liger-kernel 0.5.9__py3-none-any.whl → 0.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (55) hide show
  1. liger_kernel/chunked_loss/__init__.py +1 -0
  2. liger_kernel/chunked_loss/cosine_similarity_loss.py +127 -0
  3. liger_kernel/chunked_loss/dpo_loss.py +1 -1
  4. liger_kernel/chunked_loss/functional.py +2 -0
  5. liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
  6. liger_kernel/chunked_loss/jsd_loss.py +2 -2
  7. liger_kernel/ops/dyt.py +111 -179
  8. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  9. liger_kernel/ops/geglu.py +1 -1
  10. liger_kernel/ops/grpo_loss.py +310 -0
  11. liger_kernel/ops/multi_token_attention.py +207 -0
  12. liger_kernel/ops/rms_norm.py +265 -54
  13. liger_kernel/ops/softmax.py +201 -0
  14. liger_kernel/ops/sparsemax.py +179 -0
  15. liger_kernel/ops/swiglu.py +1 -1
  16. liger_kernel/transformers/__init__.py +8 -0
  17. liger_kernel/transformers/dyt.py +5 -3
  18. liger_kernel/transformers/fsdp.py +55 -0
  19. liger_kernel/transformers/functional.py +70 -0
  20. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  21. liger_kernel/transformers/grpo_loss.py +98 -0
  22. liger_kernel/transformers/model/gemma.py +25 -16
  23. liger_kernel/transformers/model/gemma2.py +27 -14
  24. liger_kernel/transformers/model/gemma3.py +62 -106
  25. liger_kernel/transformers/model/glm4.py +16 -13
  26. liger_kernel/transformers/model/llama.py +81 -18
  27. liger_kernel/transformers/model/llama4.py +108 -0
  28. liger_kernel/transformers/model/llava.py +95 -132
  29. liger_kernel/transformers/model/mistral.py +13 -14
  30. liger_kernel/transformers/model/mixtral.py +16 -15
  31. liger_kernel/transformers/model/mllama.py +16 -14
  32. liger_kernel/transformers/model/olmo2.py +16 -13
  33. liger_kernel/transformers/model/paligemma.py +8 -9
  34. liger_kernel/transformers/model/phi3.py +25 -16
  35. liger_kernel/transformers/model/qwen2.py +24 -15
  36. liger_kernel/transformers/model/qwen2_5_vl.py +41 -97
  37. liger_kernel/transformers/model/qwen2_vl.py +38 -106
  38. liger_kernel/transformers/model/qwen3.py +11 -9
  39. liger_kernel/transformers/model/qwen3_moe.py +132 -0
  40. liger_kernel/transformers/monkey_patch.py +424 -81
  41. liger_kernel/transformers/multi_token_attention.py +64 -0
  42. liger_kernel/transformers/rms_norm.py +40 -4
  43. liger_kernel/transformers/softmax.py +12 -0
  44. liger_kernel/transformers/sparsemax.py +16 -0
  45. liger_kernel/transformers/swiglu.py +21 -0
  46. liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
  47. liger_kernel/utils.py +11 -0
  48. {liger_kernel-0.5.9.dist-info → liger_kernel-0.6.0.dist-info}/METADATA +41 -21
  49. liger_kernel-0.6.0.dist-info/RECORD +97 -0
  50. {liger_kernel-0.5.9.dist-info → liger_kernel-0.6.0.dist-info}/WHEEL +1 -1
  51. liger_kernel/transformers/gema3_rms.py +0 -8
  52. liger_kernel-0.5.9.dist-info/RECORD +0 -84
  53. {liger_kernel-0.5.9.dist-info → liger_kernel-0.6.0.dist-info}/licenses/LICENSE +0 -0
  54. {liger_kernel-0.5.9.dist-info → liger_kernel-0.6.0.dist-info}/licenses/NOTICE +0 -0
  55. {liger_kernel-0.5.9.dist-info → liger_kernel-0.6.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,179 @@
1
+ from typing import Tuple
2
+
3
+ import torch
4
+ import triton
5
+ import triton.language as tl
6
+
7
+ from liger_kernel.ops.utils import calculate_settings
8
+ from liger_kernel.ops.utils import ensure_contiguous
9
+
10
+
11
+ @triton.jit
12
+ def _sparsemax_forward_kernel(
13
+ x_ptr,
14
+ x_stride_row,
15
+ sorted_x_ptr,
16
+ sorted_x_stride_row,
17
+ o_ptr,
18
+ o_stride_row,
19
+ n_cols,
20
+ BLOCK_SIZE: tl.constexpr,
21
+ num_warps: tl.constexpr,
22
+ ):
23
+ pid_row = tl.program_id(0)
24
+ ptr_x_data_row = x_ptr + pid_row * x_stride_row
25
+ ptr_sorted_x_data_row = sorted_x_ptr + pid_row * sorted_x_stride_row
26
+ ptr_output_row = o_ptr + pid_row * o_stride_row
27
+
28
+ offs = tl.arange(0, BLOCK_SIZE)
29
+ mask = offs < n_cols
30
+
31
+ z_sorted_block = tl.load(
32
+ ptr_sorted_x_data_row + offs,
33
+ mask=mask,
34
+ other=-float("inf"),
35
+ cache_modifier=".ca",
36
+ ).to(tl.float32)
37
+
38
+ z_valid = tl.where(mask, z_sorted_block, 0.0)
39
+ cssv = tl.cumsum(z_valid, 0)
40
+
41
+ r = (offs + 1).to(tl.float32)
42
+ safe_r = tl.where(mask, r, 1.0)
43
+
44
+ t_vec = (cssv - 1.0) / safe_r
45
+
46
+ support = (z_sorted_block > t_vec) & mask
47
+
48
+ k_int = tl.sum(support.to(tl.int32), 0)
49
+ k_clamped_int = tl.maximum(k_int, 1)
50
+ k = k_clamped_int.to(tl.float32)
51
+
52
+ s = tl.sum(tl.where(support, z_sorted_block, 0.0), 0)
53
+
54
+ tau = (s - 1.0) / k
55
+
56
+ x_block = tl.load(
57
+ ptr_x_data_row + offs,
58
+ mask=mask,
59
+ other=0.0,
60
+ cache_modifier=".ca",
61
+ ).to(tl.float32)
62
+
63
+ y = tl.maximum(x_block - tau, 0.0)
64
+
65
+ tl.store(
66
+ ptr_output_row + offs,
67
+ y.to(ptr_output_row.dtype.element_ty),
68
+ mask=mask,
69
+ cache_modifier=".cs",
70
+ )
71
+
72
+
73
+ @triton.jit
74
+ def _sparsemax_backward_kernel(
75
+ o_ptr, go_ptr, gi_ptr, stride, n_cols, BLOCK_SIZE: tl.constexpr, num_warps: tl.constexpr
76
+ ):
77
+ row = tl.program_id(0)
78
+ o_row = o_ptr + row * stride
79
+ go_row = go_ptr + row * stride
80
+ gi_row = gi_ptr + row * stride
81
+
82
+ offs = tl.arange(0, BLOCK_SIZE)
83
+
84
+ supp_cnt = tl.zeros((), tl.float32)
85
+ go_sum = tl.zeros((), tl.float32)
86
+
87
+ for i in tl.range(0, tl.cdiv(n_cols, BLOCK_SIZE)):
88
+ offs_iter = i * BLOCK_SIZE + offs
89
+ mask_iter = offs_iter < n_cols
90
+ o_val = tl.load(o_row + offs_iter, mask=mask_iter, other=0.0, cache_modifier=".ca").to(tl.float32)
91
+ go_val = tl.load(go_row + offs_iter, mask=mask_iter, other=0.0).to(tl.float32)
92
+ supp = o_val > 0.0
93
+ go_sum += tl.sum(tl.where(supp, go_val, 0.0))
94
+ supp_cnt += tl.sum(supp.to(tl.float32))
95
+
96
+ for i in tl.range(0, tl.cdiv(n_cols, BLOCK_SIZE)):
97
+ offs_iter = i * BLOCK_SIZE + offs
98
+ mask_iter = offs_iter < n_cols
99
+ o_val = tl.load(o_row + offs_iter, mask=mask_iter, other=0.0, cache_modifier=".ca").to(tl.float32)
100
+ go_val = tl.load(go_row + offs_iter, mask=mask_iter, other=0.0).to(tl.float32)
101
+ supp = o_val > 0.0
102
+ gi_val = tl.where(
103
+ supp,
104
+ go_val - tl.cast(go_sum / tl.maximum(supp_cnt, 1e-6), gi_row.dtype.element_ty).to(tl.float32),
105
+ 0.0,
106
+ )
107
+ tl.store(gi_row + offs_iter, gi_val.to(gi_row.dtype.element_ty), mask=mask_iter, cache_modifier=".wb")
108
+
109
+
110
+ def _sparsemax_forward(x: torch.Tensor, dim: int) -> Tuple[torch.Tensor, torch.Tensor]:
111
+ if dim < 0:
112
+ dim += x.dim()
113
+ x_sw = x.transpose(dim, -1).contiguous()
114
+ n_cols = x_sw.size(-1)
115
+ n_rows = x_sw.numel() // n_cols
116
+ x_flat = x_sw.view(n_rows, n_cols)
117
+ x_sorted_flat = torch.sort(x_flat.float(), dim=-1, descending=True).values
118
+
119
+ BLOCK_SIZE, num_warps = calculate_settings(n_cols)
120
+ out_flat = torch.empty_like(x_flat)
121
+ grid = (n_rows,)
122
+ _sparsemax_forward_kernel[grid](
123
+ x_flat,
124
+ x_flat.stride(0),
125
+ x_sorted_flat,
126
+ x_sorted_flat.stride(0),
127
+ out_flat,
128
+ out_flat.stride(0),
129
+ n_cols,
130
+ BLOCK_SIZE=BLOCK_SIZE,
131
+ num_warps=num_warps,
132
+ )
133
+
134
+ y = out_flat.view_as(x_sw).transpose(dim, -1)
135
+ return y, out_flat
136
+
137
+
138
+ def _sparsemax_backward(
139
+ grad_out: torch.Tensor,
140
+ out_flat: torch.Tensor,
141
+ dim: int,
142
+ ) -> torch.Tensor:
143
+ grad_sw = grad_out.transpose(dim, -1).contiguous()
144
+ n_cols = grad_sw.size(-1)
145
+ n_rows = grad_sw.numel() // n_cols
146
+ go_flat = grad_sw.view(n_rows, n_cols)
147
+
148
+ BLOCK_SIZE, num_warps = calculate_settings(n_cols)
149
+ dx_flat = torch.empty_like(go_flat)
150
+ grid = (n_rows,)
151
+ _sparsemax_backward_kernel[grid](
152
+ out_flat,
153
+ go_flat,
154
+ dx_flat,
155
+ out_flat.stride(0),
156
+ n_cols,
157
+ BLOCK_SIZE=BLOCK_SIZE,
158
+ num_warps=num_warps,
159
+ )
160
+
161
+ dx = dx_flat.view_as(grad_sw).transpose(dim, -1)
162
+ return dx
163
+
164
+
165
+ class LigerSparsemaxFunction(torch.autograd.Function):
166
+ @staticmethod
167
+ @ensure_contiguous
168
+ def forward(ctx, x: torch.Tensor, dim: int):
169
+ y, out_flat = _sparsemax_forward(x, dim)
170
+ ctx.save_for_backward(out_flat)
171
+ ctx.dim = dim
172
+ return y
173
+
174
+ @staticmethod
175
+ @ensure_contiguous
176
+ def backward(ctx, grad_out: torch.Tensor):
177
+ (out_flat,) = ctx.saved_tensors
178
+ dx = _sparsemax_backward(grad_out, out_flat, ctx.dim)
179
+ return dx, None
@@ -26,7 +26,7 @@ def _swiglu_forward_kernel(a_ptr, b_ptr, c_ptr, stride, n_cols: tl.constexpr, BL
26
26
  # sigmoid requires type float32
27
27
  a_row = tl.load(a_ptr + col_offsets, mask=mask, other=0).to(tl.float32)
28
28
  b_row = tl.load(b_ptr + col_offsets, mask=mask, other=0)
29
- c_row = silu(a_row) * b_row
29
+ c_row = silu(a_row).cast(b_row.dtype) * b_row
30
30
  tl.store(c_ptr + col_offsets, c_row, mask=mask)
31
31
 
32
32
 
@@ -14,6 +14,7 @@ from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
14
14
  from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
15
15
  from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
16
16
  from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
17
+ from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
17
18
  from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
18
19
  from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
19
20
 
@@ -29,6 +30,7 @@ if TYPE_CHECKING:
29
30
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
30
31
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
31
32
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
33
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
32
34
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
33
35
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral # noqa: F401
34
36
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
@@ -40,6 +42,7 @@ if TYPE_CHECKING:
40
42
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_5_vl # noqa: F401
41
43
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
42
44
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
45
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
43
46
 
44
47
 
45
48
  # Check if 'transformers' is installed
@@ -85,6 +88,7 @@ def __getattr__(name: str):
85
88
  "apply_liger_kernel_to_granite",
86
89
  "apply_liger_kernel_to_llama",
87
90
  "apply_liger_kernel_to_llava",
91
+ "apply_liger_kernel_to_llama4",
88
92
  "apply_liger_kernel_to_mistral",
89
93
  "apply_liger_kernel_to_mixtral",
90
94
  "apply_liger_kernel_to_mllama",
@@ -95,6 +99,7 @@ def __getattr__(name: str):
95
99
  "apply_liger_kernel_to_qwen2_5_vl",
96
100
  "apply_liger_kernel_to_qwen2_vl",
97
101
  "apply_liger_kernel_to_qwen3",
102
+ "apply_liger_kernel_to_qwen3_moe",
98
103
  }
99
104
 
100
105
  if name in monkey_patch_symbols:
@@ -118,6 +123,7 @@ __all__ = [
118
123
  "liger_rotary_pos_emb",
119
124
  "LigerBlockSparseTop2MLP",
120
125
  "LigerPhi3SwiGLUMLP",
126
+ "LigerQwen3MoeSwiGLUMLP",
121
127
  "LigerSwiGLUMLP",
122
128
  "LigerTVDLoss",
123
129
  ]
@@ -137,6 +143,7 @@ if _TRANSFORMERS_AVAILABLE:
137
143
  "apply_liger_kernel_to_granite",
138
144
  "apply_liger_kernel_to_llama",
139
145
  "apply_liger_kernel_to_llava",
146
+ "apply_liger_kernel_to_llama4",
140
147
  "apply_liger_kernel_to_mistral",
141
148
  "apply_liger_kernel_to_mixtral",
142
149
  "apply_liger_kernel_to_mllama",
@@ -147,5 +154,6 @@ if _TRANSFORMERS_AVAILABLE:
147
154
  "apply_liger_kernel_to_qwen2_5_vl",
148
155
  "apply_liger_kernel_to_qwen2_vl",
149
156
  "apply_liger_kernel_to_qwen3",
157
+ "apply_liger_kernel_to_qwen3_moe",
150
158
  ]
151
159
  )
@@ -5,16 +5,18 @@ from liger_kernel.ops.dyt import LigerDyTFunction
5
5
 
6
6
 
7
7
  class LigerDyT(nn.Module):
8
- def __init__(self, hidden_size, init_alpha=0.5):
8
+ def __init__(self, hidden_size, beta=True, init_alpha=0.5):
9
9
  super().__init__()
10
10
  self.hidden_size = hidden_size
11
11
  self.init_alpha = init_alpha
12
12
  self.alpha = nn.Parameter(torch.ones(1) * init_alpha)
13
13
  self.gamma = nn.Parameter(torch.ones(hidden_size))
14
- self.beta = nn.Parameter(torch.zeros(hidden_size))
14
+ self.beta = None
15
+ if beta:
16
+ self.beta = nn.Parameter(torch.zeros(hidden_size))
15
17
 
16
18
  def forward(self, x):
17
19
  return LigerDyTFunction.apply(x, self.alpha, self.gamma, self.beta)
18
20
 
19
21
  def extra_repr(self):
20
- return f"{self.hidden_size}, init_alpha={self.init_alpha}"
22
+ return f"{self.hidden_size}, init_alpha={self.init_alpha}, beta={self.beta}"
@@ -0,0 +1,55 @@
1
+ from typing import Any
2
+ from typing import Callable
3
+
4
+ from torch.distributed.fsdp import FullyShardedDataParallel
5
+
6
+
7
+ class _FSDPForwardRedirection:
8
+ """
9
+ Modified based on
10
+ https://github.com/Lightning-AI/pytorch-lightning/blob/d3f9c83d6efa4f1def36aa6c199600946cdb9117/src/lightning/pytorch/strategies/strategy.py#L601-L648
11
+ Redirect a method call through FullyShardedDataParallel.forward so that the FSDP module's root pre-forward and
12
+ post-forward can be properly executed around the method call.
13
+ This is needed in cases where we call a submodule of a FSDP module. For instance, when we want to call only
14
+ the `LlamaModel` part out of a FSDP-wrapped `LlamaForCausalLM` to get the hidden states without involving
15
+ GPU-memory-heavy `lm_head` and cross entropy computation, doing this directly (i.e. `model.model.forward()`)
16
+ will not work because the first `nn.Embedding` layer is not independently wrapped as a FSDP module (because of
17
+ the transformer-based wrapping policy), and not calling it through FSDP root module forward will not all-gather
18
+ its parameter, thus resulting in "RuntimeError: 'weight' must be 2-D" error. Similarly, if we want to call just
19
+ the `lm_head` part of a model, we need this trick too to properly get its params all-gathered.
20
+ """
21
+
22
+ def __call__(
23
+ self,
24
+ wrapper_module: FullyShardedDataParallel,
25
+ method: Callable,
26
+ *args: Any,
27
+ **kwargs: Any,
28
+ ):
29
+ """Reroutes a method call through the `wrapper_module`'s `forward` method.
30
+ Args:
31
+ wrapper_module: The module that has `original_module` wrapped.
32
+ original_module: The module that was wrapped inside `wrapper_module`.
33
+ method_name: The name of the method that should be called on the `original_module` after inputs get
34
+ redirected through the `wrapper_module`'s `forward` method.
35
+ *args: The positional arguments to the method `method_name`. They will get passed to a patched
36
+ `forward` method instead.
37
+ **kwargs: The keyword arguments to the method `method_name`. They will get passed to a patched
38
+ `forward` method instead.
39
+ """
40
+ assert isinstance(wrapper_module, FullyShardedDataParallel)
41
+ original_module = wrapper_module._fsdp_wrapped_module
42
+ original_forward = original_module.forward
43
+
44
+ def wrapped_forward(*_args: Any, **_kwargs: Any) -> Any:
45
+ # Unpatch ourselves immediately before calling the method `method_name`
46
+ # because itself may want to call the real `forward`
47
+ original_module.forward = original_forward # type: ignore[method-assign]
48
+ # Call the actual method e.g. `.training_step(...)`
49
+ out = method(*_args, **_kwargs)
50
+ return out
51
+
52
+ # Patch the original_module's forward so we can redirect the arguments back to the real method
53
+ original_module.forward = wrapped_forward # type: ignore[method-assign]
54
+ wrapper_output = wrapper_module(*args, **kwargs)
55
+ return wrapper_output
@@ -4,14 +4,18 @@ from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
4
4
  from liger_kernel.ops.dyt import LigerDyTFunction
5
5
  from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
6
6
  from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
7
+ from liger_kernel.ops.fused_neighborhood_attention import LigerFusedNeighborhoodAttentionFunction
7
8
  from liger_kernel.ops.geglu import LigerGELUMulFunction
8
9
  from liger_kernel.ops.group_norm import LigerGroupNormFunction
9
10
  from liger_kernel.ops.jsd import LigerJSDFunction
10
11
  from liger_kernel.ops.kl_div import LigerKLDivLossFunction
11
12
  from liger_kernel.ops.layer_norm import LigerLayerNormFunction
13
+ from liger_kernel.ops.multi_token_attention import LigerMultiTokenAttentionFunction
12
14
  from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
13
15
  from liger_kernel.ops.rms_norm import LigerRMSNormFunction
14
16
  from liger_kernel.ops.rope import LigerRopeFunction
17
+ from liger_kernel.ops.softmax import LigerSoftmaxFunction
18
+ from liger_kernel.ops.sparsemax import LigerSparsemaxFunction
15
19
  from liger_kernel.ops.swiglu import LigerSiLUMulFunction
16
20
  from liger_kernel.ops.tvd import LigerTVDLossFunction
17
21
 
@@ -159,6 +163,68 @@ def liger_kl_div(
159
163
  )
160
164
 
161
165
 
166
+ def liger_sparsemax(
167
+ input,
168
+ dim: int = -1,
169
+ ):
170
+ return LigerSparsemaxFunction.apply(input, dim)
171
+
172
+
173
+ def liger_multi_token_attention(
174
+ scores,
175
+ weight,
176
+ bias=None,
177
+ stride: int = 1,
178
+ padding: int = 0,
179
+ dilation: int = 1,
180
+ groups: int = 1,
181
+ sparse: bool = False,
182
+ ):
183
+ """
184
+ Functional interface for multi-token attention.
185
+
186
+ Args:
187
+ scores: Input tensor of shape (B, C_in, L, L)
188
+ weight: Convolution weight tensor of shape (C_out, C_in // groups, K, K)
189
+ bias: Optional bias tensor of shape (C_out,)
190
+ stride: Stride for the convolution (default: 1)
191
+ padding: Padding for the convolution (default: 0)
192
+ dilation: Dilation factor for the convolution (default: 1)
193
+ groups: Number of groups for the convolution (default: 1)
194
+ sparse: Specifies if input tensors are expected to be sparse (default: False)
195
+ Returns:
196
+ Output tensor after applying multi-token attention.
197
+ """
198
+ return LigerMultiTokenAttentionFunction.apply(scores, weight, bias, stride, padding, dilation, groups, sparse)
199
+
200
+
201
+ def liger_fused_neighborhood_attention(
202
+ query,
203
+ key,
204
+ value,
205
+ kernel_size: int = 7,
206
+ dilation: int = 1,
207
+ scale: float = None,
208
+ ):
209
+ """
210
+ Liger fused neighborhood attention.
211
+
212
+ paper: https://arxiv.org/pdf/2504.16922
213
+
214
+ Args:
215
+ query: Query tensor of shape [batch_size, num_heads, seq_len, head_dim]
216
+ key: Key tensor of shape [batch_size, num_heads, seq_len, head_dim]
217
+ value: Value tensor of shape [batch_size, num_heads, seq_len, head_dim]
218
+ kernel_size: Size of the neighborhood window (default: 7)
219
+ dilation: Dilation factor for the neighborhood (default: 1)
220
+ scale: Scaling factor for attention scores (default: rsqrt(head_dim))
221
+
222
+ Returns:
223
+ Output tensor of shape [batch_size, num_heads, seq_len, head_dim]
224
+ """
225
+ return LigerFusedNeighborhoodAttentionFunction.apply(query, key, value, kernel_size, dilation, scale)
226
+
227
+
162
228
  def liger_tvd(
163
229
  input,
164
230
  target,
@@ -195,5 +261,9 @@ def liger_swiglu(a, b):
195
261
  return LigerSiLUMulFunction.apply(a, b)
196
262
 
197
263
 
264
+ def liger_softmax(x):
265
+ return LigerSoftmaxFunction.apply(x)
266
+
267
+
198
268
  def liger_dyt(x, alpha, gamma, beta):
199
269
  return LigerDyTFunction.apply(x, alpha, gamma, beta)
@@ -0,0 +1,234 @@
1
+ import math
2
+
3
+ from typing import Optional
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from liger_kernel.ops.fused_neighborhood_attention import LigerFusedNeighborhoodAttentionFunction
9
+
10
+
11
+ class LigerFusedNeighborhoodAttention(nn.Module):
12
+ """
13
+ Liger Fused Neighborhood Attention Module.
14
+
15
+ Paper: https://arxiv.org/pdf/2504.16922
16
+
17
+ Fused Neighborhood attention restricts the attention mechanism to a local neighborhood
18
+ around each position, reducing computational complexity from O(n²) to O(n*k)
19
+ where k is the neighborhood size.
20
+
21
+ Args:
22
+ hidden_size (int): The hidden dimension size
23
+ num_heads (int): Number of attention heads
24
+ kernel_size (int): Size of the neighborhood window (default: 7)
25
+ dilation (int): Dilation factor for the neighborhood (default: 1)
26
+ bias (bool): Whether to use bias in linear projections (default: True)
27
+ dropout (float): Dropout probability (default: 0.0)
28
+ scale (Optional[float]): Scaling factor for attention scores.
29
+ If None, uses 1/sqrt(head_dim) (default: None)
30
+ """
31
+
32
+ def __init__(
33
+ self,
34
+ hidden_size: int,
35
+ num_heads: int,
36
+ kernel_size: int = 7,
37
+ dilation: int = 1,
38
+ bias: bool = True,
39
+ dropout: float = 0.0,
40
+ scale: Optional[float] = None,
41
+ ):
42
+ super().__init__()
43
+
44
+ if hidden_size % num_heads != 0:
45
+ raise ValueError(f"hidden_size ({hidden_size}) must be divisible by num_heads ({num_heads})")
46
+
47
+ if kernel_size <= 0:
48
+ raise ValueError(f"kernel_size ({kernel_size}) must be positive")
49
+
50
+ if kernel_size % 2 == 0:
51
+ raise ValueError(f"kernel_size ({kernel_size}) must be odd")
52
+
53
+ if dilation < 1:
54
+ raise ValueError(f"dilation ({dilation}) must be positive")
55
+
56
+ self.hidden_size = hidden_size
57
+ self.num_heads = num_heads
58
+ self.head_dim = hidden_size // num_heads
59
+ self.kernel_size = kernel_size
60
+ self.dilation = dilation
61
+ self.scale = scale if scale is not None else 1.0 / math.sqrt(self.head_dim)
62
+ self.dropout_p = dropout
63
+
64
+ self.q_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
65
+ self.k_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
66
+ self.v_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
67
+
68
+ self.out_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
69
+
70
+ if dropout > 0.0:
71
+ self.dropout = nn.Dropout(dropout)
72
+ else:
73
+ self.dropout = None
74
+
75
+ def forward(
76
+ self,
77
+ hidden_states: torch.Tensor,
78
+ attention_mask: Optional[torch.Tensor] = None,
79
+ ) -> torch.Tensor:
80
+ """
81
+ Forward pass of the fused neighborhood attention module.
82
+
83
+ Args:
84
+ hidden_states (torch.Tensor): Input tensor of shape [batch_size, seq_len, hidden_size]
85
+ attention_mask (Optional[torch.Tensor]): Attention mask (currently not supported)
86
+
87
+ Returns:
88
+ torch.Tensor: Output tensor of shape [batch_size, seq_len, hidden_size]
89
+ """
90
+ if attention_mask is not None:
91
+ raise NotImplementedError("Attention mask is not yet supported in LigerFusedNeighborhoodAttention")
92
+
93
+ batch_size, seq_len, hidden_size = hidden_states.shape
94
+
95
+ query = self.q_proj(hidden_states)
96
+ key = self.k_proj(hidden_states)
97
+ value = self.v_proj(hidden_states)
98
+
99
+ query = query.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
100
+ key = key.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
101
+ value = value.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
102
+
103
+ attn_output = LigerFusedNeighborhoodAttentionFunction.apply(
104
+ query, key, value, self.kernel_size, self.dilation, self.scale
105
+ )
106
+
107
+ attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, hidden_size)
108
+
109
+ if self.dropout is not None:
110
+ attn_output = self.dropout(attn_output)
111
+
112
+ output = self.out_proj(attn_output)
113
+
114
+ return output
115
+
116
+ def extra_repr(self) -> str:
117
+ return (
118
+ f"hidden_size={self.hidden_size}, num_heads={self.num_heads}, "
119
+ f"head_dim={self.head_dim}, kernel_size={self.kernel_size}, "
120
+ f"dilation={self.dilation}, scale={self.scale}, dropout={self.dropout_p}"
121
+ )
122
+
123
+
124
+ class LigerFusedNeighborhoodAttentionLayer(nn.Module):
125
+ """
126
+ A complete neighborhood attention layer with layer norm and residual connection.
127
+
128
+ Args:
129
+ hidden_size (int): The hidden dimension size
130
+ num_heads (int): Number of attention heads
131
+ kernel_size (int): Size of the neighborhood window (default: 7)
132
+ dilation (int): Dilation factor for the neighborhood (default: 1)
133
+ bias (bool): Whether to use bias in linear projections (default: True)
134
+ dropout (float): Dropout probability (default: 0.0)
135
+ layer_norm_eps (float): Epsilon for layer normalization (default: 1e-5)
136
+ scale (Optional[float]): Scaling factor for attention scores (default: None)
137
+ """
138
+
139
+ def __init__(
140
+ self,
141
+ hidden_size: int,
142
+ num_heads: int,
143
+ kernel_size: int = 7,
144
+ dilation: int = 1,
145
+ bias: bool = True,
146
+ dropout: float = 0.0,
147
+ layer_norm_eps: float = 1e-5,
148
+ scale: Optional[float] = None,
149
+ ):
150
+ super().__init__()
151
+
152
+ self.attention = LigerFusedNeighborhoodAttention(
153
+ hidden_size=hidden_size,
154
+ num_heads=num_heads,
155
+ kernel_size=kernel_size,
156
+ dilation=dilation,
157
+ bias=bias,
158
+ dropout=dropout,
159
+ scale=scale,
160
+ )
161
+
162
+ self.layer_norm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
163
+
164
+ if dropout > 0.0:
165
+ self.dropout = nn.Dropout(dropout)
166
+ else:
167
+ self.dropout = None
168
+
169
+ def forward(
170
+ self,
171
+ hidden_states: torch.Tensor,
172
+ attention_mask: Optional[torch.Tensor] = None,
173
+ ) -> torch.Tensor:
174
+ """
175
+ Forward pass with residual connection and layer normalization.
176
+
177
+ Args:
178
+ hidden_states (torch.Tensor): Input tensor of shape [batch_size, seq_len, hidden_size]
179
+ attention_mask (Optional[torch.Tensor]): Attention mask (currently not supported)
180
+
181
+ Returns:
182
+ torch.Tensor: Output tensor of shape [batch_size, seq_len, hidden_size]
183
+ """
184
+ normed_hidden_states = self.layer_norm(hidden_states)
185
+
186
+ attn_output = self.attention(normed_hidden_states, attention_mask)
187
+
188
+ if self.dropout is not None:
189
+ attn_output = self.dropout(attn_output)
190
+
191
+ output = hidden_states + attn_output
192
+
193
+ return output
194
+
195
+
196
+ class LigerFusedNeighborhoodAttentionConfig:
197
+ """
198
+ Configuration class for Fused Neighborhood Attention.
199
+
200
+ This can be used to easily configure neighborhood attention parameters
201
+ for different model architectures.
202
+ """
203
+
204
+ def __init__(
205
+ self,
206
+ hidden_size: int = 768,
207
+ num_heads: int = 12,
208
+ kernel_size: int = 7,
209
+ dilation: int = 1,
210
+ bias: bool = True,
211
+ dropout: float = 0.0,
212
+ layer_norm_eps: float = 1e-5,
213
+ scale: Optional[float] = None,
214
+ ):
215
+ self.hidden_size = hidden_size
216
+ self.num_heads = num_heads
217
+ self.kernel_size = kernel_size
218
+ self.dilation = dilation
219
+ self.bias = bias
220
+ self.dropout = dropout
221
+ self.layer_norm_eps = layer_norm_eps
222
+ self.scale = scale
223
+
224
+ def to_dict(self):
225
+ return {
226
+ "hidden_size": self.hidden_size,
227
+ "num_heads": self.num_heads,
228
+ "kernel_size": self.kernel_size,
229
+ "dilation": self.dilation,
230
+ "bias": self.bias,
231
+ "dropout": self.dropout,
232
+ "layer_norm_eps": self.layer_norm_eps,
233
+ "scale": self.scale,
234
+ }