info → liger_kernel-0.6.0.dist-info}/top_level.txt +0 -0
|
@@ -5,18 +5,13 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from torch.nn import CrossEntropyLoss
|
|
9
|
-
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import _CONFIG_FOR_DOC
|
|
10
|
-
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import QWEN2_5_VL_INPUTS_DOCSTRING
|
|
11
8
|
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import Qwen2_5_VLCausalLMOutputWithPast
|
|
12
|
-
from transformers.utils import
|
|
13
|
-
from transformers.utils import replace_return_docstrings
|
|
9
|
+
from transformers.utils import can_return_tuple
|
|
14
10
|
|
|
15
11
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
16
12
|
|
|
17
13
|
|
|
18
|
-
@
|
|
19
|
-
@replace_return_docstrings(output_type=Qwen2_5_VLCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
14
|
+
@can_return_tuple
|
|
20
15
|
def lce_forward(
|
|
21
16
|
self,
|
|
22
17
|
input_ids: torch.LongTensor = None,
|
|
@@ -36,17 +31,26 @@ def lce_forward(
|
|
|
36
31
|
rope_deltas: Optional[torch.LongTensor] = None,
|
|
37
32
|
cache_position: Optional[torch.LongTensor] = None,
|
|
38
33
|
second_per_grid_ts: Optional[torch.Tensor] = None,
|
|
39
|
-
|
|
34
|
+
skip_logits: Optional[bool] = None,
|
|
35
|
+
**kwargs,
|
|
40
36
|
) -> Union[Tuple, Qwen2_5_VLCausalLMOutputWithPast]:
|
|
41
37
|
r"""
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
38
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
39
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
40
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
41
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
42
|
+
pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
|
|
43
|
+
The tensors corresponding to the input videos. Pixel values can be obtained using
|
|
44
|
+
[`AutoImageProcessor`]. See [`Qwen2_5_VLImageProcessor.__call__`] for details. [`Qwen2_5_VLProcessor`] uses
|
|
45
|
+
[`Qwen2_5_VLImageProcessor`] for processing videos.
|
|
46
|
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
47
|
+
The temporal, height and width of feature shape of each image in LLM.
|
|
48
|
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
|
49
|
+
The temporal, height and width of feature shape of each video in LLM.
|
|
50
|
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
|
51
|
+
The rope index difference between sequence length and multimodal rope.
|
|
52
|
+
second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*):
|
|
53
|
+
The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs.
|
|
50
54
|
|
|
51
55
|
Example:
|
|
52
56
|
|
|
@@ -78,78 +82,20 @@ def lce_forward(
|
|
|
78
82
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
79
83
|
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
|
|
80
84
|
```"""
|
|
85
|
+
|
|
81
86
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
82
87
|
output_hidden_states = (
|
|
83
88
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
84
89
|
)
|
|
85
90
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
86
91
|
|
|
87
|
-
if inputs_embeds is None:
|
|
88
|
-
inputs_embeds = self.model.embed_tokens(input_ids)
|
|
89
|
-
if pixel_values is not None:
|
|
90
|
-
pixel_values = pixel_values.type(self.visual.dtype)
|
|
91
|
-
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
|
|
92
|
-
n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
|
|
93
|
-
n_image_features = image_embeds.shape[0]
|
|
94
|
-
if n_image_tokens != n_image_features:
|
|
95
|
-
raise ValueError(
|
|
96
|
-
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
|
97
|
-
)
|
|
98
|
-
|
|
99
|
-
mask = input_ids == self.config.image_token_id
|
|
100
|
-
mask_unsqueezed = mask.unsqueeze(-1)
|
|
101
|
-
mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
|
|
102
|
-
image_mask = mask_expanded.to(inputs_embeds.device)
|
|
103
|
-
|
|
104
|
-
image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
|
|
105
|
-
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
|
|
106
|
-
|
|
107
|
-
if pixel_values_videos is not None:
|
|
108
|
-
pixel_values_videos = pixel_values_videos.type(self.visual.dtype)
|
|
109
|
-
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
|
|
110
|
-
n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
|
|
111
|
-
n_video_features = video_embeds.shape[0]
|
|
112
|
-
if n_video_tokens != n_video_features:
|
|
113
|
-
raise ValueError(
|
|
114
|
-
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
|
|
115
|
-
)
|
|
116
|
-
|
|
117
|
-
mask = input_ids == self.config.video_token_id
|
|
118
|
-
mask_unsqueezed = mask.unsqueeze(-1)
|
|
119
|
-
mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
|
|
120
|
-
video_mask = mask_expanded.to(inputs_embeds.device)
|
|
121
|
-
|
|
122
|
-
video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
|
|
123
|
-
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
|
|
124
|
-
|
|
125
|
-
if attention_mask is not None:
|
|
126
|
-
attention_mask = attention_mask.to(inputs_embeds.device)
|
|
127
|
-
|
|
128
|
-
# if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
|
|
129
|
-
if position_ids is None and (attention_mask is None or attention_mask.ndim == 2):
|
|
130
|
-
# calculate RoPE index once per generation in the pre-fill stage only
|
|
131
|
-
if (cache_position is not None and cache_position[0] == 0) or self.rope_deltas is None:
|
|
132
|
-
position_ids, rope_deltas = self.get_rope_index(
|
|
133
|
-
input_ids,
|
|
134
|
-
image_grid_thw,
|
|
135
|
-
video_grid_thw,
|
|
136
|
-
second_per_grid_ts,
|
|
137
|
-
attention_mask,
|
|
138
|
-
)
|
|
139
|
-
self.rope_deltas = rope_deltas
|
|
140
|
-
# then use the prev pre-calculated rope-deltas to get the correct position ids
|
|
141
|
-
else:
|
|
142
|
-
batch_size, seq_length, _ = inputs_embeds.shape
|
|
143
|
-
delta = (cache_position[0] + self.rope_deltas).to(inputs_embeds.device) if cache_position is not None else 0
|
|
144
|
-
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
|
|
145
|
-
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
|
|
146
|
-
if cache_position is not None: # otherwise `deltas` is an int `0`
|
|
147
|
-
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
|
|
148
|
-
position_ids = position_ids.add(delta)
|
|
149
|
-
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
|
|
150
|
-
|
|
151
92
|
outputs = self.model(
|
|
152
|
-
input_ids=
|
|
93
|
+
input_ids=input_ids,
|
|
94
|
+
pixel_values=pixel_values,
|
|
95
|
+
pixel_values_videos=pixel_values_videos,
|
|
96
|
+
image_grid_thw=image_grid_thw,
|
|
97
|
+
video_grid_thw=video_grid_thw,
|
|
98
|
+
second_per_grid_ts=second_per_grid_ts,
|
|
153
99
|
position_ids=position_ids,
|
|
154
100
|
attention_mask=attention_mask,
|
|
155
101
|
past_key_values=past_key_values,
|
|
@@ -159,38 +105,36 @@ def lce_forward(
|
|
|
159
105
|
output_hidden_states=output_hidden_states,
|
|
160
106
|
return_dict=return_dict,
|
|
161
107
|
cache_position=cache_position,
|
|
108
|
+
**kwargs,
|
|
162
109
|
)
|
|
163
110
|
|
|
164
111
|
hidden_states = outputs[0]
|
|
165
112
|
|
|
166
|
-
shift_labels =
|
|
113
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
167
114
|
loss = None
|
|
168
115
|
logits = None
|
|
169
116
|
|
|
170
|
-
if
|
|
117
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
118
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
119
|
+
|
|
120
|
+
if skip_logits is None:
|
|
121
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
122
|
+
|
|
123
|
+
if skip_logits:
|
|
171
124
|
loss = LigerForCausalLMLoss(
|
|
172
125
|
hidden_states=hidden_states,
|
|
173
126
|
lm_head_weight=self.lm_head.weight,
|
|
174
127
|
labels=labels,
|
|
175
128
|
shift_labels=shift_labels,
|
|
176
129
|
hidden_size=self.config.hidden_size,
|
|
177
|
-
**
|
|
130
|
+
**kwargs,
|
|
178
131
|
)
|
|
179
132
|
else:
|
|
180
133
|
logits = self.lm_head(hidden_states)
|
|
134
|
+
|
|
135
|
+
loss = None
|
|
181
136
|
if labels is not None:
|
|
182
|
-
|
|
183
|
-
logits = logits.float()
|
|
184
|
-
# Shift so that tokens < n predict n
|
|
185
|
-
shift_logits = logits[..., :-1, :].contiguous()
|
|
186
|
-
shift_labels = labels[..., 1:].contiguous()
|
|
187
|
-
# Flatten the tokens
|
|
188
|
-
loss_fct = CrossEntropyLoss()
|
|
189
|
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
190
|
-
shift_labels = shift_labels.view(-1)
|
|
191
|
-
# Enable model parallelism
|
|
192
|
-
shift_labels = shift_labels.to(shift_logits.device)
|
|
193
|
-
loss = loss_fct(shift_logits, shift_labels)
|
|
137
|
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
|
|
194
138
|
|
|
195
139
|
if not return_dict:
|
|
196
140
|
output = (logits,) + outputs[1:]
|
|
@@ -202,5 +146,5 @@ def lce_forward(
|
|
|
202
146
|
past_key_values=outputs.past_key_values,
|
|
203
147
|
hidden_states=outputs.hidden_states,
|
|
204
148
|
attentions=outputs.attentions,
|
|
205
|
-
rope_deltas=rope_deltas,
|
|
149
|
+
rope_deltas=outputs.rope_deltas,
|
|
206
150
|
)
|
|
@@ -5,20 +5,13 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from packaging import version
|
|
9
|
-
from torch.nn import CrossEntropyLoss
|
|
10
|
-
from transformers import __version__ as transformers_version
|
|
11
|
-
from transformers.models.qwen2_vl.modeling_qwen2_vl import _CONFIG_FOR_DOC
|
|
12
|
-
from transformers.models.qwen2_vl.modeling_qwen2_vl import QWEN2_VL_INPUTS_DOCSTRING
|
|
13
8
|
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLCausalLMOutputWithPast
|
|
14
|
-
from transformers.utils import
|
|
15
|
-
from transformers.utils import replace_return_docstrings
|
|
9
|
+
from transformers.utils import can_return_tuple
|
|
16
10
|
|
|
17
11
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
18
12
|
|
|
19
13
|
|
|
20
|
-
@
|
|
21
|
-
@replace_return_docstrings(output_type=Qwen2VLCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
14
|
+
@can_return_tuple
|
|
22
15
|
def lce_forward(
|
|
23
16
|
self,
|
|
24
17
|
input_ids: torch.LongTensor = None,
|
|
@@ -37,18 +30,24 @@ def lce_forward(
|
|
|
37
30
|
video_grid_thw: Optional[torch.LongTensor] = None,
|
|
38
31
|
rope_deltas: Optional[torch.LongTensor] = None,
|
|
39
32
|
cache_position: Optional[torch.LongTensor] = None,
|
|
40
|
-
|
|
33
|
+
skip_logits: Optional[bool] = None,
|
|
34
|
+
**kwargs,
|
|
41
35
|
) -> Union[Tuple, Qwen2VLCausalLMOutputWithPast]:
|
|
42
36
|
r"""
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
37
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
38
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
39
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
40
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
41
|
+
pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
|
|
42
|
+
The tensors corresponding to the input videos. Pixel values can be obtained using
|
|
43
|
+
[`AutoImageProcessor`]. See [`Qwen2VLImageProcessor.__call__`] for details. [`Qwen2VLProcessor`] uses
|
|
44
|
+
[`Qwen2VLImageProcessor`] for processing videos.
|
|
45
|
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
46
|
+
The temporal, height and width of feature shape of each image in LLM.
|
|
47
|
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
|
48
|
+
The temporal, height and width of feature shape of each video in LLM.
|
|
49
|
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
|
50
|
+
The rope index difference between sequence length and multimodal rope.
|
|
52
51
|
|
|
53
52
|
Example:
|
|
54
53
|
|
|
@@ -80,80 +79,19 @@ def lce_forward(
|
|
|
80
79
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
81
80
|
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
|
|
82
81
|
```"""
|
|
82
|
+
|
|
83
83
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
84
84
|
output_hidden_states = (
|
|
85
85
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
86
86
|
)
|
|
87
87
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
88
88
|
|
|
89
|
-
if inputs_embeds is None:
|
|
90
|
-
inputs_embeds = self.model.embed_tokens(input_ids)
|
|
91
|
-
if pixel_values is not None:
|
|
92
|
-
pixel_values = pixel_values.type(self.visual.get_dtype())
|
|
93
|
-
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
|
|
94
|
-
n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
|
|
95
|
-
n_image_features = image_embeds.shape[0]
|
|
96
|
-
if n_image_tokens != n_image_features:
|
|
97
|
-
raise ValueError(
|
|
98
|
-
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
|
99
|
-
)
|
|
100
|
-
image_mask = (
|
|
101
|
-
(input_ids == self.config.image_token_id)
|
|
102
|
-
.unsqueeze(-1)
|
|
103
|
-
.expand_as(inputs_embeds)
|
|
104
|
-
.to(inputs_embeds.device)
|
|
105
|
-
)
|
|
106
|
-
image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
|
|
107
|
-
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
|
|
108
|
-
|
|
109
|
-
if pixel_values_videos is not None:
|
|
110
|
-
pixel_values_videos = pixel_values_videos.type(self.visual.get_dtype())
|
|
111
|
-
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
|
|
112
|
-
n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
|
|
113
|
-
n_video_features = video_embeds.shape[0]
|
|
114
|
-
if n_video_tokens != n_video_features:
|
|
115
|
-
raise ValueError(
|
|
116
|
-
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
|
|
117
|
-
)
|
|
118
|
-
video_mask = (
|
|
119
|
-
(input_ids == self.config.video_token_id)
|
|
120
|
-
.unsqueeze(-1)
|
|
121
|
-
.expand_as(inputs_embeds)
|
|
122
|
-
.to(inputs_embeds.device)
|
|
123
|
-
)
|
|
124
|
-
video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
|
|
125
|
-
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
|
|
126
|
-
|
|
127
|
-
if attention_mask is not None:
|
|
128
|
-
attention_mask = attention_mask.to(inputs_embeds.device)
|
|
129
|
-
|
|
130
|
-
if version.parse(transformers_version) > version.parse("4.46.3"):
|
|
131
|
-
# NOTE: this bug fix for qwen2-vl is not applied until transformers 4.47.0
|
|
132
|
-
# https://github.com/huggingface/transformers/issues/33401
|
|
133
|
-
# While correct, this breaks equivalence with past versions of Qwen2-VL from
|
|
134
|
-
# transformers and leads to failed tests or users noticing differences in results.
|
|
135
|
-
# TODO: remove above conditional when liger drops support for transformers<4.47.0
|
|
136
|
-
# if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
|
|
137
|
-
if position_ids is None and (attention_mask is None or attention_mask.ndim == 2):
|
|
138
|
-
# calculate RoPE index once per generation in the pre-fill stage only
|
|
139
|
-
if (cache_position is not None and cache_position[0] == 0) or self.rope_deltas is None:
|
|
140
|
-
position_ids, rope_deltas = self.get_rope_index(
|
|
141
|
-
input_ids, image_grid_thw, video_grid_thw, attention_mask
|
|
142
|
-
)
|
|
143
|
-
self.rope_deltas = rope_deltas
|
|
144
|
-
# then use the prev pre-calculated rope-deltas to get the correct position ids
|
|
145
|
-
else:
|
|
146
|
-
batch_size, seq_length, _ = inputs_embeds.shape
|
|
147
|
-
delta = cache_position[0] + self.rope_deltas if cache_position is not None else 0
|
|
148
|
-
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
|
|
149
|
-
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
|
|
150
|
-
if cache_position is not None: # otherwise `deltas` is an int `0`
|
|
151
|
-
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
|
|
152
|
-
position_ids = position_ids.add(delta)
|
|
153
|
-
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
|
|
154
|
-
|
|
155
89
|
outputs = self.model(
|
|
156
|
-
input_ids=
|
|
90
|
+
input_ids=input_ids,
|
|
91
|
+
pixel_values=pixel_values,
|
|
92
|
+
pixel_values_videos=pixel_values_videos,
|
|
93
|
+
image_grid_thw=image_grid_thw,
|
|
94
|
+
video_grid_thw=video_grid_thw,
|
|
157
95
|
position_ids=position_ids,
|
|
158
96
|
attention_mask=attention_mask,
|
|
159
97
|
past_key_values=past_key_values,
|
|
@@ -163,42 +101,36 @@ def lce_forward(
|
|
|
163
101
|
output_hidden_states=output_hidden_states,
|
|
164
102
|
return_dict=return_dict,
|
|
165
103
|
cache_position=cache_position,
|
|
104
|
+
**kwargs,
|
|
166
105
|
)
|
|
167
106
|
|
|
168
107
|
hidden_states = outputs[0]
|
|
169
108
|
|
|
170
|
-
shift_labels =
|
|
109
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
171
110
|
loss = None
|
|
172
111
|
logits = None
|
|
173
112
|
|
|
174
|
-
if
|
|
113
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
114
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
115
|
+
|
|
116
|
+
if skip_logits is None:
|
|
117
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
118
|
+
|
|
119
|
+
if skip_logits:
|
|
175
120
|
loss = LigerForCausalLMLoss(
|
|
176
121
|
hidden_states=hidden_states,
|
|
177
122
|
lm_head_weight=self.lm_head.weight,
|
|
178
123
|
labels=labels,
|
|
179
124
|
shift_labels=shift_labels,
|
|
180
125
|
hidden_size=self.config.hidden_size,
|
|
181
|
-
**
|
|
126
|
+
**kwargs,
|
|
182
127
|
)
|
|
183
128
|
else:
|
|
184
129
|
logits = self.lm_head(hidden_states)
|
|
130
|
+
|
|
131
|
+
loss = None
|
|
185
132
|
if labels is not None:
|
|
186
|
-
|
|
187
|
-
logits = logits.float()
|
|
188
|
-
# Shift so that tokens < n predict n
|
|
189
|
-
shift_logits = logits[..., :-1, :].contiguous()
|
|
190
|
-
shift_labels = labels[..., 1:].contiguous()
|
|
191
|
-
# Flatten the tokens
|
|
192
|
-
loss_fct = CrossEntropyLoss()
|
|
193
|
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
194
|
-
shift_labels = shift_labels.view(-1)
|
|
195
|
-
# Enable model parallelism
|
|
196
|
-
shift_labels = shift_labels.to(shift_logits.device)
|
|
197
|
-
loss = loss_fct(shift_logits, shift_labels)
|
|
198
|
-
|
|
199
|
-
if not return_dict:
|
|
200
|
-
output = (logits,) + outputs[1:]
|
|
201
|
-
return (loss,) + output if loss is not None else output
|
|
133
|
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
|
|
202
134
|
|
|
203
135
|
return Qwen2VLCausalLMOutputWithPast(
|
|
204
136
|
loss=loss,
|
|
@@ -206,5 +138,5 @@ def lce_forward(
|
|
|
206
138
|
past_key_values=outputs.past_key_values,
|
|
207
139
|
hidden_states=outputs.hidden_states,
|
|
208
140
|
attentions=outputs.attentions,
|
|
209
|
-
rope_deltas=rope_deltas,
|
|
141
|
+
rope_deltas=outputs.rope_deltas,
|
|
210
142
|
)
|
|
@@ -5,16 +5,10 @@ from typing import Union
|
|
|
5
5
|
import torch
|
|
6
6
|
|
|
7
7
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
8
|
-
from transformers.models.qwen3.modeling_qwen3 import _CONFIG_FOR_DOC
|
|
9
|
-
from transformers.models.qwen3.modeling_qwen3 import QWEN3_INPUTS_DOCSTRING
|
|
10
|
-
from transformers.utils import add_start_docstrings_to_model_forward
|
|
11
|
-
from transformers.utils import replace_return_docstrings
|
|
12
8
|
|
|
13
9
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
14
10
|
|
|
15
11
|
|
|
16
|
-
@add_start_docstrings_to_model_forward(QWEN3_INPUTS_DOCSTRING)
|
|
17
|
-
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
18
12
|
def lce_forward(
|
|
19
13
|
self,
|
|
20
14
|
input_ids: Optional[torch.LongTensor] = None,
|
|
@@ -28,6 +22,7 @@ def lce_forward(
|
|
|
28
22
|
output_hidden_states: Optional[bool] = None,
|
|
29
23
|
cache_position: Optional[torch.LongTensor] = None,
|
|
30
24
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
25
|
+
skip_logits: Optional[bool] = None,
|
|
31
26
|
**kwargs,
|
|
32
27
|
) -> CausalLMOutputWithPast:
|
|
33
28
|
r"""
|
|
@@ -88,8 +83,15 @@ def lce_forward(
|
|
|
88
83
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
89
84
|
logits = None
|
|
90
85
|
loss = None
|
|
91
|
-
|
|
92
|
-
if
|
|
86
|
+
|
|
87
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
88
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
89
|
+
|
|
90
|
+
if skip_logits is None:
|
|
91
|
+
# By default, if in training mode, don't materialize logits
|
|
92
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
93
|
+
|
|
94
|
+
if skip_logits:
|
|
93
95
|
loss = LigerForCausalLMLoss(
|
|
94
96
|
hidden_states=kept_hidden_states,
|
|
95
97
|
lm_head_weight=self.lm_head.weight,
|
|
@@ -99,7 +101,7 @@ def lce_forward(
|
|
|
99
101
|
**kwargs,
|
|
100
102
|
)
|
|
101
103
|
|
|
102
|
-
else:
|
|
104
|
+
else:
|
|
103
105
|
logits = self.lm_head(kept_hidden_states)
|
|
104
106
|
if labels is not None:
|
|
105
107
|
loss = self.loss_function(
|
|
@@ -0,0 +1,132 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Union
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from transformers.modeling_outputs import MoeCausalLMOutputWithPast
|
|
8
|
+
from transformers.modeling_outputs import MoeModelOutputWithPast
|
|
9
|
+
from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func
|
|
10
|
+
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def lce_forward(
|
|
15
|
+
self,
|
|
16
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
17
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
18
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
19
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
20
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
21
|
+
labels: Optional[torch.LongTensor] = None,
|
|
22
|
+
use_cache: Optional[bool] = None,
|
|
23
|
+
output_attentions: Optional[bool] = None,
|
|
24
|
+
output_hidden_states: Optional[bool] = None,
|
|
25
|
+
output_router_logits: Optional[bool] = None,
|
|
26
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
27
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
28
|
+
skip_logits: Optional[bool] = None,
|
|
29
|
+
**kwargs,
|
|
30
|
+
) -> MoeCausalLMOutputWithPast:
|
|
31
|
+
r"""
|
|
32
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
33
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
34
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
35
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
36
|
+
|
|
37
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
38
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
39
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
40
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
41
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
42
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
43
|
+
|
|
44
|
+
Returns:
|
|
45
|
+
|
|
46
|
+
Example:
|
|
47
|
+
|
|
48
|
+
```python
|
|
49
|
+
>>> from transformers import AutoTokenizer, Qwen3MoeForCausalLM
|
|
50
|
+
|
|
51
|
+
>>> model = Qwen3MoeForCausalLM.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
|
|
52
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
|
|
53
|
+
|
|
54
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
55
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
56
|
+
|
|
57
|
+
>>> # Generate
|
|
58
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
59
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
60
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
61
|
+
```"""
|
|
62
|
+
|
|
63
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
64
|
+
output_router_logits = (
|
|
65
|
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
output_hidden_states = (
|
|
69
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
73
|
+
outputs: MoeModelOutputWithPast = self.model(
|
|
74
|
+
input_ids=input_ids,
|
|
75
|
+
attention_mask=attention_mask,
|
|
76
|
+
position_ids=position_ids,
|
|
77
|
+
past_key_values=past_key_values,
|
|
78
|
+
inputs_embeds=inputs_embeds,
|
|
79
|
+
use_cache=use_cache,
|
|
80
|
+
output_attentions=output_attentions,
|
|
81
|
+
output_hidden_states=output_hidden_states,
|
|
82
|
+
output_router_logits=output_router_logits,
|
|
83
|
+
cache_position=cache_position,
|
|
84
|
+
**kwargs,
|
|
85
|
+
)
|
|
86
|
+
|
|
87
|
+
hidden_states = outputs.last_hidden_state
|
|
88
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
89
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
90
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
91
|
+
|
|
92
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
93
|
+
logits = None
|
|
94
|
+
loss = None
|
|
95
|
+
|
|
96
|
+
if skip_logits is None:
|
|
97
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
98
|
+
|
|
99
|
+
if skip_logits:
|
|
100
|
+
loss = LigerForCausalLMLoss(
|
|
101
|
+
hidden_states=kept_hidden_states,
|
|
102
|
+
lm_head_weight=self.lm_head.weight,
|
|
103
|
+
labels=labels,
|
|
104
|
+
shift_labels=shift_labels,
|
|
105
|
+
hidden_size=self.config.hidden_size,
|
|
106
|
+
**kwargs,
|
|
107
|
+
)
|
|
108
|
+
else: # if in inference model materialize logits
|
|
109
|
+
logits = self.lm_head(kept_hidden_states)
|
|
110
|
+
if labels is not None:
|
|
111
|
+
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
|
|
112
|
+
|
|
113
|
+
aux_loss = None
|
|
114
|
+
if output_router_logits:
|
|
115
|
+
aux_loss = load_balancing_loss_func(
|
|
116
|
+
outputs.router_logits,
|
|
117
|
+
self.num_experts,
|
|
118
|
+
self.num_experts_per_tok,
|
|
119
|
+
attention_mask,
|
|
120
|
+
)
|
|
121
|
+
if labels is not None:
|
|
122
|
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
|
123
|
+
|
|
124
|
+
return MoeCausalLMOutputWithPast(
|
|
125
|
+
loss=loss,
|
|
126
|
+
aux_loss=aux_loss,
|
|
127
|
+
logits=logits,
|
|
128
|
+
past_key_values=outputs.past_key_values,
|
|
129
|
+
hidden_states=outputs.hidden_states,
|
|
130
|
+
attentions=outputs.attentions,
|
|
131
|
+
router_logits=outputs.router_logits,
|
|
132
|
+
)
|