liger-kernel 0.5.9__py3-none-any.whl → 0.6.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/__init__.py +1 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +127 -0
- liger_kernel/chunked_loss/dpo_loss.py +1 -1
- liger_kernel/chunked_loss/functional.py +2 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
- liger_kernel/chunked_loss/jsd_loss.py +2 -2
- liger_kernel/ops/dyt.py +111 -179
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +1 -1
- liger_kernel/ops/grpo_loss.py +310 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/rms_norm.py +265 -54
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +1 -1
- liger_kernel/transformers/__init__.py +8 -0
- liger_kernel/transformers/dyt.py +5 -3
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +70 -0
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/grpo_loss.py +98 -0
- liger_kernel/transformers/model/gemma.py +25 -16
- liger_kernel/transformers/model/gemma2.py +27 -14
- liger_kernel/transformers/model/gemma3.py +62 -106
- liger_kernel/transformers/model/glm4.py +16 -13
- liger_kernel/transformers/model/llama.py +81 -18
- liger_kernel/transformers/model/llama4.py +108 -0
- liger_kernel/transformers/model/llava.py +95 -132
- liger_kernel/transformers/model/mistral.py +13 -14
- liger_kernel/transformers/model/mixtral.py +16 -15
- liger_kernel/transformers/model/mllama.py +16 -14
- liger_kernel/transformers/model/olmo2.py +16 -13
- liger_kernel/transformers/model/paligemma.py +8 -9
- liger_kernel/transformers/model/phi3.py +25 -16
- liger_kernel/transformers/model/qwen2.py +24 -15
- liger_kernel/transformers/model/qwen2_5_vl.py +41 -97
- liger_kernel/transformers/model/qwen2_vl.py +38 -106
- liger_kernel/transformers/model/qwen3.py +11 -9
- liger_kernel/transformers/model/qwen3_moe.py +132 -0
- liger_kernel/transformers/monkey_patch.py +424 -81
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/rms_norm.py +40 -4
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +21 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
- liger_kernel/utils.py +11 -0
- {liger_kernel-0.5.9.dist-info → liger_kernel-0.6.0.dist-info}/METADATA +41 -21
- liger_kernel-0.6.0.dist-info/RECORD +97 -0
- {liger_kernel-0.5.9.dist-info → liger_kernel-0.6.0.dist-info}/WHEEL +1 -1
- liger_kernel/transformers/gema3_rms.py +0 -8
- liger_kernel-0.5.9.dist-info/RECORD +0 -84
- {liger_kernel-0.5.9.dist-info → liger_kernel-0.6.0.dist-info}/licenses/LICENSE +0 -0
- {liger_kernel-0.5.9.dist-info → liger_kernel-0.6.0.dist-info}/licenses/NOTICE +0 -0
- {liger_kernel-0.5.9.dist-info → liger_kernel-0.6.0.dist-info}/top_level.txt +0 -0
liger_kernel/ops/geglu.py
CHANGED
|
@@ -40,7 +40,7 @@ def _geglu_tanh_forward_kernel(a, b, c, stride, n_cols: tl.constexpr, BLOCK_SIZE
|
|
|
40
40
|
tanh_arg = sqrt_2_over_pi * (a_row + 0.044715 * a_cubed)
|
|
41
41
|
tanh_result = tanh(tanh_arg)
|
|
42
42
|
geglu_a = 0.5 * a_row * (1 + tanh_result)
|
|
43
|
-
c_row = geglu_a * b_row
|
|
43
|
+
c_row = geglu_a.cast(b_row.dtype) * b_row
|
|
44
44
|
tl.store(c + col_offsets, c_row, mask=mask)
|
|
45
45
|
|
|
46
46
|
|
|
@@ -0,0 +1,310 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import triton
|
|
3
|
+
import triton.language as tl
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
@triton.jit
|
|
7
|
+
def _selective_log_softmax_kernel(
|
|
8
|
+
LOGITS,
|
|
9
|
+
INPUT_IDS,
|
|
10
|
+
LOG_P,
|
|
11
|
+
MASK,
|
|
12
|
+
TEMPERATURE,
|
|
13
|
+
stride_input_ids_b,
|
|
14
|
+
L: tl.constexpr,
|
|
15
|
+
N: tl.constexpr,
|
|
16
|
+
BLOCK_N: tl.constexpr = 4096,
|
|
17
|
+
):
|
|
18
|
+
off_b = tl.program_id(0).cast(tl.int64)
|
|
19
|
+
off_l = tl.program_id(1).cast(tl.int64)
|
|
20
|
+
|
|
21
|
+
LOGITS += off_b * (L + 1) * N + off_l * N
|
|
22
|
+
INPUT_IDS += off_b * stride_input_ids_b + off_l
|
|
23
|
+
LOG_P += off_b * L + off_l
|
|
24
|
+
|
|
25
|
+
if MASK is not None:
|
|
26
|
+
MASK += off_b * stride_input_ids_b + off_l
|
|
27
|
+
not_skip = tl.load(MASK)
|
|
28
|
+
if not_skip == 0:
|
|
29
|
+
return
|
|
30
|
+
|
|
31
|
+
m_i = float("-inf")
|
|
32
|
+
l_i = 0.0
|
|
33
|
+
for start in range(0, N, BLOCK_N):
|
|
34
|
+
cols = start + tl.arange(0, BLOCK_N)
|
|
35
|
+
logits = tl.load(LOGITS + cols, mask=cols < N, other=float("-inf")).to(tl.float32) / TEMPERATURE
|
|
36
|
+
new_m_i = tl.maximum(m_i, tl.max(logits))
|
|
37
|
+
alpha = tl.exp(m_i - new_m_i)
|
|
38
|
+
l_i = l_i * alpha + tl.sum(tl.exp(logits - new_m_i))
|
|
39
|
+
m_i = new_m_i
|
|
40
|
+
lse = m_i + tl.log(l_i)
|
|
41
|
+
|
|
42
|
+
ids = tl.load(INPUT_IDS)
|
|
43
|
+
x = tl.load(LOGITS + ids).to(tl.float32) / TEMPERATURE
|
|
44
|
+
logp = x - lse
|
|
45
|
+
tl.store(LOG_P, logp)
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
# compue old_logp and ref_logp, it reduce 10G peak Memory. it does not requires grad
|
|
49
|
+
@torch.no_grad
|
|
50
|
+
def fused_selective_log_softmax(logits: torch.Tensor, input_ids: torch.Tensor, temperature: float = 0.9, mask=None):
|
|
51
|
+
assert logits.is_contiguous()
|
|
52
|
+
B, L_ADD_1, N = logits.shape
|
|
53
|
+
L = L_ADD_1 - 1
|
|
54
|
+
input_ids = input_ids[:, -L:]
|
|
55
|
+
if mask is not None:
|
|
56
|
+
mask = mask[:, -L:]
|
|
57
|
+
log_p = torch.zeros(B, L, dtype=torch.float32, device=logits.device)
|
|
58
|
+
kwargs = {"BLOCK_N": 2048, "num_stages": 4, "num_warps": 1}
|
|
59
|
+
_selective_log_softmax_kernel[(B, L)](
|
|
60
|
+
logits, input_ids, log_p, mask, temperature, input_ids.stride(0), L, N, **kwargs
|
|
61
|
+
)
|
|
62
|
+
return log_p
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
# @triton.autotune([triton.Config({"BLOCK_N":BLOCK_N}, num_stages=ns, num_warps=nw)
|
|
66
|
+
# for BLOCK_N in [2048, 4096, 8192]
|
|
67
|
+
# for ns in [1, 2, 4]
|
|
68
|
+
# for nw in [1, 2, 4, 8, 16]],
|
|
69
|
+
# key=['N'])
|
|
70
|
+
@triton.jit
|
|
71
|
+
def _grpo_loss_fwd_kernel(
|
|
72
|
+
LOGITS,
|
|
73
|
+
OLD_LOGP,
|
|
74
|
+
REF_LOGP,
|
|
75
|
+
INPUT_IDS,
|
|
76
|
+
COMPLETION_MASK,
|
|
77
|
+
ADVANTAGES,
|
|
78
|
+
LOSS,
|
|
79
|
+
LSE,
|
|
80
|
+
KL,
|
|
81
|
+
IS_CLIPPED,
|
|
82
|
+
TEMPERATURE,
|
|
83
|
+
BETA: tl.constexpr,
|
|
84
|
+
EPS_LOW,
|
|
85
|
+
EPS_HIGH,
|
|
86
|
+
L: tl.constexpr,
|
|
87
|
+
N: tl.constexpr,
|
|
88
|
+
BLOCK_N: tl.constexpr = 4096,
|
|
89
|
+
):
|
|
90
|
+
off_b = tl.program_id(0).cast(tl.int64)
|
|
91
|
+
off_l = tl.program_id(1).cast(tl.int64)
|
|
92
|
+
|
|
93
|
+
if COMPLETION_MASK is not None:
|
|
94
|
+
COMPLETION_MASK += off_b * L + off_l
|
|
95
|
+
not_skip = tl.load(COMPLETION_MASK)
|
|
96
|
+
if not_skip == 0:
|
|
97
|
+
return
|
|
98
|
+
|
|
99
|
+
LOGITS += off_b * (L + 1) * N + off_l * N
|
|
100
|
+
INPUT_IDS += off_b * L + off_l
|
|
101
|
+
ADVANTAGES += off_b
|
|
102
|
+
LOSS += off_b * L + off_l
|
|
103
|
+
LSE += off_b * L + off_l
|
|
104
|
+
IS_CLIPPED += off_b * L + off_l
|
|
105
|
+
|
|
106
|
+
m_i = float("-inf")
|
|
107
|
+
l_i = 0.0
|
|
108
|
+
for start in range(0, N, BLOCK_N):
|
|
109
|
+
cols = start + tl.arange(0, BLOCK_N)
|
|
110
|
+
logits = tl.load(LOGITS + cols, mask=cols < N, other=float("-inf")).to(tl.float32) / TEMPERATURE
|
|
111
|
+
new_m_i = tl.maximum(m_i, tl.max(logits))
|
|
112
|
+
alpha = tl.exp(m_i - new_m_i)
|
|
113
|
+
l_i = l_i * alpha + tl.sum(tl.exp(logits - new_m_i))
|
|
114
|
+
m_i = new_m_i
|
|
115
|
+
lse = m_i + tl.log(l_i)
|
|
116
|
+
|
|
117
|
+
idx = tl.load(INPUT_IDS)
|
|
118
|
+
x = tl.load(LOGITS + idx).to(tl.float32) / TEMPERATURE
|
|
119
|
+
logp = x - lse
|
|
120
|
+
if OLD_LOGP is None:
|
|
121
|
+
old_logp = logp
|
|
122
|
+
else:
|
|
123
|
+
OLD_LOGP += off_b * L + off_l
|
|
124
|
+
old_logp = tl.load(OLD_LOGP).to(tl.float32)
|
|
125
|
+
coef_1 = tl.exp(logp - old_logp)
|
|
126
|
+
coef_2 = tl.clamp(coef_1, 1 - EPS_LOW, 1 + EPS_HIGH)
|
|
127
|
+
advantage = tl.load(ADVANTAGES).to(tl.float32)
|
|
128
|
+
per_token_loss1 = coef_1 * advantage
|
|
129
|
+
per_token_loss2 = coef_2 * advantage
|
|
130
|
+
per_token_loss = -tl.minimum(per_token_loss1, per_token_loss2)
|
|
131
|
+
is_clipped = per_token_loss1 < per_token_loss2
|
|
132
|
+
|
|
133
|
+
if BETA != 0.0:
|
|
134
|
+
REF_LOGP += off_b * L + off_l
|
|
135
|
+
KL += off_b * L + off_l
|
|
136
|
+
ref_logp = tl.load(REF_LOGP).to(tl.float32)
|
|
137
|
+
kl = tl.exp(ref_logp - logp) - (ref_logp - logp) - 1
|
|
138
|
+
per_token_loss += BETA * kl
|
|
139
|
+
tl.store(KL, kl)
|
|
140
|
+
|
|
141
|
+
tl.store(LOSS, per_token_loss)
|
|
142
|
+
tl.store(LSE, lse)
|
|
143
|
+
tl.store(IS_CLIPPED, is_clipped)
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
# @triton.autotune([triton.Config({"BLOCK_N":BLOCK_N}, num_stages=ns, num_warps=nw)
|
|
147
|
+
# for BLOCK_N in [2048, 4096, 8192]
|
|
148
|
+
# for ns in [1, 2, 4]
|
|
149
|
+
# for nw in [1, 2, 4, 8, 16]],
|
|
150
|
+
# key=['N'])
|
|
151
|
+
@triton.jit
|
|
152
|
+
def _grpo_loss_bwd_kernel(
|
|
153
|
+
DLOSS,
|
|
154
|
+
DLOGITS,
|
|
155
|
+
LOGITS,
|
|
156
|
+
OLD_LOGP,
|
|
157
|
+
REF_LOGP,
|
|
158
|
+
INPUT_IDS,
|
|
159
|
+
ADVANTAGES,
|
|
160
|
+
COMPLETION_MASK,
|
|
161
|
+
LSE,
|
|
162
|
+
TEMPERATURE,
|
|
163
|
+
BETA: tl.constexpr,
|
|
164
|
+
EPS_LOW,
|
|
165
|
+
EPS_HIGH,
|
|
166
|
+
loss_stride0,
|
|
167
|
+
loss_stride1,
|
|
168
|
+
L: tl.constexpr,
|
|
169
|
+
N: tl.constexpr,
|
|
170
|
+
BLOCK_N: tl.constexpr = 4096,
|
|
171
|
+
):
|
|
172
|
+
off_b = tl.program_id(0).cast(tl.int64)
|
|
173
|
+
off_l = tl.program_id(1).cast(tl.int64)
|
|
174
|
+
|
|
175
|
+
DLOGITS += off_b * (L + 1) * N + off_l * N
|
|
176
|
+
if COMPLETION_MASK is not None:
|
|
177
|
+
COMPLETION_MASK += off_b * L + off_l
|
|
178
|
+
not_skip = tl.load(COMPLETION_MASK)
|
|
179
|
+
if not_skip == 0:
|
|
180
|
+
for start in range(0, N, BLOCK_N):
|
|
181
|
+
cols = tl.arange(0, BLOCK_N) + start
|
|
182
|
+
tl.store(DLOGITS + cols, 0.0, mask=cols < N)
|
|
183
|
+
return
|
|
184
|
+
|
|
185
|
+
LOGITS += off_b * (L + 1) * N + off_l * N
|
|
186
|
+
DLOSS += off_b * loss_stride0 + off_l * loss_stride1
|
|
187
|
+
INPUT_IDS += off_b * L + off_l
|
|
188
|
+
ADVANTAGES += off_b
|
|
189
|
+
LSE += off_b * L + off_l
|
|
190
|
+
|
|
191
|
+
dloss = tl.load(DLOSS).to(tl.float32)
|
|
192
|
+
lse = tl.load(LSE).to(tl.float32)
|
|
193
|
+
|
|
194
|
+
idx = tl.load(INPUT_IDS)
|
|
195
|
+
x = tl.load(LOGITS + idx).to(tl.float32) / TEMPERATURE
|
|
196
|
+
logp = x - lse
|
|
197
|
+
if OLD_LOGP is None:
|
|
198
|
+
old_logp = logp
|
|
199
|
+
else:
|
|
200
|
+
OLD_LOGP += off_b * L + off_l
|
|
201
|
+
old_logp = tl.load(OLD_LOGP).to(tl.float32)
|
|
202
|
+
coef_1 = tl.exp(logp - old_logp)
|
|
203
|
+
coef_2 = tl.clamp(coef_1, 1 - EPS_LOW, 1 + EPS_HIGH)
|
|
204
|
+
advantage = tl.load(ADVANTAGES).to(tl.float32)
|
|
205
|
+
per_token_loss1 = coef_1 * advantage
|
|
206
|
+
per_token_loss2 = coef_2 * advantage
|
|
207
|
+
mask = per_token_loss2 >= per_token_loss1
|
|
208
|
+
|
|
209
|
+
dlogp = -per_token_loss1 * mask
|
|
210
|
+
if BETA != 0.0:
|
|
211
|
+
REF_LOGP += off_b * L + off_l
|
|
212
|
+
ref_logp = tl.load(REF_LOGP).to(tl.float32)
|
|
213
|
+
dlogp += BETA * (1 - tl.exp(ref_logp - logp))
|
|
214
|
+
|
|
215
|
+
dlogp = dlogp * dloss / TEMPERATURE
|
|
216
|
+
tl.debug_barrier()
|
|
217
|
+
for start_n in tl.range(0, N, BLOCK_N):
|
|
218
|
+
cols = start_n + tl.arange(0, BLOCK_N)
|
|
219
|
+
logits = tl.load(LOGITS + cols, mask=cols < N, other=-float("inf")).to(tl.float32) / TEMPERATURE
|
|
220
|
+
probs = tl.exp(logits - lse)
|
|
221
|
+
dlogits = tl.where(cols == idx, 1 - probs, -probs) * dlogp
|
|
222
|
+
tl.store(DLOGITS + cols, dlogits, mask=cols < N)
|
|
223
|
+
|
|
224
|
+
|
|
225
|
+
class GrpoLossFunction(torch.autograd.Function):
|
|
226
|
+
@staticmethod
|
|
227
|
+
def forward(
|
|
228
|
+
ctx,
|
|
229
|
+
logits,
|
|
230
|
+
old_logp,
|
|
231
|
+
ref_logp,
|
|
232
|
+
completion_ids,
|
|
233
|
+
advantages,
|
|
234
|
+
completion_mask,
|
|
235
|
+
temperature,
|
|
236
|
+
beta,
|
|
237
|
+
eps_low,
|
|
238
|
+
eps_high,
|
|
239
|
+
inplace,
|
|
240
|
+
):
|
|
241
|
+
assert logits.is_contiguous() and completion_ids.is_contiguous()
|
|
242
|
+
assert old_logp is None or old_logp.is_contiguous()
|
|
243
|
+
assert (ref_logp is not None and ref_logp.is_contiguous()) if beta != 0.0 else True
|
|
244
|
+
|
|
245
|
+
B, L_ADD_1, N = logits.shape
|
|
246
|
+
L = L_ADD_1 - 1
|
|
247
|
+
|
|
248
|
+
if completion_mask is not None:
|
|
249
|
+
assert completion_mask.is_contiguous()
|
|
250
|
+
|
|
251
|
+
loss = torch.zeros(B, L, device=logits.device, dtype=torch.float32)
|
|
252
|
+
lse = torch.zeros_like(loss)
|
|
253
|
+
is_clipped = torch.zeros_like(loss)
|
|
254
|
+
kl = torch.zeros_like(loss) if beta != 0.0 else None
|
|
255
|
+
kwargs = {"BLOCK_N": 2048, "num_stages": 2, "num_warps": 1}
|
|
256
|
+
_grpo_loss_fwd_kernel[(B, L)](
|
|
257
|
+
logits,
|
|
258
|
+
old_logp,
|
|
259
|
+
ref_logp,
|
|
260
|
+
completion_ids,
|
|
261
|
+
completion_mask,
|
|
262
|
+
advantages,
|
|
263
|
+
loss,
|
|
264
|
+
lse,
|
|
265
|
+
kl,
|
|
266
|
+
is_clipped,
|
|
267
|
+
temperature,
|
|
268
|
+
beta,
|
|
269
|
+
eps_low,
|
|
270
|
+
eps_high,
|
|
271
|
+
L,
|
|
272
|
+
N,
|
|
273
|
+
**kwargs,
|
|
274
|
+
)
|
|
275
|
+
ctx.save_for_backward(logits, old_logp, ref_logp, completion_ids, advantages, completion_mask, lse)
|
|
276
|
+
ctx.infos = (temperature, beta, eps_low, eps_high, inplace)
|
|
277
|
+
# return loss
|
|
278
|
+
return loss, kl, is_clipped
|
|
279
|
+
|
|
280
|
+
@staticmethod
|
|
281
|
+
def backward(ctx, *args):
|
|
282
|
+
dloss = args[0]
|
|
283
|
+
# print(dloss.shape)
|
|
284
|
+
logits, old_logp, ref_logp, completion_ids, advantages, completion_mask, lse = ctx.saved_tensors
|
|
285
|
+
temperature, beta, eps_low, eps_high, inplace = ctx.infos
|
|
286
|
+
B, L_ADD_1, N = logits.shape
|
|
287
|
+
L = L_ADD_1 - 1
|
|
288
|
+
dlogits = logits.data if inplace else torch.empty_like(logits)
|
|
289
|
+
kwargs = {"BLOCK_N": 4096, "num_stages": 1, "num_warps": 16}
|
|
290
|
+
_grpo_loss_bwd_kernel[(B, L)](
|
|
291
|
+
dloss,
|
|
292
|
+
dlogits,
|
|
293
|
+
logits,
|
|
294
|
+
old_logp,
|
|
295
|
+
ref_logp,
|
|
296
|
+
completion_ids,
|
|
297
|
+
advantages,
|
|
298
|
+
completion_mask,
|
|
299
|
+
lse,
|
|
300
|
+
temperature,
|
|
301
|
+
beta,
|
|
302
|
+
eps_low,
|
|
303
|
+
eps_high,
|
|
304
|
+
*dloss.stride(),
|
|
305
|
+
L,
|
|
306
|
+
N,
|
|
307
|
+
**kwargs,
|
|
308
|
+
)
|
|
309
|
+
dlogits[:, -1, :] = 0
|
|
310
|
+
return dlogits, None, None, None, None, None, None, None, None, None, None
|
|
@@ -0,0 +1,207 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn.functional as F
|
|
3
|
+
import triton
|
|
4
|
+
import triton.language as tl
|
|
5
|
+
|
|
6
|
+
from torch.nn.modules.utils import _pair
|
|
7
|
+
|
|
8
|
+
from liger_kernel.ops.softmax import _softmax_forward
|
|
9
|
+
from liger_kernel.ops.sparsemax import _sparsemax_backward
|
|
10
|
+
from liger_kernel.ops.sparsemax import _sparsemax_forward
|
|
11
|
+
from liger_kernel.ops.utils import calculate_settings
|
|
12
|
+
from liger_kernel.ops.utils import ensure_contiguous
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@triton.jit
|
|
16
|
+
def _mask_fwd_kernel(
|
|
17
|
+
scores_ptr,
|
|
18
|
+
out_ptr,
|
|
19
|
+
stride_b,
|
|
20
|
+
stride_m,
|
|
21
|
+
stride_n,
|
|
22
|
+
L,
|
|
23
|
+
mask_val: tl.constexpr,
|
|
24
|
+
BLOCK: tl.constexpr,
|
|
25
|
+
num_warps: tl.constexpr,
|
|
26
|
+
):
|
|
27
|
+
row_block = tl.program_id(0)
|
|
28
|
+
col_block = tl.program_id(1)
|
|
29
|
+
batch_id = tl.program_id(2)
|
|
30
|
+
|
|
31
|
+
row_idx = row_block * BLOCK + tl.arange(0, BLOCK)
|
|
32
|
+
col_idx = col_block * BLOCK + tl.arange(0, BLOCK)
|
|
33
|
+
in_bounds = (row_idx[:, None] < L) & (col_idx[None, :] < L)
|
|
34
|
+
|
|
35
|
+
base = scores_ptr + batch_id * stride_b
|
|
36
|
+
offs = row_idx[:, None] * stride_m + col_idx[None, :] * stride_n
|
|
37
|
+
future = col_idx[None, :] > row_idx[:, None]
|
|
38
|
+
mask_load = in_bounds & ~future
|
|
39
|
+
out = tl.load(base + offs, mask=mask_load, other=mask_val, cache_modifier=".ca")
|
|
40
|
+
tl.store(out_ptr + batch_id * stride_b + offs, out, mask=in_bounds, cache_modifier=".cs")
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
@triton.jit
|
|
44
|
+
def _mask_bwd_kernel(
|
|
45
|
+
grad_in_ptr, out_ptr, stride_b, stride_m, stride_n, L, BLOCK: tl.constexpr, num_warps: tl.constexpr
|
|
46
|
+
):
|
|
47
|
+
row_block = tl.program_id(0)
|
|
48
|
+
col_block = tl.program_id(1)
|
|
49
|
+
batch_id = tl.program_id(2)
|
|
50
|
+
|
|
51
|
+
row_idx = row_block * BLOCK + tl.arange(0, BLOCK)
|
|
52
|
+
col_idx = col_block * BLOCK + tl.arange(0, BLOCK)
|
|
53
|
+
in_bounds = (row_idx[:, None] < L) & (col_idx[None, :] < L)
|
|
54
|
+
|
|
55
|
+
base = grad_in_ptr + batch_id * stride_b
|
|
56
|
+
offs = row_idx[:, None] * stride_m + col_idx[None, :] * stride_n
|
|
57
|
+
grad_vals = tl.load(base + offs, mask=in_bounds, other=0.0, cache_modifier=".ca")
|
|
58
|
+
|
|
59
|
+
future = col_idx[None, :] > row_idx[:, None]
|
|
60
|
+
zero = tl.zeros(grad_vals.shape, dtype=grad_vals.dtype)
|
|
61
|
+
out = tl.where(future, zero, grad_vals)
|
|
62
|
+
|
|
63
|
+
tl.store(out_ptr + batch_id * stride_b + offs, out, mask=in_bounds, cache_modifier=".wb")
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def _mask_inf_forward(scores: torch.Tensor) -> torch.Tensor:
|
|
67
|
+
*batch, L, _ = scores.shape
|
|
68
|
+
N = int(torch.prod(torch.tensor(batch))) if batch else 1
|
|
69
|
+
scores_f = scores.view(N, L, L)
|
|
70
|
+
out = torch.empty_like(scores_f)
|
|
71
|
+
|
|
72
|
+
sb, sm, sn = scores_f.stride(0), scores_f.stride(1), scores_f.stride(2)
|
|
73
|
+
BLOCK_SIZE, num_warps = calculate_settings(L)
|
|
74
|
+
grid = (triton.cdiv(L, BLOCK_SIZE), triton.cdiv(L, BLOCK_SIZE), N)
|
|
75
|
+
_mask_fwd_kernel[grid](scores_f, out, sb, sm, sn, L, mask_val=-1e9, BLOCK=BLOCK_SIZE, num_warps=num_warps)
|
|
76
|
+
return out.view(*batch, L, L)
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
def _mask_inf_backward(grad: torch.Tensor) -> torch.Tensor:
|
|
80
|
+
*batch, L, _ = grad.shape
|
|
81
|
+
N = int(torch.prod(torch.tensor(batch))) if batch else 1
|
|
82
|
+
grad_f = grad.view(N, L, L)
|
|
83
|
+
out = torch.empty_like(grad_f)
|
|
84
|
+
|
|
85
|
+
sb, sm, sn = grad_f.stride(0), grad_f.stride(1), grad_f.stride(2)
|
|
86
|
+
BLOCK_SIZE, num_warps = calculate_settings(L)
|
|
87
|
+
grid = (triton.cdiv(L, BLOCK_SIZE), triton.cdiv(L, BLOCK_SIZE), N)
|
|
88
|
+
_mask_bwd_kernel[grid](grad_f, out, sb, sm, sn, L, BLOCK=BLOCK_SIZE, num_warps=num_warps)
|
|
89
|
+
return out.view(*batch, L, L)
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
def _mask_zero_forward(scores: torch.Tensor) -> torch.Tensor:
|
|
93
|
+
*batch, L, _ = scores.shape
|
|
94
|
+
N = int(torch.prod(torch.tensor(batch))) if batch else 1
|
|
95
|
+
scores_f = scores.view(N, L, L)
|
|
96
|
+
out = torch.empty_like(scores_f)
|
|
97
|
+
|
|
98
|
+
sb, sm, sn = scores_f.stride(0), scores_f.stride(1), scores_f.stride(2)
|
|
99
|
+
BLOCK_SIZE, num_warps = calculate_settings(L)
|
|
100
|
+
grid = (triton.cdiv(L, BLOCK_SIZE), triton.cdiv(L, BLOCK_SIZE), N)
|
|
101
|
+
_mask_fwd_kernel[grid](scores_f, out, sb, sm, sn, L, mask_val=0.0, BLOCK=BLOCK_SIZE, num_warps=num_warps)
|
|
102
|
+
return out.view(*batch, L, L)
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
def _mask_zero_backward(grad: torch.Tensor) -> torch.Tensor:
|
|
106
|
+
*batch, L, _ = grad.shape
|
|
107
|
+
N = int(torch.prod(torch.tensor(batch))) if batch else 1
|
|
108
|
+
grad_f = grad.view(N, L, L)
|
|
109
|
+
out = torch.empty_like(grad_f)
|
|
110
|
+
|
|
111
|
+
sb, sm, sn = grad_f.stride(0), grad_f.stride(1), grad_f.stride(2)
|
|
112
|
+
BLOCK_SIZE, num_warps = calculate_settings(L)
|
|
113
|
+
grid = (triton.cdiv(L, BLOCK_SIZE), triton.cdiv(L, BLOCK_SIZE), N)
|
|
114
|
+
_mask_bwd_kernel[grid](grad_f, out, sb, sm, sn, L, BLOCK=BLOCK_SIZE, num_warps=num_warps)
|
|
115
|
+
return out.view(*batch, L, L)
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
class LigerMultiTokenAttentionFunction(torch.autograd.Function):
|
|
119
|
+
@staticmethod
|
|
120
|
+
@ensure_contiguous
|
|
121
|
+
def forward(ctx, scores, weight, bias=None, stride=1, padding=0, dilation=1, groups=1, sparse=False):
|
|
122
|
+
scores_inf = _mask_inf_forward(scores)
|
|
123
|
+
|
|
124
|
+
out_flat_sparse = None
|
|
125
|
+
activation_output = None
|
|
126
|
+
|
|
127
|
+
ctx.sparse = sparse
|
|
128
|
+
|
|
129
|
+
if sparse:
|
|
130
|
+
if scores_inf.dtype != torch.float32:
|
|
131
|
+
raise RuntimeError("Liger sparse multi-token attention currently only supports fp32 input scores")
|
|
132
|
+
probs_sparse, out_flat_sparse = _sparsemax_forward(scores_inf, dim=-1)
|
|
133
|
+
activation_output = probs_sparse
|
|
134
|
+
ctx.save_for_backward(scores_inf, activation_output, out_flat_sparse, weight, bias)
|
|
135
|
+
ctx.out_flat_sparse_saved = True
|
|
136
|
+
else:
|
|
137
|
+
probs_softmax, _, _, _ = _softmax_forward(scores_inf)
|
|
138
|
+
activation_output = probs_softmax
|
|
139
|
+
ctx.save_for_backward(scores_inf, activation_output, weight, bias)
|
|
140
|
+
ctx.out_flat_sparse_saved = False
|
|
141
|
+
|
|
142
|
+
out_conv = F.conv2d(
|
|
143
|
+
activation_output,
|
|
144
|
+
weight,
|
|
145
|
+
bias,
|
|
146
|
+
stride=stride,
|
|
147
|
+
padding=padding,
|
|
148
|
+
dilation=dilation,
|
|
149
|
+
groups=groups,
|
|
150
|
+
)
|
|
151
|
+
|
|
152
|
+
out = _mask_zero_forward(out_conv)
|
|
153
|
+
|
|
154
|
+
ctx.stride = _pair(stride)
|
|
155
|
+
ctx.padding = _pair(padding)
|
|
156
|
+
ctx.dilation = _pair(dilation)
|
|
157
|
+
ctx.groups = groups
|
|
158
|
+
ctx.dim = -1
|
|
159
|
+
|
|
160
|
+
return out
|
|
161
|
+
|
|
162
|
+
@staticmethod
|
|
163
|
+
@ensure_contiguous
|
|
164
|
+
def backward(ctx, grad_out):
|
|
165
|
+
if ctx.out_flat_sparse_saved:
|
|
166
|
+
scores_inf, activation_output, out_flat_sparse, weight, bias = ctx.saved_tensors
|
|
167
|
+
else:
|
|
168
|
+
scores_inf, activation_output, weight, bias = ctx.saved_tensors
|
|
169
|
+
out_flat_sparse = None
|
|
170
|
+
|
|
171
|
+
use_sparsemax = ctx.sparse
|
|
172
|
+
dim = ctx.dim
|
|
173
|
+
stride, padding, dilation, groups = (ctx.stride, ctx.padding, ctx.dilation, ctx.groups)
|
|
174
|
+
|
|
175
|
+
grad_conv = _mask_zero_backward(grad_out)
|
|
176
|
+
|
|
177
|
+
grad_probs = F.conv_transpose2d(
|
|
178
|
+
grad_conv, weight, None, stride=stride, padding=padding, dilation=dilation, groups=groups
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
grad_weight = torch.nn.grad.conv2d_weight(
|
|
182
|
+
input=activation_output,
|
|
183
|
+
weight_size=weight.shape,
|
|
184
|
+
grad_output=grad_conv,
|
|
185
|
+
stride=stride,
|
|
186
|
+
padding=padding,
|
|
187
|
+
dilation=dilation,
|
|
188
|
+
groups=groups,
|
|
189
|
+
)
|
|
190
|
+
grad_bias = None
|
|
191
|
+
if bias is not None:
|
|
192
|
+
grad_bias = grad_conv.sum(dim=(0, 2, 3))
|
|
193
|
+
|
|
194
|
+
grad_scores_inf = None
|
|
195
|
+
if use_sparsemax:
|
|
196
|
+
if not ctx.out_flat_sparse_saved or out_flat_sparse is None:
|
|
197
|
+
raise RuntimeError("Internal error: Sparse flag is set but sparse tensor was not saved.")
|
|
198
|
+
grad_scores_inf = _sparsemax_backward(grad_probs, out_flat_sparse, dim=dim)
|
|
199
|
+
else:
|
|
200
|
+
grad_probs_cont = grad_probs
|
|
201
|
+
probs_cont = activation_output
|
|
202
|
+
dot = (grad_probs_cont * probs_cont).sum(dim=-1, keepdim=True)
|
|
203
|
+
grad_scores_inf = probs_cont * (grad_probs_cont - dot)
|
|
204
|
+
|
|
205
|
+
grad_scores = _mask_inf_backward(grad_scores_inf)
|
|
206
|
+
|
|
207
|
+
return (grad_scores, grad_weight, grad_bias, None, None, None, None, None)
|