liger-kernel 0.3.1__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/ops/cross_entropy.py +5 -39
- liger_kernel/ops/experimental/mm_int8int2.py +355 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +12 -9
- liger_kernel/ops/fused_linear_jsd.py +245 -0
- liger_kernel/ops/geglu.py +2 -2
- liger_kernel/ops/jsd.py +176 -0
- liger_kernel/ops/kl_div.py +2 -2
- liger_kernel/ops/rms_norm.py +67 -42
- liger_kernel/ops/swiglu.py +2 -2
- liger_kernel/ops/utils.py +62 -1
- liger_kernel/transformers/__init__.py +3 -0
- liger_kernel/transformers/functional.py +4 -0
- liger_kernel/transformers/fused_linear_jsd.py +98 -0
- liger_kernel/transformers/jsd.py +75 -0
- liger_kernel/transformers/model/gemma.py +124 -1
- liger_kernel/transformers/model/llama.py +135 -4
- liger_kernel/transformers/model/mistral.py +3 -0
- liger_kernel/transformers/model/mixtral.py +153 -2
- liger_kernel/transformers/model/mllama.py +274 -0
- liger_kernel/transformers/model/phi3.py +140 -2
- liger_kernel/transformers/model/qwen2.py +123 -2
- liger_kernel/transformers/model/qwen2_vl.py +8 -1
- liger_kernel/transformers/monkey_patch.py +158 -7
- {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.0.dist-info}/METADATA +60 -28
- liger_kernel-0.4.0.dist-info/NOTICE +58 -0
- liger_kernel-0.4.0.dist-info/RECORD +48 -0
- {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.0.dist-info}/WHEEL +1 -1
- liger_kernel-0.3.1.dist-info/NOTICE +0 -4
- liger_kernel-0.3.1.dist-info/RECORD +0 -42
- {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.0.dist-info}/LICENSE +0 -0
- {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,245 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
import triton
|
|
5
|
+
|
|
6
|
+
from liger_kernel.ops.jsd import _jsd_kernel
|
|
7
|
+
from liger_kernel.ops.utils import (
|
|
8
|
+
amp_custom_bwd,
|
|
9
|
+
amp_custom_fwd,
|
|
10
|
+
element_mul_kernel,
|
|
11
|
+
is_hip,
|
|
12
|
+
)
|
|
13
|
+
|
|
14
|
+
# The hard limit of TRITON_MAX_TENSOR_NUMEL is 1048576 https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/language/core.py#L19
|
|
15
|
+
# However, setting limit as 65536 as in LayerNorm tutorial is faster because of less register spilling
|
|
16
|
+
# The optimal maximum block size depends on your hardware, your kernel, and your dtype
|
|
17
|
+
MAX_FUSED_SIZE = 65536 // 2
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def fused_linear_jsd_forward(
|
|
21
|
+
student_input,
|
|
22
|
+
student_weight,
|
|
23
|
+
teacher_input,
|
|
24
|
+
teacher_weight,
|
|
25
|
+
shift_labels,
|
|
26
|
+
jsd_beta,
|
|
27
|
+
ignore_index,
|
|
28
|
+
has_label,
|
|
29
|
+
temperature,
|
|
30
|
+
):
|
|
31
|
+
device = student_input.device
|
|
32
|
+
dtype = student_input.dtype
|
|
33
|
+
|
|
34
|
+
# inputs have shape: BT x H
|
|
35
|
+
# materialized activations will have shape: BT x V
|
|
36
|
+
# the increase in memory = BT x V
|
|
37
|
+
# reduction can be achieved by partitioning the number of tokens BT into smaller chunks.
|
|
38
|
+
# for ex: if we were to achieve the same memory consumption as BT x H, then the chunk size should be:
|
|
39
|
+
# inc_factor = (V+H-1)//H, chunk_size = (BT + inc_factor - 1)//inc_factor
|
|
40
|
+
# for ex: BT = 4096*4, V = 32000, H = 4096 ==> inc_factor = 8, chunk_size = 2048
|
|
41
|
+
BT, H = student_input.shape
|
|
42
|
+
V = student_weight.shape[0]
|
|
43
|
+
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(V))
|
|
44
|
+
|
|
45
|
+
inc_factor = triton.cdiv(V, H) # (V + H - 1) // H
|
|
46
|
+
chunk_size = triton.next_power_of_2(
|
|
47
|
+
triton.cdiv(BT, inc_factor)
|
|
48
|
+
) # (BT + inc_factor - 1) // inc_factor
|
|
49
|
+
num_chunks = triton.cdiv(BT, chunk_size) # (BT + chunk_size - 1) // chunk_size
|
|
50
|
+
|
|
51
|
+
grad_weight = (
|
|
52
|
+
torch.zeros_like(student_weight, device=device)
|
|
53
|
+
if student_weight.requires_grad
|
|
54
|
+
else None
|
|
55
|
+
)
|
|
56
|
+
grad_input = torch.zeros_like(student_input)
|
|
57
|
+
# we use fp32 for loss accumulator
|
|
58
|
+
loss_1d = torch.zeros((BT, V), dtype=torch.float32, device=device)
|
|
59
|
+
|
|
60
|
+
if has_label:
|
|
61
|
+
n_non_ignore = (shift_labels != ignore_index).sum().item()
|
|
62
|
+
else:
|
|
63
|
+
n_non_ignore = BT
|
|
64
|
+
|
|
65
|
+
for chunk_id in range(num_chunks):
|
|
66
|
+
start_idx = chunk_id * chunk_size
|
|
67
|
+
end_idx = min((chunk_id + 1) * chunk_size, BT)
|
|
68
|
+
|
|
69
|
+
# chunk both inputs, shape: chunk_size x H
|
|
70
|
+
student_input_chunk = student_input[start_idx:end_idx]
|
|
71
|
+
teacher_input_chunk = teacher_input[start_idx:end_idx]
|
|
72
|
+
|
|
73
|
+
# shape: chunk_size x V
|
|
74
|
+
# For anything starting from logits to the final JSD loss, we do computation
|
|
75
|
+
# in FP32 to avoid losing numerical stability.
|
|
76
|
+
student_logits_chunk = (student_input_chunk @ student_weight.t()).to(
|
|
77
|
+
torch.float32
|
|
78
|
+
)
|
|
79
|
+
teacher_logits_chunk = (teacher_input_chunk @ teacher_weight.t()).to(
|
|
80
|
+
torch.float32
|
|
81
|
+
)
|
|
82
|
+
chunk_n_rows = student_logits_chunk.shape[0]
|
|
83
|
+
|
|
84
|
+
# unreduced loss
|
|
85
|
+
loss_1d_slice = loss_1d[start_idx:end_idx] # chunk_size
|
|
86
|
+
# log-softmax with temperature
|
|
87
|
+
student_logits_chunk = student_logits_chunk / temperature
|
|
88
|
+
teacher_logits_chunk = teacher_logits_chunk / temperature
|
|
89
|
+
student_prob_chunk = torch.log_softmax(student_logits_chunk, dim=-1)
|
|
90
|
+
teacher_prob_chunk = torch.log_softmax(teacher_logits_chunk, dim=-1)
|
|
91
|
+
|
|
92
|
+
# ensure _input and target are contiguous
|
|
93
|
+
student_prob_chunk = student_prob_chunk.contiguous()
|
|
94
|
+
teacher_prob_chunk = teacher_prob_chunk.contiguous()
|
|
95
|
+
|
|
96
|
+
# Here we calculate the gradient of prob_chunk in place so we can save memory.
|
|
97
|
+
_jsd_kernel[(chunk_n_rows,)](
|
|
98
|
+
X_ptr=student_prob_chunk,
|
|
99
|
+
X_stride=student_prob_chunk.stride(-2),
|
|
100
|
+
Y_ptr=teacher_prob_chunk,
|
|
101
|
+
Y_stride=teacher_prob_chunk.stride(-2),
|
|
102
|
+
loss_ptr=loss_1d_slice,
|
|
103
|
+
loss_stride=loss_1d_slice.stride(-2),
|
|
104
|
+
dX_ptr=student_prob_chunk,
|
|
105
|
+
dX_stride=student_prob_chunk.stride(-2),
|
|
106
|
+
label_ptr=(
|
|
107
|
+
shift_labels[start_idx:end_idx]
|
|
108
|
+
if has_label
|
|
109
|
+
else torch.empty(1, device=device)
|
|
110
|
+
), # dummy ptr if no label
|
|
111
|
+
beta=jsd_beta,
|
|
112
|
+
n_non_ignore=n_non_ignore,
|
|
113
|
+
ignore_index=ignore_index,
|
|
114
|
+
n_cols=V,
|
|
115
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
116
|
+
HAS_LABEL=has_label,
|
|
117
|
+
)
|
|
118
|
+
loss_1d[start_idx:end_idx] = loss_1d_slice
|
|
119
|
+
# gradients of prob_chunk in place, shape: chunk_size x V
|
|
120
|
+
# gradients of logits_chunk in place, shape: chunk_size x V
|
|
121
|
+
student_logits_chunk = (
|
|
122
|
+
student_prob_chunk
|
|
123
|
+
- torch.softmax(student_logits_chunk, dim=-1)
|
|
124
|
+
* student_prob_chunk.sum(dim=-1, keepdim=True).broadcast_to(
|
|
125
|
+
student_prob_chunk.shape
|
|
126
|
+
)
|
|
127
|
+
) / temperature
|
|
128
|
+
# now we traverse back to grad w.r.t. input to `lm_head` and grad
|
|
129
|
+
# w.r.t. `lm_head` which should be computed in original dtype
|
|
130
|
+
student_logits_chunk = student_logits_chunk.to(dtype)
|
|
131
|
+
grad_input[start_idx:end_idx] = student_logits_chunk @ student_weight
|
|
132
|
+
|
|
133
|
+
if grad_weight is not None:
|
|
134
|
+
grad_weight.add_(student_logits_chunk.t() @ student_input_chunk)
|
|
135
|
+
|
|
136
|
+
loss = torch.sum(loss_1d)
|
|
137
|
+
return loss, grad_input, grad_weight
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
def fused_linear_jsd_backward(grad_output, grad_input, grad_weight):
|
|
141
|
+
# If JSD is the last layer, grad_output is 1.0. Skip the mul to save time
|
|
142
|
+
if torch.ne(grad_output, torch.tensor(1.0, device=grad_output.device)):
|
|
143
|
+
# We use a Triton kernel instead of a PyTorch operation because modifying inputs in-place
|
|
144
|
+
# for gradient storage and backward multiple times causes anomalies with PyTorch but not with Triton.
|
|
145
|
+
BT, H = grad_input.shape
|
|
146
|
+
n_rows = BT
|
|
147
|
+
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(H))
|
|
148
|
+
|
|
149
|
+
element_mul_kernel[(n_rows,)](
|
|
150
|
+
grad_input,
|
|
151
|
+
grad_input.stride(-2),
|
|
152
|
+
grad_output,
|
|
153
|
+
H,
|
|
154
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
155
|
+
num_warps=32 if not is_hip() else 16,
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
# handle grad_weight
|
|
159
|
+
if grad_weight is not None:
|
|
160
|
+
V, H = grad_weight.shape
|
|
161
|
+
n_rows = V
|
|
162
|
+
|
|
163
|
+
element_mul_kernel[(n_rows,)](
|
|
164
|
+
grad_weight,
|
|
165
|
+
grad_weight.stride(-2),
|
|
166
|
+
grad_output,
|
|
167
|
+
H,
|
|
168
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
169
|
+
num_warps=32 if not is_hip() else 16,
|
|
170
|
+
)
|
|
171
|
+
|
|
172
|
+
return grad_input, grad_weight
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
class LigerFusedLinearJSDFunction(torch.autograd.Function):
|
|
176
|
+
"""
|
|
177
|
+
Fusing the last linear layer with generalized JSD
|
|
178
|
+
|
|
179
|
+
Handle the forward and backward pass of the final linear layer via JSD by avoiding
|
|
180
|
+
the materialization of the large logits tensor. Since JSD is the last layer, we can
|
|
181
|
+
compute the gradient at the forward pass.
|
|
182
|
+
"""
|
|
183
|
+
|
|
184
|
+
@staticmethod
|
|
185
|
+
@amp_custom_fwd
|
|
186
|
+
def forward(
|
|
187
|
+
ctx,
|
|
188
|
+
student_input: torch.Tensor,
|
|
189
|
+
student_weight: torch.Tensor,
|
|
190
|
+
teacher_input: torch.Tensor,
|
|
191
|
+
teacher_weight: torch.Tensor,
|
|
192
|
+
shift_labels: Optional[torch.Tensor] = None,
|
|
193
|
+
jsd_beta: float = 0.5,
|
|
194
|
+
ignore_index: int = -100,
|
|
195
|
+
temperature: float = 1.0,
|
|
196
|
+
):
|
|
197
|
+
"""
|
|
198
|
+
Args:
|
|
199
|
+
|
|
200
|
+
student_input (torch.tensor): input of the last projection layer in student model, with shape (B*T, H), where B is batch size, T is sequence length, H is hidden dimension.
|
|
201
|
+
student_weight (torch.tensor): the last projection layer in student model, with shape (V, H), where V is vocab size
|
|
202
|
+
teacher_input (torch.tensor): input of the last projection layer in teacher model, with shape (B*T, H), where B is batch size, T is sequence length, H is hidden dimension.
|
|
203
|
+
teacher_weight (torch.tensor): the last projection layer in teacher model, with shape (V, H), where V is vocab size
|
|
204
|
+
shift_labels (Optional[torch.LongTensor]): indicator of next predicted vocab with shape (BT) where each value is in [0, V-1].
|
|
205
|
+
jsd_beta (float): coefficient beta of generalized JSD in the open interval (0, 1). Default: `0.5`
|
|
206
|
+
ignore_index (int): the index to ignore. Default: -100
|
|
207
|
+
temperature (float): temperature in softmax function to control the output probability distribution. Default: `1.0`
|
|
208
|
+
|
|
209
|
+
Returns:
|
|
210
|
+
loss (torch.Tensor): generalized JSD
|
|
211
|
+
"""
|
|
212
|
+
has_label = False
|
|
213
|
+
if shift_labels is not None:
|
|
214
|
+
assert shift_labels.shape == (
|
|
215
|
+
teacher_input.shape[0],
|
|
216
|
+
), f"the shape of shift_labels must be (BT,). Got: {shift_labels.shape}"
|
|
217
|
+
shift_labels = shift_labels.contiguous()
|
|
218
|
+
has_label = True
|
|
219
|
+
|
|
220
|
+
loss, grad_input, grad_weight = fused_linear_jsd_forward(
|
|
221
|
+
student_input,
|
|
222
|
+
student_weight,
|
|
223
|
+
teacher_input,
|
|
224
|
+
teacher_weight,
|
|
225
|
+
shift_labels,
|
|
226
|
+
jsd_beta,
|
|
227
|
+
ignore_index,
|
|
228
|
+
has_label,
|
|
229
|
+
temperature,
|
|
230
|
+
)
|
|
231
|
+
# downcast to dtype and store for backward
|
|
232
|
+
ctx.save_for_backward(
|
|
233
|
+
grad_input.detach(),
|
|
234
|
+
grad_weight.detach() if grad_weight is not None else None,
|
|
235
|
+
)
|
|
236
|
+
return loss
|
|
237
|
+
|
|
238
|
+
@staticmethod
|
|
239
|
+
@amp_custom_bwd
|
|
240
|
+
def backward(ctx, grad_output):
|
|
241
|
+
(grad_input, grad_weight) = ctx.saved_tensors
|
|
242
|
+
grad_input, grad_weight = fused_linear_jsd_backward(
|
|
243
|
+
grad_output, grad_input, grad_weight
|
|
244
|
+
)
|
|
245
|
+
return (grad_input, grad_weight, None, None, None, None, None, None)
|
liger_kernel/ops/geglu.py
CHANGED
|
@@ -25,7 +25,7 @@ else:
|
|
|
25
25
|
def _geglu_tanh_forward_kernel(
|
|
26
26
|
a, b, c, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
|
|
27
27
|
):
|
|
28
|
-
program_id = tl.program_id(0).
|
|
28
|
+
program_id = tl.program_id(0).to(tl.int64)
|
|
29
29
|
|
|
30
30
|
# locate start index
|
|
31
31
|
a += program_id * stride
|
|
@@ -52,7 +52,7 @@ def _geglu_tanh_forward_kernel(
|
|
|
52
52
|
def _geglu_tanh_backward_kernel(
|
|
53
53
|
dc, a, b, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
|
|
54
54
|
):
|
|
55
|
-
program_id = tl.program_id(0).
|
|
55
|
+
program_id = tl.program_id(0).to(tl.int64)
|
|
56
56
|
|
|
57
57
|
# locate start index
|
|
58
58
|
dc += program_id * stride
|
liger_kernel/ops/jsd.py
ADDED
|
@@ -0,0 +1,176 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
import triton
|
|
5
|
+
import triton.language as tl
|
|
6
|
+
|
|
7
|
+
from liger_kernel.ops.utils import ensure_contiguous
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
@triton.jit
|
|
11
|
+
def _jsd_kernel(
|
|
12
|
+
X_ptr, # input in logspace, X = log Q
|
|
13
|
+
X_stride,
|
|
14
|
+
Y_ptr, # ground truth in logspace, Y = log P
|
|
15
|
+
Y_stride,
|
|
16
|
+
loss_ptr,
|
|
17
|
+
loss_stride,
|
|
18
|
+
dX_ptr,
|
|
19
|
+
dX_stride,
|
|
20
|
+
label_ptr,
|
|
21
|
+
beta,
|
|
22
|
+
n_non_ignore: int,
|
|
23
|
+
ignore_index: tl.constexpr,
|
|
24
|
+
n_cols,
|
|
25
|
+
BLOCK_SIZE: tl.constexpr,
|
|
26
|
+
HAS_LABEL: tl.constexpr,
|
|
27
|
+
):
|
|
28
|
+
# JSD(P || Q) = (KL(P || M) + KL(Q || M)) / 2, M = (1/2) * (P + Q) = (1/2) * (e ^ Y + e ^ X)
|
|
29
|
+
# = sum(P * log P + Q * log Q - 2 * M * log M) / 2
|
|
30
|
+
# = sum(e ^ Y * Y + e ^ X * X - 2 * M * log M) / 2
|
|
31
|
+
# grad_x_i = 0.5 * Q * (X - log_M)
|
|
32
|
+
pid = tl.program_id(0).to(tl.int64)
|
|
33
|
+
X_ptr += pid * X_stride
|
|
34
|
+
dX_ptr += pid * dX_stride
|
|
35
|
+
Y_ptr += pid * Y_stride
|
|
36
|
+
loss_ptr += pid * loss_stride
|
|
37
|
+
label_ptr += pid
|
|
38
|
+
|
|
39
|
+
if HAS_LABEL:
|
|
40
|
+
label = tl.load(label_ptr)
|
|
41
|
+
if label == ignore_index:
|
|
42
|
+
for i in range(0, n_cols, BLOCK_SIZE):
|
|
43
|
+
offsets = i + tl.arange(0, BLOCK_SIZE)
|
|
44
|
+
tl.store(dX_ptr + offsets, 0.0, mask=offsets < n_cols)
|
|
45
|
+
return
|
|
46
|
+
|
|
47
|
+
for i in range(0, n_cols, BLOCK_SIZE):
|
|
48
|
+
offsets = i + tl.arange(0, BLOCK_SIZE)
|
|
49
|
+
mask = offsets < n_cols
|
|
50
|
+
X = tl.load(X_ptr + offsets, mask=mask, other=float("-inf")).to(tl.float32)
|
|
51
|
+
Y = tl.load(Y_ptr + offsets, mask=mask, other=float("-inf")).to(tl.float32)
|
|
52
|
+
|
|
53
|
+
Q = tl.exp(X)
|
|
54
|
+
P = tl.exp(Y)
|
|
55
|
+
M = beta * P + (1 - beta) * Q
|
|
56
|
+
log_M = tl.log(M)
|
|
57
|
+
|
|
58
|
+
loss = beta * P * Y + (1 - beta) * Q * X - M * log_M
|
|
59
|
+
# reduction == "batchmean"
|
|
60
|
+
loss = loss / n_non_ignore
|
|
61
|
+
tl.store(loss_ptr + offsets, loss, mask=mask)
|
|
62
|
+
|
|
63
|
+
dX = (1 - beta) * Q * (X - log_M) / n_non_ignore
|
|
64
|
+
tl.store(dX_ptr + offsets, dX, mask=mask)
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
MAX_FUSED_SIZE = 65536
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
def jsd_forward(_input, target, shift_labels, beta, ignore_index, has_label):
|
|
71
|
+
BT, V = _input.shape
|
|
72
|
+
n_rows = BT
|
|
73
|
+
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(V))
|
|
74
|
+
# non reduction loss
|
|
75
|
+
loss = torch.zeros(_input.shape, dtype=torch.float32, device=_input.device)
|
|
76
|
+
dX = torch.empty_like(_input)
|
|
77
|
+
|
|
78
|
+
if has_label:
|
|
79
|
+
n_non_ignore = (shift_labels != ignore_index).sum().item()
|
|
80
|
+
else:
|
|
81
|
+
n_non_ignore = BT
|
|
82
|
+
|
|
83
|
+
_jsd_kernel[(n_rows,)](
|
|
84
|
+
X_ptr=_input, # input in logspace, X = log Q
|
|
85
|
+
X_stride=_input.stride(-2),
|
|
86
|
+
Y_ptr=target, # ground truth in logspace, Y = log P
|
|
87
|
+
Y_stride=target.stride(-2),
|
|
88
|
+
loss_ptr=loss,
|
|
89
|
+
loss_stride=loss.stride(-2),
|
|
90
|
+
dX_ptr=dX,
|
|
91
|
+
dX_stride=dX.stride(-2),
|
|
92
|
+
label_ptr=(
|
|
93
|
+
shift_labels if has_label else torch.empty(1, device=_input.device)
|
|
94
|
+
), # dummy ptr if no label
|
|
95
|
+
beta=beta,
|
|
96
|
+
n_non_ignore=n_non_ignore,
|
|
97
|
+
ignore_index=ignore_index,
|
|
98
|
+
n_cols=V,
|
|
99
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
100
|
+
HAS_LABEL=has_label,
|
|
101
|
+
)
|
|
102
|
+
|
|
103
|
+
loss = torch.sum(loss)
|
|
104
|
+
return loss.to(_input.dtype), dX
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
def jsd_backward(dX, grad_output):
|
|
108
|
+
# If jsd is the last layer, grad_output is 1.0. Skip the mul to save time
|
|
109
|
+
if torch.equal(grad_output, torch.tensor(1.0, device=grad_output.device)):
|
|
110
|
+
return dX
|
|
111
|
+
else:
|
|
112
|
+
return grad_output * dX
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
class LigerJSDFunction(torch.autograd.Function):
|
|
116
|
+
r"""
|
|
117
|
+
This class implements the forward and backward pass for the generalized Jensen-Shannon Divergence.
|
|
118
|
+
.. math::
|
|
119
|
+
JSD(\beta)(P || Q)
|
|
120
|
+
= \beta * KLDiv(P || (\beta * P + (1 - \beta) * Q)) + (1 - \beta) * KLDiv(Q || (\beta * P + (1 - \beta) * Q))
|
|
121
|
+
|
|
122
|
+
.. note::
|
|
123
|
+
As all the other losses in PyTorch, this function expects the first argument,
|
|
124
|
+
:attr:`_input`, to be the predictions, the output of the student model, in log-space
|
|
125
|
+
and the second, :attr:`target`, to be the observations, the output of the teacher model, in log-space.
|
|
126
|
+
This differs from the standard mathematical notation :math:`JSD(P || Q)` where
|
|
127
|
+
:math:`P` denotes the teacher model and :math:`Q` denotes the student model.
|
|
128
|
+
"""
|
|
129
|
+
|
|
130
|
+
@staticmethod
|
|
131
|
+
@ensure_contiguous
|
|
132
|
+
def forward(
|
|
133
|
+
ctx,
|
|
134
|
+
_input: torch.Tensor,
|
|
135
|
+
target: torch.Tensor,
|
|
136
|
+
shift_labels: Optional[torch.Tensor] = None,
|
|
137
|
+
beta: float = 0.5,
|
|
138
|
+
ignore_index: int = -100,
|
|
139
|
+
) -> torch.Tensor:
|
|
140
|
+
"""
|
|
141
|
+
Args:
|
|
142
|
+
_input (torch.Tensor): predict values with shape (BT, V) in logspace
|
|
143
|
+
target (torch.Tensor): ground truth values with shape (BT, V) in logspace
|
|
144
|
+
shift_labels (Optional[torch.LongTensor]): indicator of next predicted vocab with shape (BT) where each value is in [0, V-1].
|
|
145
|
+
beta (float): coefficient beta of generalized JSD in the open interval (0, 1)
|
|
146
|
+
ignore_index (int): the index to ignore. Default: -100
|
|
147
|
+
|
|
148
|
+
Returns:
|
|
149
|
+
loss (torch.Tensor): generalized JSD
|
|
150
|
+
"""
|
|
151
|
+
has_label = False
|
|
152
|
+
if shift_labels is not None:
|
|
153
|
+
assert shift_labels.shape == (
|
|
154
|
+
_input.shape[0],
|
|
155
|
+
), f"the shape of shift_labels must be (BT,). Got: {shift_labels.shape}"
|
|
156
|
+
shift_labels = shift_labels.contiguous()
|
|
157
|
+
has_label = True
|
|
158
|
+
|
|
159
|
+
loss, dX = jsd_forward(
|
|
160
|
+
_input, target, shift_labels, beta, ignore_index, has_label
|
|
161
|
+
)
|
|
162
|
+
ctx.save_for_backward(dX)
|
|
163
|
+
return loss
|
|
164
|
+
|
|
165
|
+
@staticmethod
|
|
166
|
+
@ensure_contiguous
|
|
167
|
+
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
|
|
168
|
+
(dX,) = ctx.saved_tensors
|
|
169
|
+
dX = jsd_backward(dX, grad_output)
|
|
170
|
+
return (
|
|
171
|
+
dX,
|
|
172
|
+
None,
|
|
173
|
+
None,
|
|
174
|
+
None,
|
|
175
|
+
None,
|
|
176
|
+
)
|
liger_kernel/ops/kl_div.py
CHANGED
|
@@ -4,13 +4,13 @@ import torch
|
|
|
4
4
|
import triton
|
|
5
5
|
import triton.language as tl
|
|
6
6
|
|
|
7
|
-
from liger_kernel.ops.utils import ensure_contiguous
|
|
7
|
+
from liger_kernel.ops.utils import ensure_contiguous, is_hip
|
|
8
8
|
|
|
9
9
|
|
|
10
10
|
def get_num_warps(BLOCK_SIZE):
|
|
11
11
|
num_warps = 4
|
|
12
12
|
if BLOCK_SIZE >= 32768:
|
|
13
|
-
num_warps = 32
|
|
13
|
+
num_warps = 32 if not is_hip() else 16
|
|
14
14
|
elif BLOCK_SIZE >= 8192:
|
|
15
15
|
num_warps = 16
|
|
16
16
|
elif BLOCK_SIZE >= 2048:
|
liger_kernel/ops/rms_norm.py
CHANGED
|
@@ -10,6 +10,7 @@ https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddec
|
|
|
10
10
|
Modifications made by Yanning Chen, 2024.
|
|
11
11
|
"""
|
|
12
12
|
|
|
13
|
+
import math
|
|
13
14
|
import operator
|
|
14
15
|
|
|
15
16
|
import torch
|
|
@@ -20,6 +21,7 @@ from liger_kernel.ops.utils import (
|
|
|
20
21
|
calculate_settings,
|
|
21
22
|
compare_version,
|
|
22
23
|
ensure_contiguous,
|
|
24
|
+
torch_to_triton_dtype,
|
|
23
25
|
)
|
|
24
26
|
|
|
25
27
|
if compare_version("triton", operator.ge, "3.0.0"):
|
|
@@ -84,6 +86,10 @@ def _rms_norm_forward_kernel(
|
|
|
84
86
|
W_row = W_row.to(tl.float32)
|
|
85
87
|
X_row = X_row.to(tl.float32)
|
|
86
88
|
|
|
89
|
+
if casting_mode == _CASTING_MODE_NONE:
|
|
90
|
+
eps = eps.to(X_row_dtype)
|
|
91
|
+
offset = offset.to(X_row_dtype)
|
|
92
|
+
|
|
87
93
|
mean_square = tl.sum(X_row * X_row, axis=0) / n_cols
|
|
88
94
|
rstd = rsqrt(mean_square + eps)
|
|
89
95
|
|
|
@@ -100,6 +106,9 @@ def _rms_norm_forward_kernel(
|
|
|
100
106
|
|
|
101
107
|
Y_row = X_row * (offset + W_row)
|
|
102
108
|
|
|
109
|
+
if casting_mode == _CASTING_MODE_GEMMA:
|
|
110
|
+
Y_row = Y_row.to(X_row_dtype)
|
|
111
|
+
|
|
103
112
|
tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
|
|
104
113
|
|
|
105
114
|
|
|
@@ -109,14 +118,17 @@ def _rms_norm_backward_kernel(
|
|
|
109
118
|
dY_row_stride,
|
|
110
119
|
X_ptr,
|
|
111
120
|
X_row_stride,
|
|
121
|
+
X_dtype: tl.constexpr,
|
|
112
122
|
W_ptr,
|
|
113
123
|
W_row_stride,
|
|
114
124
|
RSTD_ptr,
|
|
115
125
|
RSTD_row_stride,
|
|
116
126
|
dW_ptr,
|
|
117
127
|
dW_row_stride,
|
|
128
|
+
n_rows,
|
|
118
129
|
n_cols,
|
|
119
130
|
offset,
|
|
131
|
+
rows_per_program: tl.constexpr,
|
|
120
132
|
casting_mode: tl.constexpr,
|
|
121
133
|
BLOCK_SIZE: tl.constexpr,
|
|
122
134
|
):
|
|
@@ -125,54 +137,60 @@ def _rms_norm_backward_kernel(
|
|
|
125
137
|
dw = sum(dy * (x / RMS)). summation over BxT dimension
|
|
126
138
|
"""
|
|
127
139
|
|
|
128
|
-
|
|
140
|
+
row_block_id = tl.program_id(0)
|
|
141
|
+
row_start = row_block_id * rows_per_program
|
|
142
|
+
row_end = min((row_block_id + 1) * rows_per_program, n_rows)
|
|
129
143
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
130
144
|
mask = col_offsets < n_cols
|
|
131
145
|
|
|
132
|
-
|
|
133
|
-
X_ptr += row_idx * X_row_stride
|
|
134
|
-
RSTD_ptr += row_idx * RSTD_row_stride
|
|
135
|
-
dW_ptr += row_idx * dW_row_stride
|
|
146
|
+
dW_row = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
|
|
136
147
|
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
original_x_dtype = X_row.dtype
|
|
141
|
-
|
|
142
|
-
# Get cached rms
|
|
143
|
-
rstd_row = tl.load(RSTD_ptr)
|
|
148
|
+
dY_ptr += row_start * dY_row_stride
|
|
149
|
+
X_ptr += row_start * X_row_stride
|
|
150
|
+
RSTD_ptr += row_start
|
|
144
151
|
|
|
152
|
+
W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0.0)
|
|
145
153
|
W_row = W_row + offset
|
|
146
154
|
|
|
147
|
-
|
|
155
|
+
for _ in range(row_start, row_end):
|
|
156
|
+
dY_row = tl.load(dY_ptr + col_offsets, mask=mask, other=0.0)
|
|
157
|
+
X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0.0)
|
|
148
158
|
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
m = (dY_row * W_row).to(tl.float32)
|
|
159
|
+
# Get cached rms
|
|
160
|
+
rstd_row = tl.load(RSTD_ptr)
|
|
152
161
|
|
|
153
|
-
|
|
154
|
-
dY_row, W_row = (
|
|
155
|
-
dY_row.to(tl.float32),
|
|
156
|
-
W_row.to(tl.float32),
|
|
157
|
-
)
|
|
162
|
+
X_row = X_row.to(tl.float32)
|
|
158
163
|
|
|
159
|
-
|
|
164
|
+
# Different bacward graphs for different casting modes
|
|
165
|
+
if casting_mode == _CASTING_MODE_LLAMA:
|
|
166
|
+
m = (dY_row * W_row).to(tl.float32)
|
|
160
167
|
|
|
161
|
-
|
|
168
|
+
elif casting_mode == _CASTING_MODE_GEMMA:
|
|
169
|
+
dY_row = dY_row.to(tl.float32)
|
|
170
|
+
m = dY_row * W_row
|
|
171
|
+
else:
|
|
172
|
+
m = dY_row * W_row
|
|
162
173
|
|
|
163
|
-
|
|
164
|
-
-(1 / n_cols) * rstd_row * rstd_row * tl.sum(m * X_row, axis=0) * X_row
|
|
165
|
-
)
|
|
174
|
+
dX_row = rstd_row * m
|
|
166
175
|
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
#
|
|
172
|
-
|
|
176
|
+
dX_row += (rstd_row) * (
|
|
177
|
+
-(1 / n_cols) * rstd_row * rstd_row * tl.sum(m * X_row, axis=0) * X_row
|
|
178
|
+
)
|
|
179
|
+
|
|
180
|
+
# calculate the gradient of W
|
|
181
|
+
if casting_mode == _CASTING_MODE_LLAMA:
|
|
182
|
+
dW_row += dY_row * (X_row * rstd_row).to(X_dtype)
|
|
183
|
+
else:
|
|
184
|
+
# here X_row is already in fp32 (see previous if block)
|
|
185
|
+
dW_row += dY_row * (X_row * rstd_row)
|
|
173
186
|
|
|
174
|
-
|
|
175
|
-
|
|
187
|
+
tl.store(dY_ptr + col_offsets, dX_row.to(X_dtype), mask=mask)
|
|
188
|
+
|
|
189
|
+
dY_ptr += dY_row_stride
|
|
190
|
+
X_ptr += X_row_stride
|
|
191
|
+
RSTD_ptr += RSTD_row_stride
|
|
192
|
+
|
|
193
|
+
tl.store(dW_ptr + row_block_id * dW_row_stride + col_offsets, dW_row, mask=mask)
|
|
176
194
|
|
|
177
195
|
|
|
178
196
|
_str_to_casting_mode = {
|
|
@@ -238,31 +256,38 @@ def rms_norm_backward(dY, X, W, RSTD, offset, casting_mode, BLOCK_SIZE, num_warp
|
|
|
238
256
|
dim = shape[-1]
|
|
239
257
|
dY = dY.view(-1, dim)
|
|
240
258
|
n_rows, n_cols = dY.shape
|
|
241
|
-
dW = torch.empty_like(
|
|
242
|
-
X,
|
|
243
|
-
dtype=(torch.float32 if casting_mode == _CASTING_MODE_GEMMA.value else W.dtype),
|
|
244
|
-
)
|
|
245
259
|
|
|
260
|
+
sm_count = torch.cuda.get_device_properties(X.device).multi_processor_count
|
|
261
|
+
# fp32 for numerical stability especially.
|
|
262
|
+
_dW = torch.empty((sm_count, n_cols), dtype=torch.float32, device=W.device)
|
|
263
|
+
|
|
264
|
+
if n_cols > BLOCK_SIZE:
|
|
265
|
+
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
|
266
|
+
rows_per_program = math.ceil(n_rows / sm_count)
|
|
267
|
+
grid = (sm_count,)
|
|
246
268
|
# Here we use dY to store the value of dX to save memory
|
|
247
|
-
_rms_norm_backward_kernel[
|
|
269
|
+
_rms_norm_backward_kernel[grid](
|
|
248
270
|
dY,
|
|
249
271
|
dY.stride(0),
|
|
250
272
|
X,
|
|
251
273
|
X.stride(0),
|
|
274
|
+
torch_to_triton_dtype[X.dtype],
|
|
252
275
|
W,
|
|
253
276
|
W.stride(0),
|
|
254
277
|
RSTD,
|
|
255
278
|
RSTD.stride(0),
|
|
256
|
-
|
|
257
|
-
|
|
279
|
+
_dW,
|
|
280
|
+
_dW.stride(0),
|
|
281
|
+
n_rows,
|
|
258
282
|
n_cols,
|
|
259
283
|
offset,
|
|
284
|
+
rows_per_program,
|
|
260
285
|
casting_mode,
|
|
261
286
|
BLOCK_SIZE=BLOCK_SIZE,
|
|
262
287
|
num_warps=num_warps,
|
|
263
288
|
)
|
|
264
289
|
dX = dY.view(*shape)
|
|
265
|
-
dW =
|
|
290
|
+
dW = _dW.sum(dim=0).to(W.dtype)
|
|
266
291
|
return dX, dW
|
|
267
292
|
|
|
268
293
|
|
liger_kernel/ops/swiglu.py
CHANGED
|
@@ -14,7 +14,7 @@ def silu(x):
|
|
|
14
14
|
def _swiglu_forward_kernel(
|
|
15
15
|
a_ptr, b_ptr, c_ptr, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
|
|
16
16
|
):
|
|
17
|
-
program_id = tl.program_id(0).
|
|
17
|
+
program_id = tl.program_id(0).to(tl.int64)
|
|
18
18
|
|
|
19
19
|
# locate start index
|
|
20
20
|
a_ptr += program_id * stride
|
|
@@ -35,7 +35,7 @@ def _swiglu_forward_kernel(
|
|
|
35
35
|
def _swiglu_backward_kernel(
|
|
36
36
|
dc_ptr, a_ptr, b_ptr, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
|
|
37
37
|
):
|
|
38
|
-
program_id = tl.program_id(0).
|
|
38
|
+
program_id = tl.program_id(0).to(tl.int64)
|
|
39
39
|
|
|
40
40
|
# locate start index
|
|
41
41
|
dc_ptr += program_id * stride
|