liger-kernel 0.3.1__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/ops/cross_entropy.py +5 -39
- liger_kernel/ops/experimental/mm_int8int2.py +355 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +12 -9
- liger_kernel/ops/fused_linear_jsd.py +245 -0
- liger_kernel/ops/geglu.py +2 -2
- liger_kernel/ops/jsd.py +176 -0
- liger_kernel/ops/kl_div.py +2 -2
- liger_kernel/ops/rms_norm.py +67 -42
- liger_kernel/ops/swiglu.py +2 -2
- liger_kernel/ops/utils.py +62 -1
- liger_kernel/transformers/__init__.py +3 -0
- liger_kernel/transformers/functional.py +4 -0
- liger_kernel/transformers/fused_linear_jsd.py +98 -0
- liger_kernel/transformers/jsd.py +75 -0
- liger_kernel/transformers/model/gemma.py +124 -1
- liger_kernel/transformers/model/llama.py +135 -4
- liger_kernel/transformers/model/mistral.py +3 -0
- liger_kernel/transformers/model/mixtral.py +153 -2
- liger_kernel/transformers/model/mllama.py +274 -0
- liger_kernel/transformers/model/phi3.py +140 -2
- liger_kernel/transformers/model/qwen2.py +123 -2
- liger_kernel/transformers/model/qwen2_vl.py +8 -1
- liger_kernel/transformers/monkey_patch.py +158 -7
- {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.0.dist-info}/METADATA +60 -28
- liger_kernel-0.4.0.dist-info/NOTICE +58 -0
- liger_kernel-0.4.0.dist-info/RECORD +48 -0
- {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.0.dist-info}/WHEEL +1 -1
- liger_kernel-0.3.1.dist-info/NOTICE +0 -4
- liger_kernel-0.3.1.dist-info/RECORD +0 -42
- {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.0.dist-info}/LICENSE +0 -0
- {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.0.dist-info}/top_level.txt +0 -0
|
@@ -22,7 +22,7 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
|
|
|
22
22
|
@replace_return_docstrings(
|
|
23
23
|
output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
24
24
|
)
|
|
25
|
-
def
|
|
25
|
+
def lce_forward_deprecated(
|
|
26
26
|
self,
|
|
27
27
|
input_ids: torch.LongTensor = None,
|
|
28
28
|
attention_mask: Optional[torch.Tensor] = None,
|
|
@@ -103,7 +103,6 @@ def lce_forward(
|
|
|
103
103
|
|
|
104
104
|
hidden_states = outputs[0]
|
|
105
105
|
logits = self.lm_head(hidden_states)
|
|
106
|
-
logits = logits.float()
|
|
107
106
|
|
|
108
107
|
loss = None
|
|
109
108
|
if self.training and (labels is not None):
|
|
@@ -116,6 +115,8 @@ def lce_forward(
|
|
|
116
115
|
lce = LigerFusedLinearCrossEntropyLoss()
|
|
117
116
|
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
118
117
|
elif labels is not None:
|
|
118
|
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
|
119
|
+
logits = logits.float()
|
|
119
120
|
# Shift so that tokens < n predict n
|
|
120
121
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
121
122
|
shift_labels = labels[..., 1:].contiguous()
|
|
@@ -156,3 +157,153 @@ def lce_forward(
|
|
|
156
157
|
attentions=outputs.attentions,
|
|
157
158
|
router_logits=outputs.router_logits,
|
|
158
159
|
)
|
|
160
|
+
|
|
161
|
+
|
|
162
|
+
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
|
|
163
|
+
@replace_return_docstrings(
|
|
164
|
+
output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
165
|
+
)
|
|
166
|
+
# Ignore copy
|
|
167
|
+
def lce_forward(
|
|
168
|
+
self,
|
|
169
|
+
input_ids: torch.LongTensor = None,
|
|
170
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
171
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
172
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
173
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
174
|
+
labels: Optional[torch.LongTensor] = None,
|
|
175
|
+
use_cache: Optional[bool] = None,
|
|
176
|
+
output_attentions: Optional[bool] = None,
|
|
177
|
+
output_hidden_states: Optional[bool] = None,
|
|
178
|
+
output_router_logits: Optional[bool] = None,
|
|
179
|
+
return_dict: Optional[bool] = None,
|
|
180
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
181
|
+
num_logits_to_keep: int = 0,
|
|
182
|
+
**loss_kwargs,
|
|
183
|
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
|
184
|
+
r"""
|
|
185
|
+
Args:
|
|
186
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
187
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
188
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
189
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
190
|
+
|
|
191
|
+
num_logits_to_keep (`int`, *optional*):
|
|
192
|
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
|
193
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
194
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
195
|
+
|
|
196
|
+
Returns:
|
|
197
|
+
|
|
198
|
+
Example:
|
|
199
|
+
|
|
200
|
+
```python
|
|
201
|
+
>>> from transformers import AutoTokenizer, MixtralForCausalLM
|
|
202
|
+
|
|
203
|
+
>>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
|
|
204
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
|
|
205
|
+
|
|
206
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
207
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
208
|
+
|
|
209
|
+
>>> # Generate
|
|
210
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
211
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
212
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
213
|
+
```"""
|
|
214
|
+
|
|
215
|
+
output_attentions = (
|
|
216
|
+
output_attentions
|
|
217
|
+
if output_attentions is not None
|
|
218
|
+
else self.config.output_attentions
|
|
219
|
+
)
|
|
220
|
+
output_router_logits = (
|
|
221
|
+
output_router_logits
|
|
222
|
+
if output_router_logits is not None
|
|
223
|
+
else self.config.output_router_logits
|
|
224
|
+
)
|
|
225
|
+
|
|
226
|
+
output_hidden_states = (
|
|
227
|
+
output_hidden_states
|
|
228
|
+
if output_hidden_states is not None
|
|
229
|
+
else self.config.output_hidden_states
|
|
230
|
+
)
|
|
231
|
+
return_dict = (
|
|
232
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
|
233
|
+
)
|
|
234
|
+
|
|
235
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
236
|
+
outputs = self.model(
|
|
237
|
+
input_ids=input_ids,
|
|
238
|
+
attention_mask=attention_mask,
|
|
239
|
+
position_ids=position_ids,
|
|
240
|
+
past_key_values=past_key_values,
|
|
241
|
+
inputs_embeds=inputs_embeds,
|
|
242
|
+
use_cache=use_cache,
|
|
243
|
+
output_attentions=output_attentions,
|
|
244
|
+
output_hidden_states=output_hidden_states,
|
|
245
|
+
output_router_logits=output_router_logits,
|
|
246
|
+
return_dict=return_dict,
|
|
247
|
+
cache_position=cache_position,
|
|
248
|
+
)
|
|
249
|
+
|
|
250
|
+
hidden_states = outputs[0]
|
|
251
|
+
|
|
252
|
+
logits = None
|
|
253
|
+
loss = None
|
|
254
|
+
# if in training mode, don't materialize logits
|
|
255
|
+
if self.training and (labels is not None):
|
|
256
|
+
# We do the same thing as ForCausalLMLoss but using Liger FLCE
|
|
257
|
+
|
|
258
|
+
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
259
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
260
|
+
|
|
261
|
+
# flatten tokens
|
|
262
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
263
|
+
shift_labels = shift_labels.view(-1)
|
|
264
|
+
|
|
265
|
+
reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
|
|
266
|
+
lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
|
|
267
|
+
|
|
268
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
269
|
+
if reduction == "sum":
|
|
270
|
+
loss /= loss_kwargs["num_items_in_batch"]
|
|
271
|
+
|
|
272
|
+
else: # if in inference mode materialize logits
|
|
273
|
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
|
274
|
+
if labels is not None:
|
|
275
|
+
loss = self.loss_function(
|
|
276
|
+
logits=logits,
|
|
277
|
+
labels=labels,
|
|
278
|
+
vocab_size=self.config.vocab_size,
|
|
279
|
+
**loss_kwargs,
|
|
280
|
+
)
|
|
281
|
+
|
|
282
|
+
aux_loss = None
|
|
283
|
+
if output_router_logits:
|
|
284
|
+
aux_loss = load_balancing_loss_func(
|
|
285
|
+
outputs.router_logits if return_dict else outputs[-1],
|
|
286
|
+
self.num_experts,
|
|
287
|
+
self.num_experts_per_tok,
|
|
288
|
+
attention_mask,
|
|
289
|
+
)
|
|
290
|
+
if labels is not None:
|
|
291
|
+
loss += self.router_aux_loss_coef * aux_loss.to(
|
|
292
|
+
loss.device
|
|
293
|
+
) # make sure to reside in the same device
|
|
294
|
+
|
|
295
|
+
if not return_dict:
|
|
296
|
+
output = (logits,) + outputs[1:]
|
|
297
|
+
if output_router_logits:
|
|
298
|
+
output = (aux_loss,) + output
|
|
299
|
+
return (loss,) + output if loss is not None else output
|
|
300
|
+
|
|
301
|
+
return MoeCausalLMOutputWithPast(
|
|
302
|
+
loss=loss,
|
|
303
|
+
aux_loss=aux_loss,
|
|
304
|
+
logits=logits,
|
|
305
|
+
past_key_values=outputs.past_key_values,
|
|
306
|
+
hidden_states=outputs.hidden_states,
|
|
307
|
+
attentions=outputs.attentions,
|
|
308
|
+
router_logits=outputs.router_logits,
|
|
309
|
+
)
|
|
@@ -0,0 +1,274 @@
|
|
|
1
|
+
from typing import List, Optional, Tuple, Union
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from torch.nn import CrossEntropyLoss
|
|
5
|
+
from transformers.cache_utils import Cache
|
|
6
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
7
|
+
from transformers.models.mllama.modeling_mllama import MLLAMA_INPUTS_DOCSTRING
|
|
8
|
+
from transformers.utils import (
|
|
9
|
+
add_start_docstrings_to_model_forward,
|
|
10
|
+
replace_return_docstrings,
|
|
11
|
+
)
|
|
12
|
+
|
|
13
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import (
|
|
14
|
+
LigerFusedLinearCrossEntropyLoss,
|
|
15
|
+
)
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
@add_start_docstrings_to_model_forward(MLLAMA_INPUTS_DOCSTRING)
|
|
19
|
+
@replace_return_docstrings(
|
|
20
|
+
output_type=CausalLMOutputWithPast, config_class="MllamaTextConfig"
|
|
21
|
+
)
|
|
22
|
+
def lce_forward_deprecated(
|
|
23
|
+
self,
|
|
24
|
+
input_ids: torch.LongTensor = None,
|
|
25
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
26
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
27
|
+
cross_attention_states: Optional[torch.LongTensor] = None,
|
|
28
|
+
cross_attention_mask: Optional[torch.LongTensor] = None,
|
|
29
|
+
full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
30
|
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
31
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
32
|
+
labels: Optional[torch.LongTensor] = None,
|
|
33
|
+
use_cache: Optional[bool] = None,
|
|
34
|
+
output_attentions: Optional[bool] = None,
|
|
35
|
+
output_hidden_states: Optional[bool] = None,
|
|
36
|
+
return_dict: Optional[bool] = None,
|
|
37
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
38
|
+
num_logits_to_keep: int = 0,
|
|
39
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
40
|
+
r"""
|
|
41
|
+
Copy paste mllama forward but replace torch cross entropy with liger fused linear cross entropy
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
Args:
|
|
45
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
46
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
47
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
48
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
49
|
+
num_logits_to_keep (`int`, *optional*):
|
|
50
|
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
|
51
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
52
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
53
|
+
Returns:
|
|
54
|
+
Example:
|
|
55
|
+
```python
|
|
56
|
+
>>> from transformers import AutoTokenizer, MllamaForCausalLM
|
|
57
|
+
>>> model = MllamaForCausalLM.from_pretrained("Llama-3.2-11B-Vision")
|
|
58
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("Llama-3.2-11B-Vision")
|
|
59
|
+
>>> prompt = "If I had to write a haiku, it would be:"
|
|
60
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
61
|
+
>>> # Generate
|
|
62
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=40, do_sample=True, temperature=0.6)
|
|
63
|
+
>>> result = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
64
|
+
>>> print(result)
|
|
65
|
+
If I had to write a haiku, it would be: "Snowflakes gently fall" - simple, yet peaceful.
|
|
66
|
+
I love the idea of snowflakes gently falling, each one
|
|
67
|
+
```
|
|
68
|
+
"""
|
|
69
|
+
output_attentions = (
|
|
70
|
+
output_attentions
|
|
71
|
+
if output_attentions is not None
|
|
72
|
+
else self.config.output_attentions
|
|
73
|
+
)
|
|
74
|
+
output_hidden_states = (
|
|
75
|
+
output_hidden_states
|
|
76
|
+
if output_hidden_states is not None
|
|
77
|
+
else self.config.output_hidden_states
|
|
78
|
+
)
|
|
79
|
+
return_dict = (
|
|
80
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
84
|
+
outputs = self.model(
|
|
85
|
+
input_ids=input_ids,
|
|
86
|
+
cross_attention_states=cross_attention_states,
|
|
87
|
+
attention_mask=attention_mask,
|
|
88
|
+
position_ids=position_ids,
|
|
89
|
+
cross_attention_mask=cross_attention_mask,
|
|
90
|
+
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
|
91
|
+
past_key_values=past_key_values,
|
|
92
|
+
inputs_embeds=inputs_embeds,
|
|
93
|
+
use_cache=use_cache,
|
|
94
|
+
output_attentions=output_attentions,
|
|
95
|
+
output_hidden_states=output_hidden_states,
|
|
96
|
+
return_dict=return_dict,
|
|
97
|
+
cache_position=cache_position,
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
hidden_states = outputs[0]
|
|
101
|
+
|
|
102
|
+
loss = None
|
|
103
|
+
logits = None
|
|
104
|
+
|
|
105
|
+
if self.training and (labels is not None):
|
|
106
|
+
kept_hidden_states = hidden_states[:, -num_logits_to_keep:, :]
|
|
107
|
+
|
|
108
|
+
shift_hidden_states = kept_hidden_states[..., :-1, :].contiguous()
|
|
109
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
110
|
+
|
|
111
|
+
# flatten tokens
|
|
112
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
113
|
+
shift_labels = shift_labels.view(-1)
|
|
114
|
+
|
|
115
|
+
lce = LigerFusedLinearCrossEntropyLoss()
|
|
116
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
117
|
+
|
|
118
|
+
else:
|
|
119
|
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]).float()
|
|
120
|
+
if labels is not None:
|
|
121
|
+
# Shift so that tokens < n predict n
|
|
122
|
+
shift_logits = logits[..., :-1, :].contiguous()
|
|
123
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
124
|
+
# Flatten the tokens
|
|
125
|
+
loss_fct = CrossEntropyLoss()
|
|
126
|
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
127
|
+
shift_labels = shift_labels.view(-1)
|
|
128
|
+
# Enable model parallelism
|
|
129
|
+
shift_labels = shift_labels.to(shift_logits.device)
|
|
130
|
+
loss = loss_fct(shift_logits, shift_labels)
|
|
131
|
+
|
|
132
|
+
if not return_dict:
|
|
133
|
+
output = (logits,) + outputs[1:]
|
|
134
|
+
return (loss,) + output if loss is not None else output
|
|
135
|
+
|
|
136
|
+
return CausalLMOutputWithPast(
|
|
137
|
+
loss=loss,
|
|
138
|
+
logits=logits,
|
|
139
|
+
past_key_values=outputs.past_key_values,
|
|
140
|
+
hidden_states=outputs.hidden_states,
|
|
141
|
+
attentions=outputs.attentions,
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
@add_start_docstrings_to_model_forward(MLLAMA_INPUTS_DOCSTRING)
|
|
146
|
+
@replace_return_docstrings(
|
|
147
|
+
output_type=CausalLMOutputWithPast, config_class="MllamaTextConfig"
|
|
148
|
+
)
|
|
149
|
+
def lce_forward(
|
|
150
|
+
self,
|
|
151
|
+
input_ids: torch.LongTensor = None,
|
|
152
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
153
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
154
|
+
cross_attention_states: Optional[torch.LongTensor] = None,
|
|
155
|
+
cross_attention_mask: Optional[torch.LongTensor] = None,
|
|
156
|
+
full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
157
|
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
158
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
159
|
+
labels: Optional[torch.LongTensor] = None,
|
|
160
|
+
use_cache: Optional[bool] = None,
|
|
161
|
+
output_attentions: Optional[bool] = None,
|
|
162
|
+
output_hidden_states: Optional[bool] = None,
|
|
163
|
+
return_dict: Optional[bool] = None,
|
|
164
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
165
|
+
num_logits_to_keep: int = 0,
|
|
166
|
+
**loss_kwargs,
|
|
167
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
168
|
+
r"""
|
|
169
|
+
Args:
|
|
170
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
171
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
172
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
173
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
174
|
+
|
|
175
|
+
num_logits_to_keep (`int`, *optional*):
|
|
176
|
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
|
177
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
178
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
179
|
+
|
|
180
|
+
Returns:
|
|
181
|
+
|
|
182
|
+
Example:
|
|
183
|
+
|
|
184
|
+
```python
|
|
185
|
+
>>> from transformers import AutoTokenizer, MllamaForCausalLM
|
|
186
|
+
|
|
187
|
+
>>> model = MllamaForCausalLM.from_pretrained("Llama-3.2-11B-Vision")
|
|
188
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("Llama-3.2-11B-Vision")
|
|
189
|
+
|
|
190
|
+
>>> prompt = "If I had to write a haiku, it would be:"
|
|
191
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
192
|
+
|
|
193
|
+
>>> # Generate
|
|
194
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=40, do_sample=True, temperature=0.6)
|
|
195
|
+
>>> result = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
196
|
+
>>> print(result)
|
|
197
|
+
If I had to write a haiku, it would be: "Snowflakes gently fall" - simple, yet peaceful.
|
|
198
|
+
I love the idea of snowflakes gently falling, each one
|
|
199
|
+
```
|
|
200
|
+
"""
|
|
201
|
+
output_attentions = (
|
|
202
|
+
output_attentions
|
|
203
|
+
if output_attentions is not None
|
|
204
|
+
else self.config.output_attentions
|
|
205
|
+
)
|
|
206
|
+
output_hidden_states = (
|
|
207
|
+
output_hidden_states
|
|
208
|
+
if output_hidden_states is not None
|
|
209
|
+
else self.config.output_hidden_states
|
|
210
|
+
)
|
|
211
|
+
return_dict = (
|
|
212
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
216
|
+
outputs = self.model(
|
|
217
|
+
input_ids=input_ids,
|
|
218
|
+
cross_attention_states=cross_attention_states,
|
|
219
|
+
attention_mask=attention_mask,
|
|
220
|
+
position_ids=position_ids,
|
|
221
|
+
cross_attention_mask=cross_attention_mask,
|
|
222
|
+
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
|
223
|
+
past_key_values=past_key_values,
|
|
224
|
+
inputs_embeds=inputs_embeds,
|
|
225
|
+
use_cache=use_cache,
|
|
226
|
+
output_attentions=output_attentions,
|
|
227
|
+
output_hidden_states=output_hidden_states,
|
|
228
|
+
return_dict=return_dict,
|
|
229
|
+
cache_position=cache_position,
|
|
230
|
+
)
|
|
231
|
+
|
|
232
|
+
hidden_states = outputs[0]
|
|
233
|
+
|
|
234
|
+
logits = None
|
|
235
|
+
loss = None
|
|
236
|
+
# if in training mode, don't materialize logits
|
|
237
|
+
if self.training and (labels is not None):
|
|
238
|
+
# We do the same thing as ForCausalLMLoss but using Liger FLCE
|
|
239
|
+
|
|
240
|
+
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
241
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
242
|
+
|
|
243
|
+
# flatten tokens
|
|
244
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
245
|
+
shift_labels = shift_labels.view(-1)
|
|
246
|
+
|
|
247
|
+
reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
|
|
248
|
+
lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
|
|
249
|
+
|
|
250
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
251
|
+
if reduction == "sum":
|
|
252
|
+
loss /= loss_kwargs["num_items_in_batch"]
|
|
253
|
+
|
|
254
|
+
else: # if in inference mode materialize logits
|
|
255
|
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
|
256
|
+
if labels is not None:
|
|
257
|
+
loss = self.loss_function(
|
|
258
|
+
logits=logits,
|
|
259
|
+
labels=labels,
|
|
260
|
+
vocab_size=self.config.vocab_size,
|
|
261
|
+
**loss_kwargs,
|
|
262
|
+
)
|
|
263
|
+
|
|
264
|
+
if not return_dict:
|
|
265
|
+
output = (logits,) + outputs[1:]
|
|
266
|
+
return (loss,) + output if loss is not None else output
|
|
267
|
+
|
|
268
|
+
return CausalLMOutputWithPast(
|
|
269
|
+
loss=loss,
|
|
270
|
+
logits=logits,
|
|
271
|
+
past_key_values=outputs.past_key_values,
|
|
272
|
+
hidden_states=outputs.hidden_states,
|
|
273
|
+
attentions=outputs.attentions,
|
|
274
|
+
)
|
|
@@ -21,7 +21,7 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
|
|
|
21
21
|
@replace_return_docstrings(
|
|
22
22
|
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
23
23
|
)
|
|
24
|
-
def
|
|
24
|
+
def lce_forward_deprecated(
|
|
25
25
|
self,
|
|
26
26
|
input_ids: torch.LongTensor = None,
|
|
27
27
|
attention_mask: Optional[torch.Tensor] = None,
|
|
@@ -108,10 +108,11 @@ def lce_forward(
|
|
|
108
108
|
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
109
109
|
else:
|
|
110
110
|
logits = self.lm_head(hidden_states)
|
|
111
|
-
logits = logits.float()
|
|
112
111
|
|
|
113
112
|
loss = None
|
|
114
113
|
if labels is not None:
|
|
114
|
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
|
115
|
+
logits = logits.float()
|
|
115
116
|
# Shift so that tokens < n predict n
|
|
116
117
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
117
118
|
shift_labels = labels[..., 1:].contiguous()
|
|
@@ -134,3 +135,140 @@ def lce_forward(
|
|
|
134
135
|
hidden_states=outputs.hidden_states,
|
|
135
136
|
attentions=outputs.attentions,
|
|
136
137
|
)
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
|
141
|
+
@replace_return_docstrings(
|
|
142
|
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
143
|
+
)
|
|
144
|
+
def lce_forward(
|
|
145
|
+
self,
|
|
146
|
+
input_ids: torch.LongTensor = None,
|
|
147
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
148
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
149
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
150
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
151
|
+
labels: Optional[torch.LongTensor] = None,
|
|
152
|
+
use_cache: Optional[bool] = None,
|
|
153
|
+
output_attentions: Optional[bool] = None,
|
|
154
|
+
output_hidden_states: Optional[bool] = None,
|
|
155
|
+
return_dict: Optional[bool] = None,
|
|
156
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
157
|
+
num_logits_to_keep: int = 0,
|
|
158
|
+
**loss_kwargs,
|
|
159
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
160
|
+
r"""
|
|
161
|
+
Args:
|
|
162
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
163
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
164
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
165
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
166
|
+
|
|
167
|
+
num_logits_to_keep (`int`, *optional*):
|
|
168
|
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
|
169
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
170
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
171
|
+
|
|
172
|
+
Returns:
|
|
173
|
+
|
|
174
|
+
Example:
|
|
175
|
+
|
|
176
|
+
```python
|
|
177
|
+
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
|
178
|
+
|
|
179
|
+
>>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
|
180
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
|
181
|
+
|
|
182
|
+
>>> prompt = "This is an example script ."
|
|
183
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
184
|
+
|
|
185
|
+
>>> # Generate
|
|
186
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
187
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
188
|
+
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
|
|
189
|
+
```"""
|
|
190
|
+
|
|
191
|
+
from transformers.models.phi3.modeling_phi3 import logging
|
|
192
|
+
|
|
193
|
+
logger = logging.get_logger(__name__)
|
|
194
|
+
|
|
195
|
+
if (
|
|
196
|
+
use_cache
|
|
197
|
+
and self.config.rope_scaling
|
|
198
|
+
and cache_position is not None
|
|
199
|
+
and cache_position[0] == self.config.original_max_position_embeddings
|
|
200
|
+
):
|
|
201
|
+
logger.warning(
|
|
202
|
+
f"If you are not using the generate method, you may encounter nonsensical outputs after the {self.config.original_max_position_embeddings}th token, as the KV cache needs to be recomputed."
|
|
203
|
+
)
|
|
204
|
+
|
|
205
|
+
output_attentions = (
|
|
206
|
+
output_attentions
|
|
207
|
+
if output_attentions is not None
|
|
208
|
+
else self.config.output_attentions
|
|
209
|
+
)
|
|
210
|
+
output_hidden_states = (
|
|
211
|
+
output_hidden_states
|
|
212
|
+
if output_hidden_states is not None
|
|
213
|
+
else self.config.output_hidden_states
|
|
214
|
+
)
|
|
215
|
+
return_dict = (
|
|
216
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
|
217
|
+
)
|
|
218
|
+
|
|
219
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
220
|
+
outputs = self.model(
|
|
221
|
+
input_ids=input_ids,
|
|
222
|
+
attention_mask=attention_mask,
|
|
223
|
+
position_ids=position_ids,
|
|
224
|
+
past_key_values=past_key_values,
|
|
225
|
+
inputs_embeds=inputs_embeds,
|
|
226
|
+
use_cache=use_cache,
|
|
227
|
+
output_attentions=output_attentions,
|
|
228
|
+
output_hidden_states=output_hidden_states,
|
|
229
|
+
return_dict=return_dict,
|
|
230
|
+
)
|
|
231
|
+
|
|
232
|
+
hidden_states = outputs[0]
|
|
233
|
+
|
|
234
|
+
logits = None
|
|
235
|
+
loss = None
|
|
236
|
+
# if in training mode, don't materialize logits
|
|
237
|
+
if self.training and (labels is not None):
|
|
238
|
+
# We do the same thing as ForCausalLMLoss but using Liger FLCE
|
|
239
|
+
|
|
240
|
+
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
241
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
242
|
+
|
|
243
|
+
# flatten tokens
|
|
244
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
245
|
+
shift_labels = shift_labels.view(-1)
|
|
246
|
+
|
|
247
|
+
reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
|
|
248
|
+
lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
|
|
249
|
+
|
|
250
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
251
|
+
if reduction == "sum":
|
|
252
|
+
loss /= loss_kwargs["num_items_in_batch"]
|
|
253
|
+
|
|
254
|
+
else: # if in inference mode materialize logits
|
|
255
|
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
|
256
|
+
if labels is not None:
|
|
257
|
+
loss = self.loss_function(
|
|
258
|
+
logits=logits,
|
|
259
|
+
labels=labels,
|
|
260
|
+
vocab_size=self.config.vocab_size,
|
|
261
|
+
**loss_kwargs,
|
|
262
|
+
)
|
|
263
|
+
|
|
264
|
+
if not return_dict:
|
|
265
|
+
output = (logits,) + outputs[1:]
|
|
266
|
+
return (loss,) + output if loss is not None else output
|
|
267
|
+
|
|
268
|
+
return CausalLMOutputWithPast(
|
|
269
|
+
loss=loss,
|
|
270
|
+
logits=logits,
|
|
271
|
+
past_key_values=outputs.past_key_values,
|
|
272
|
+
hidden_states=outputs.hidden_states,
|
|
273
|
+
attentions=outputs.attentions,
|
|
274
|
+
)
|