liger-kernel 0.3.1__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/ops/cross_entropy.py +5 -39
- liger_kernel/ops/experimental/mm_int8int2.py +355 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +12 -9
- liger_kernel/ops/fused_linear_jsd.py +245 -0
- liger_kernel/ops/geglu.py +2 -2
- liger_kernel/ops/jsd.py +176 -0
- liger_kernel/ops/kl_div.py +2 -2
- liger_kernel/ops/rms_norm.py +67 -42
- liger_kernel/ops/swiglu.py +2 -2
- liger_kernel/ops/utils.py +62 -1
- liger_kernel/transformers/__init__.py +3 -0
- liger_kernel/transformers/functional.py +4 -0
- liger_kernel/transformers/fused_linear_jsd.py +98 -0
- liger_kernel/transformers/jsd.py +75 -0
- liger_kernel/transformers/model/gemma.py +124 -1
- liger_kernel/transformers/model/llama.py +135 -4
- liger_kernel/transformers/model/mistral.py +3 -0
- liger_kernel/transformers/model/mixtral.py +153 -2
- liger_kernel/transformers/model/mllama.py +274 -0
- liger_kernel/transformers/model/phi3.py +140 -2
- liger_kernel/transformers/model/qwen2.py +123 -2
- liger_kernel/transformers/model/qwen2_vl.py +8 -1
- liger_kernel/transformers/monkey_patch.py +158 -7
- {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.0.dist-info}/METADATA +60 -28
- liger_kernel-0.4.0.dist-info/NOTICE +58 -0
- liger_kernel-0.4.0.dist-info/RECORD +48 -0
- {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.0.dist-info}/WHEEL +1 -1
- liger_kernel-0.3.1.dist-info/NOTICE +0 -4
- liger_kernel-0.3.1.dist-info/RECORD +0 -42
- {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.0.dist-info}/LICENSE +0 -0
- {liger_kernel-0.3.1.dist-info → liger_kernel-0.4.0.dist-info}/top_level.txt +0 -0
liger_kernel/ops/utils.py
CHANGED
|
@@ -12,13 +12,19 @@ Modifications made by Yanning Chen, 2024.
|
|
|
12
12
|
|
|
13
13
|
import functools
|
|
14
14
|
import importlib
|
|
15
|
+
import operator
|
|
15
16
|
from typing import Callable
|
|
16
17
|
|
|
17
18
|
import torch
|
|
18
19
|
import triton
|
|
20
|
+
import triton.language as tl
|
|
19
21
|
from packaging.version import Version
|
|
20
22
|
|
|
21
23
|
|
|
24
|
+
def is_hip() -> bool:
|
|
25
|
+
return torch.version.hip is not None
|
|
26
|
+
|
|
27
|
+
|
|
22
28
|
def ensure_contiguous(fn):
|
|
23
29
|
@functools.wraps(fn)
|
|
24
30
|
def wrapper(ctx, *args, **kwargs):
|
|
@@ -45,7 +51,7 @@ def calculate_settings(n):
|
|
|
45
51
|
|
|
46
52
|
num_warps = 4
|
|
47
53
|
if BLOCK_SIZE >= 32768:
|
|
48
|
-
num_warps = 32
|
|
54
|
+
num_warps = 32 if not is_hip() else 16
|
|
49
55
|
elif BLOCK_SIZE >= 8192:
|
|
50
56
|
num_warps = 16
|
|
51
57
|
elif BLOCK_SIZE >= 2048:
|
|
@@ -60,3 +66,58 @@ def compare_version(package: str, operator: Callable, target: str):
|
|
|
60
66
|
return False
|
|
61
67
|
pkg_version = Version(pkg.__version__)
|
|
62
68
|
return operator(pkg_version, Version(target))
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def get_amp_custom_fwd_bwd() -> Callable:
|
|
72
|
+
if compare_version("torch", operator.ge, "2.4.0"):
|
|
73
|
+
return (
|
|
74
|
+
functools.partial(torch.amp.custom_fwd, device_type="cuda"),
|
|
75
|
+
functools.partial(torch.amp.custom_bwd, device_type="cuda"),
|
|
76
|
+
)
|
|
77
|
+
return torch.cuda.amp.custom_fwd, torch.cuda.amp.custom_bwd
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
amp_custom_fwd, amp_custom_bwd = get_amp_custom_fwd_bwd()
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
torch_to_triton_dtype = {
|
|
84
|
+
torch.float32: tl.float32,
|
|
85
|
+
torch.float16: tl.float16,
|
|
86
|
+
torch.bfloat16: tl.bfloat16,
|
|
87
|
+
}
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
@triton.jit
|
|
91
|
+
def element_mul_kernel(
|
|
92
|
+
X_ptr,
|
|
93
|
+
X_stride,
|
|
94
|
+
grad_output_ptr,
|
|
95
|
+
n_cols,
|
|
96
|
+
BLOCK_SIZE: tl.constexpr,
|
|
97
|
+
):
|
|
98
|
+
"""
|
|
99
|
+
This function multiplies each element of the tensor pointed by X_ptr with the value pointed by grad_output_ptr.
|
|
100
|
+
The multiplication is performed in-place on the tensor pointed by X_ptr.
|
|
101
|
+
|
|
102
|
+
Parameters:
|
|
103
|
+
X_ptr: Pointer to the input tensor.
|
|
104
|
+
X_stride (int): The stride of the input tensor.
|
|
105
|
+
grad_output_ptr: Pointer to the gradient output value.
|
|
106
|
+
n_cols (int): The number of columns in the input tensor.
|
|
107
|
+
BLOCK_SIZE (int): The block size for Triton operations.
|
|
108
|
+
"""
|
|
109
|
+
|
|
110
|
+
# Get the program ID and convert it to int64 to avoid overflow
|
|
111
|
+
program_id = tl.program_id(0).to(tl.int64)
|
|
112
|
+
|
|
113
|
+
# Locate the start index
|
|
114
|
+
X_ptr += program_id * X_stride
|
|
115
|
+
|
|
116
|
+
# Load the gradient output value
|
|
117
|
+
grad_output = tl.load(grad_output_ptr)
|
|
118
|
+
|
|
119
|
+
# Perform the element-wise multiplication
|
|
120
|
+
for i in range(0, n_cols, BLOCK_SIZE):
|
|
121
|
+
X_offsets = i + tl.arange(0, BLOCK_SIZE)
|
|
122
|
+
X_block = tl.load(X_ptr + X_offsets, mask=X_offsets < n_cols)
|
|
123
|
+
tl.store(X_ptr + X_offsets, X_block * grad_output, mask=X_offsets < n_cols)
|
|
@@ -5,7 +5,9 @@ from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss # noq
|
|
|
5
5
|
from liger_kernel.transformers.fused_linear_cross_entropy import ( # noqa: F401
|
|
6
6
|
LigerFusedLinearCrossEntropyLoss,
|
|
7
7
|
)
|
|
8
|
+
from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # noqa: F401
|
|
8
9
|
from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
|
|
10
|
+
from liger_kernel.transformers.jsd import LigerJSD # noqa: F401
|
|
9
11
|
from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
|
|
10
12
|
from liger_kernel.transformers.monkey_patch import ( # noqa: F401
|
|
11
13
|
_apply_liger_kernel,
|
|
@@ -15,6 +17,7 @@ from liger_kernel.transformers.monkey_patch import ( # noqa: F401
|
|
|
15
17
|
apply_liger_kernel_to_llama,
|
|
16
18
|
apply_liger_kernel_to_mistral,
|
|
17
19
|
apply_liger_kernel_to_mixtral,
|
|
20
|
+
apply_liger_kernel_to_mllama,
|
|
18
21
|
apply_liger_kernel_to_phi3,
|
|
19
22
|
apply_liger_kernel_to_qwen2,
|
|
20
23
|
apply_liger_kernel_to_qwen2_vl,
|
|
@@ -2,7 +2,9 @@ from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
|
|
|
2
2
|
from liger_kernel.ops.fused_linear_cross_entropy import (
|
|
3
3
|
LigerFusedLinearCrossEntropyFunction,
|
|
4
4
|
)
|
|
5
|
+
from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
|
|
5
6
|
from liger_kernel.ops.geglu import LigerGELUMulFunction
|
|
7
|
+
from liger_kernel.ops.jsd import LigerJSDFunction
|
|
6
8
|
from liger_kernel.ops.kl_div import LigerKLDivLossFunction
|
|
7
9
|
from liger_kernel.ops.layer_norm import LigerLayerNormFunction
|
|
8
10
|
from liger_kernel.ops.rms_norm import LigerRMSNormFunction
|
|
@@ -17,3 +19,5 @@ liger_rms_norm = LigerRMSNormFunction.apply
|
|
|
17
19
|
liger_rope = LigerRopeFunction.apply
|
|
18
20
|
liger_layer_norm = LigerLayerNormFunction.apply
|
|
19
21
|
liger_kl_div = LigerKLDivLossFunction.apply
|
|
22
|
+
liger_jsd = LigerJSDFunction.apply
|
|
23
|
+
liger_fused_linear_jsd = LigerFusedLinearJSDFunction.apply
|
|
@@ -0,0 +1,98 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
|
|
5
|
+
from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class LigerFusedLinearJSD(torch.nn.Module):
|
|
9
|
+
r"""Fusing the last linear layer with generalized JSD
|
|
10
|
+
|
|
11
|
+
Handle the forward and backward pass of the final linear layer via JSD by avoiding
|
|
12
|
+
the materialization of the large logits tensor.
|
|
13
|
+
|
|
14
|
+
Args:
|
|
15
|
+
jsd_beta (float): coefficient beta of generalized JSD in the open interval (0, 1). Default: `0.5`
|
|
16
|
+
ignore_index (int): The index to ignore in the target. Default: `-100`
|
|
17
|
+
temperature (float): temperature in softmax function to control the output probability distribution. Default: `1.0`
|
|
18
|
+
|
|
19
|
+
Shape:
|
|
20
|
+
- student_input: :math:`(BT, H)`, where B is batch size, T is sequence length, H is hidden dimension.
|
|
21
|
+
- student_weight: :math:`(V, H)`, where V is vocab size.
|
|
22
|
+
- teacher_input: :math:`(BT, H')`, where H' is hidden dimension of the teacher model.
|
|
23
|
+
- teacher_weight: :math:`(V, H')`, where hidden size H and H' can be different.
|
|
24
|
+
- shift_labels: :math:`(BT,)`
|
|
25
|
+
- Output: a scalar.
|
|
26
|
+
|
|
27
|
+
Examples:
|
|
28
|
+
```python
|
|
29
|
+
>>> (B, T, H_s, H_t, V) = (2, 2, 3, 5, 10)
|
|
30
|
+
>>> fused_jsd = LigerFusedLinearJSD(jsd_beta=0.1, temperature=2.0)
|
|
31
|
+
>>> # generate inputs and weights
|
|
32
|
+
>>> student_input = torch.rand(B * T, H_s, device="cuda", requires_grad=True)
|
|
33
|
+
>>> student_lin = torch.nn.Linear(H_s, V, bias=False, device="cuda")
|
|
34
|
+
>>> # teacher input doesn't require grad, hidden_dim can be different from student's
|
|
35
|
+
>>> teacher_input = torch.rand(B * T, H_t, device="cuda")
|
|
36
|
+
>>> teacher_lin = torch.nn.Linear(H_t, V, bias=False, device="cuda")
|
|
37
|
+
>>> output = fused_jsd(student_input, student_lin.weight, teacher_input, teacher_lin.weight)
|
|
38
|
+
>>> output.backward()
|
|
39
|
+
>>>
|
|
40
|
+
>>> # Example with labels for supervised fine-tuning (SFT) context:
|
|
41
|
+
>>>
|
|
42
|
+
>>> # Assume hidden_states, lm_heads and corresponding labels are given
|
|
43
|
+
>>> student_lm_head = torch.nn.Linear(H_s, V, bias=False)
|
|
44
|
+
>>> student_hidden_states = torch.randn(B * T, H_s, requires_grad=True).log_softmax(dim=-1)
|
|
45
|
+
>>> teacher_lm_head = torch.nn.Linear(H_t, V, bias=False)
|
|
46
|
+
>>> teacher_hidden_states = torch.randn(B * T, H_t).log_softmax(dim=-1)
|
|
47
|
+
>>> labels = torch.randint(0, V, (B * T,), torch.long)
|
|
48
|
+
>>>
|
|
49
|
+
>>> # Shift so that tokens < n predict n
|
|
50
|
+
>>> shift_student_hidden_states = student_hidden_states[..., :-1, :].contiguous()
|
|
51
|
+
>>> shift_teacher_hidden_states = teacher_hidden_states[..., :-1, :].contiguous()
|
|
52
|
+
>>> shift_labels = labels[..., 1:].contiguous()
|
|
53
|
+
>>>
|
|
54
|
+
>>> # Flatten tokens
|
|
55
|
+
>>> shift_student_hidden_states = shift_student_hidden_states.view(-1, V)
|
|
56
|
+
>>> shift_teacher_hidden_states = shift_teacher_hidden_states.view(-1, V)
|
|
57
|
+
>>> shift_labels = shift_labels.view(-1)
|
|
58
|
+
>>>
|
|
59
|
+
>>> # Calculate loss
|
|
60
|
+
>>> loss_fct = LigerJSD(beta=0.1)
|
|
61
|
+
>>> loss = loss_fct(
|
|
62
|
+
>>> shift_studetn_hidden_states,
|
|
63
|
+
>>> student_lm_head.weight,
|
|
64
|
+
>>> shift_teacher_hidden_states,
|
|
65
|
+
>>> teacher_lm_head.weight,
|
|
66
|
+
>>> shift_labels
|
|
67
|
+
>>> )
|
|
68
|
+
```
|
|
69
|
+
"""
|
|
70
|
+
|
|
71
|
+
def __init__(self, jsd_beta=0.5, ignore_index=-100, temperature=1.0):
|
|
72
|
+
super().__init__()
|
|
73
|
+
assert (
|
|
74
|
+
jsd_beta > 0 and jsd_beta < 1
|
|
75
|
+
), f"beta must be greater than 0 and less than 1. Got: {jsd_beta}"
|
|
76
|
+
assert temperature != 0, "temperature cannot be 0."
|
|
77
|
+
self.jsd_beta = jsd_beta
|
|
78
|
+
self.temperature = temperature
|
|
79
|
+
self.ignore_index = ignore_index
|
|
80
|
+
|
|
81
|
+
def forward(
|
|
82
|
+
self,
|
|
83
|
+
student_input: torch.Tensor,
|
|
84
|
+
student_weight: torch.Tensor,
|
|
85
|
+
teacher_input: torch.Tensor,
|
|
86
|
+
teacher_weight: torch.Tensor,
|
|
87
|
+
shift_labels: Optional[torch.LongTensor],
|
|
88
|
+
):
|
|
89
|
+
return LigerFusedLinearJSDFunction.apply(
|
|
90
|
+
student_input,
|
|
91
|
+
student_weight,
|
|
92
|
+
teacher_input,
|
|
93
|
+
teacher_weight,
|
|
94
|
+
shift_labels,
|
|
95
|
+
self.jsd_beta,
|
|
96
|
+
self.ignore_index,
|
|
97
|
+
self.temperature,
|
|
98
|
+
)
|
|
@@ -0,0 +1,75 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
|
|
5
|
+
from liger_kernel.ops.jsd import LigerJSDFunction
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class LigerJSD(torch.nn.Module):
|
|
9
|
+
r"""The generalized Jensen-Shannon Divergence.
|
|
10
|
+
.. math::
|
|
11
|
+
JSD(\beta)(P || Q)
|
|
12
|
+
= \beta * KLDiv(P || (\beta * P + (1 - \beta) * Q)) + (1 - \beta) * KLDiv(Q || (\beta * P + (1 - \beta) * Q))
|
|
13
|
+
.. note::
|
|
14
|
+
As all the other losses in PyTorch, this function expects the first argument,
|
|
15
|
+
:attr:`log_q`, to be the predictions, the output of the student model in log-space,
|
|
16
|
+
and the second, :attr:`log_p`, to be the observations, the output of the teacher model in log-space.
|
|
17
|
+
This differs from the standard mathematical notation :math:`JSD(P || Q)` where
|
|
18
|
+
:math:`P` denotes the teacher model and :math:`Q` denotes the student model.
|
|
19
|
+
|
|
20
|
+
Args:
|
|
21
|
+
beta (float): coefficient beta of generalized JSD in the open interval (0, 1). Default: `0.5`
|
|
22
|
+
ignore_index (int): The index to ignore in the target. Default: `-100`
|
|
23
|
+
|
|
24
|
+
Shape:
|
|
25
|
+
- Input: :math:`(BT, V)`, where B is batch size, T is sequence length, V is vocab size.
|
|
26
|
+
- Target: :math:`(BT, V)`, same shape as the input.
|
|
27
|
+
- shift_labels (Optional): :math:`(BT,)`
|
|
28
|
+
- Output: a scalar.
|
|
29
|
+
|
|
30
|
+
Examples:
|
|
31
|
+
```python
|
|
32
|
+
>>> (B, T, V) = (2, 2, 5)
|
|
33
|
+
>>> jsd = LigerJSD(beta=0.1)
|
|
34
|
+
>>> # input should be a distribution in the log space
|
|
35
|
+
>>> input = torch.randn(B * T, V, requires_grad=True).log_softmax(dim=-1)
|
|
36
|
+
>>> target = torch.randn(B * T, V).log_softmax(dim=-1)
|
|
37
|
+
>>> output = jsd(input, target)
|
|
38
|
+
>>>
|
|
39
|
+
>>> # Example with labels for supervised fine-tuning (SFT) context
|
|
40
|
+
>>> # Assume logits and corresponding labels are given
|
|
41
|
+
>>> student_logits = torch.randn(B * T, V, requires_grad=True).log_softmax(dim=-1)
|
|
42
|
+
>>> teacher_logits = torch.randn(B * T, V).log_softmax(dim=-1)
|
|
43
|
+
>>> labels = torch.randint(0, V, (B * T,), torch.long)
|
|
44
|
+
>>> # Shift so that tokens < n predict n
|
|
45
|
+
>>> shift_student_logits = student_logits[..., :-1, :].contiguous()
|
|
46
|
+
>>> shift_teacher_logits = teacher_logits[..., :-1, :].contiguous()
|
|
47
|
+
>>> shift_labels = labels[..., 1:].contiguous()
|
|
48
|
+
>>> # Flatten tokens
|
|
49
|
+
>>> shift_student_logits = shift_student_logits.view(-1, V)
|
|
50
|
+
>>> shift_teacher_logits = shift_teacher_logits.view(-1, V)
|
|
51
|
+
>>> shift_labels = shift_labels.view(-1)
|
|
52
|
+
>>> # Calculate loss
|
|
53
|
+
>>> loss_fct = LigerJSD(beta=0.1)
|
|
54
|
+
>>> loss = loss_fct(shift_studetn_logits, shift_teacher_logits, shift_labels)
|
|
55
|
+
|
|
56
|
+
```
|
|
57
|
+
"""
|
|
58
|
+
|
|
59
|
+
def __init__(self, beta: float = 0.5, ignore_index: int = -100):
|
|
60
|
+
super().__init__()
|
|
61
|
+
assert (
|
|
62
|
+
beta > 0 and beta < 1
|
|
63
|
+
), f"beta must be greater than 0 and less than 1. Got: {beta}"
|
|
64
|
+
self.beta = beta
|
|
65
|
+
self.ignore_index = ignore_index
|
|
66
|
+
|
|
67
|
+
def forward(
|
|
68
|
+
self,
|
|
69
|
+
log_q: torch.Tensor,
|
|
70
|
+
log_p: torch.Tensor,
|
|
71
|
+
shift_labels: Optional[torch.LongTensor] = None,
|
|
72
|
+
):
|
|
73
|
+
return LigerJSDFunction.apply(
|
|
74
|
+
log_q, log_p, shift_labels, self.beta, self.ignore_index
|
|
75
|
+
)
|
|
@@ -22,7 +22,7 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
|
|
|
22
22
|
@replace_return_docstrings(
|
|
23
23
|
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
24
24
|
)
|
|
25
|
-
def
|
|
25
|
+
def lce_forward_deprecated(
|
|
26
26
|
self,
|
|
27
27
|
input_ids: torch.LongTensor = None,
|
|
28
28
|
attention_mask: Optional[torch.Tensor] = None,
|
|
@@ -136,3 +136,126 @@ def lce_forward(
|
|
|
136
136
|
hidden_states=outputs.hidden_states,
|
|
137
137
|
attentions=outputs.attentions,
|
|
138
138
|
)
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
|
|
142
|
+
@replace_return_docstrings(
|
|
143
|
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
144
|
+
)
|
|
145
|
+
def lce_forward(
|
|
146
|
+
self,
|
|
147
|
+
input_ids: torch.LongTensor = None,
|
|
148
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
149
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
150
|
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
151
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
152
|
+
labels: Optional[torch.LongTensor] = None,
|
|
153
|
+
use_cache: Optional[bool] = None,
|
|
154
|
+
output_attentions: Optional[bool] = None,
|
|
155
|
+
output_hidden_states: Optional[bool] = None,
|
|
156
|
+
return_dict: Optional[bool] = None,
|
|
157
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
158
|
+
num_logits_to_keep: int = 0,
|
|
159
|
+
**loss_kwargs,
|
|
160
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
161
|
+
r"""
|
|
162
|
+
Args:
|
|
163
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
164
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
165
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
166
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
167
|
+
|
|
168
|
+
num_logits_to_keep (`int`, *optional*):
|
|
169
|
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
|
170
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
171
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
172
|
+
|
|
173
|
+
Returns:
|
|
174
|
+
|
|
175
|
+
Example:
|
|
176
|
+
|
|
177
|
+
```python
|
|
178
|
+
>>> from transformers import AutoTokenizer, GemmaForCausalLM
|
|
179
|
+
|
|
180
|
+
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
|
|
181
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
|
182
|
+
|
|
183
|
+
>>> prompt = "What is your favorite condiment?"
|
|
184
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
185
|
+
|
|
186
|
+
>>> # Generate
|
|
187
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
188
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
189
|
+
"What is your favorite condiment?"
|
|
190
|
+
```"""
|
|
191
|
+
output_attentions = (
|
|
192
|
+
output_attentions
|
|
193
|
+
if output_attentions is not None
|
|
194
|
+
else self.config.output_attentions
|
|
195
|
+
)
|
|
196
|
+
output_hidden_states = (
|
|
197
|
+
output_hidden_states
|
|
198
|
+
if output_hidden_states is not None
|
|
199
|
+
else self.config.output_hidden_states
|
|
200
|
+
)
|
|
201
|
+
return_dict = (
|
|
202
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
|
203
|
+
)
|
|
204
|
+
|
|
205
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
206
|
+
outputs = self.model(
|
|
207
|
+
input_ids=input_ids,
|
|
208
|
+
attention_mask=attention_mask,
|
|
209
|
+
position_ids=position_ids,
|
|
210
|
+
past_key_values=past_key_values,
|
|
211
|
+
inputs_embeds=inputs_embeds,
|
|
212
|
+
use_cache=use_cache,
|
|
213
|
+
output_attentions=output_attentions,
|
|
214
|
+
output_hidden_states=output_hidden_states,
|
|
215
|
+
return_dict=return_dict,
|
|
216
|
+
cache_position=cache_position,
|
|
217
|
+
)
|
|
218
|
+
|
|
219
|
+
hidden_states = outputs[0]
|
|
220
|
+
|
|
221
|
+
logits = None
|
|
222
|
+
loss = None
|
|
223
|
+
# if in training mode, don't materialize logits
|
|
224
|
+
if self.training and (labels is not None):
|
|
225
|
+
# We do the same thing as ForCausalLMLoss but using Liger FLCE
|
|
226
|
+
|
|
227
|
+
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
228
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
229
|
+
|
|
230
|
+
# flatten tokens
|
|
231
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
232
|
+
shift_labels = shift_labels.view(-1)
|
|
233
|
+
|
|
234
|
+
reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
|
|
235
|
+
lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
|
|
236
|
+
|
|
237
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
238
|
+
if reduction == "sum":
|
|
239
|
+
loss /= loss_kwargs["num_items_in_batch"]
|
|
240
|
+
|
|
241
|
+
else: # if in inference mode materialize logits
|
|
242
|
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
|
243
|
+
if labels is not None:
|
|
244
|
+
loss = self.loss_function(
|
|
245
|
+
logits=logits,
|
|
246
|
+
labels=labels,
|
|
247
|
+
vocab_size=self.config.vocab_size,
|
|
248
|
+
**loss_kwargs,
|
|
249
|
+
)
|
|
250
|
+
|
|
251
|
+
if not return_dict:
|
|
252
|
+
output = (logits,) + outputs[1:]
|
|
253
|
+
return (loss,) + output if loss is not None else output
|
|
254
|
+
|
|
255
|
+
return CausalLMOutputWithPast(
|
|
256
|
+
loss=loss,
|
|
257
|
+
logits=logits,
|
|
258
|
+
past_key_values=outputs.past_key_values,
|
|
259
|
+
hidden_states=outputs.hidden_states,
|
|
260
|
+
attentions=outputs.attentions,
|
|
261
|
+
)
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
from typing import List, Optional, Tuple, Union
|
|
1
|
+
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
|
|
2
2
|
|
|
3
3
|
import torch
|
|
4
4
|
import torch.nn.functional as F
|
|
@@ -17,17 +17,20 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
|
|
|
17
17
|
LigerFusedLinearCrossEntropyLoss,
|
|
18
18
|
)
|
|
19
19
|
|
|
20
|
+
if TYPE_CHECKING:
|
|
21
|
+
from transformers.cache_utils import Cache
|
|
22
|
+
|
|
20
23
|
|
|
21
24
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
|
22
25
|
@replace_return_docstrings(
|
|
23
26
|
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
24
27
|
)
|
|
25
|
-
def
|
|
28
|
+
def lce_forward_deprecated(
|
|
26
29
|
self,
|
|
27
30
|
input_ids: torch.LongTensor = None,
|
|
28
31
|
attention_mask: Optional[torch.Tensor] = None,
|
|
29
32
|
position_ids: Optional[torch.LongTensor] = None,
|
|
30
|
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
33
|
+
past_key_values: Optional[Union["Cache", List[torch.FloatTensor]]] = None,
|
|
31
34
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
32
35
|
labels: Optional[torch.LongTensor] = None,
|
|
33
36
|
use_cache: Optional[bool] = None,
|
|
@@ -120,8 +123,9 @@ def lce_forward(
|
|
|
120
123
|
logits = torch.cat(logits, dim=-1)
|
|
121
124
|
else:
|
|
122
125
|
logits = self.lm_head(hidden_states)
|
|
123
|
-
logits = logits.float()
|
|
124
126
|
if labels is not None:
|
|
127
|
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
|
128
|
+
logits = logits.float()
|
|
125
129
|
# Shift so that tokens < n predict n
|
|
126
130
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
127
131
|
shift_labels = labels[..., 1:].contiguous()
|
|
@@ -144,3 +148,130 @@ def lce_forward(
|
|
|
144
148
|
hidden_states=outputs.hidden_states,
|
|
145
149
|
attentions=outputs.attentions,
|
|
146
150
|
)
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
|
154
|
+
@replace_return_docstrings(
|
|
155
|
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
156
|
+
)
|
|
157
|
+
def lce_forward(
|
|
158
|
+
self,
|
|
159
|
+
input_ids: torch.LongTensor = None,
|
|
160
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
161
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
162
|
+
past_key_values: Optional[Union["Cache", List[torch.FloatTensor]]] = None,
|
|
163
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
164
|
+
labels: Optional[torch.LongTensor] = None,
|
|
165
|
+
use_cache: Optional[bool] = None,
|
|
166
|
+
output_attentions: Optional[bool] = None,
|
|
167
|
+
output_hidden_states: Optional[bool] = None,
|
|
168
|
+
return_dict: Optional[bool] = None,
|
|
169
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
170
|
+
num_logits_to_keep: int = 0,
|
|
171
|
+
**loss_kwargs,
|
|
172
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
173
|
+
r"""
|
|
174
|
+
Args:
|
|
175
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
176
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
177
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
178
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
179
|
+
|
|
180
|
+
num_logits_to_keep (`int`, *optional*):
|
|
181
|
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
|
182
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
183
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
184
|
+
|
|
185
|
+
Returns:
|
|
186
|
+
|
|
187
|
+
Example:
|
|
188
|
+
|
|
189
|
+
```python
|
|
190
|
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
|
191
|
+
|
|
192
|
+
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
|
193
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
|
194
|
+
|
|
195
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
196
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
197
|
+
|
|
198
|
+
>>> # Generate
|
|
199
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
200
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
201
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
202
|
+
```"""
|
|
203
|
+
|
|
204
|
+
output_attentions = (
|
|
205
|
+
output_attentions
|
|
206
|
+
if output_attentions is not None
|
|
207
|
+
else self.config.output_attentions
|
|
208
|
+
)
|
|
209
|
+
output_hidden_states = (
|
|
210
|
+
output_hidden_states
|
|
211
|
+
if output_hidden_states is not None
|
|
212
|
+
else self.config.output_hidden_states
|
|
213
|
+
)
|
|
214
|
+
return_dict = (
|
|
215
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
|
216
|
+
)
|
|
217
|
+
|
|
218
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
219
|
+
outputs = self.model(
|
|
220
|
+
input_ids=input_ids,
|
|
221
|
+
attention_mask=attention_mask,
|
|
222
|
+
position_ids=position_ids,
|
|
223
|
+
past_key_values=past_key_values,
|
|
224
|
+
inputs_embeds=inputs_embeds,
|
|
225
|
+
use_cache=use_cache,
|
|
226
|
+
output_attentions=output_attentions,
|
|
227
|
+
output_hidden_states=output_hidden_states,
|
|
228
|
+
return_dict=return_dict,
|
|
229
|
+
cache_position=cache_position,
|
|
230
|
+
)
|
|
231
|
+
|
|
232
|
+
hidden_states = outputs[0]
|
|
233
|
+
|
|
234
|
+
if self.config.pretraining_tp > 1:
|
|
235
|
+
raise Exception("Liger Kernel does not support pretraining_tp!!")
|
|
236
|
+
|
|
237
|
+
logits = None
|
|
238
|
+
loss = None
|
|
239
|
+
# if in training mode, don't materialize logits
|
|
240
|
+
if self.training and (labels is not None):
|
|
241
|
+
# We do the same thing as ForCausalLMLoss but using Liger FLCE
|
|
242
|
+
|
|
243
|
+
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
244
|
+
shift_labels = labels[..., 1:].contiguous()
|
|
245
|
+
|
|
246
|
+
# flatten tokens
|
|
247
|
+
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
248
|
+
shift_labels = shift_labels.view(-1)
|
|
249
|
+
|
|
250
|
+
reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
|
|
251
|
+
lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
|
|
252
|
+
|
|
253
|
+
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
254
|
+
if reduction == "sum":
|
|
255
|
+
loss /= loss_kwargs["num_items_in_batch"]
|
|
256
|
+
|
|
257
|
+
else: # if in inference mode materialize logits
|
|
258
|
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
|
259
|
+
if labels is not None:
|
|
260
|
+
loss = self.loss_function(
|
|
261
|
+
logits=logits,
|
|
262
|
+
labels=labels,
|
|
263
|
+
vocab_size=self.config.vocab_size,
|
|
264
|
+
**loss_kwargs,
|
|
265
|
+
)
|
|
266
|
+
|
|
267
|
+
if not return_dict:
|
|
268
|
+
output = (logits,) + outputs[1:]
|
|
269
|
+
return (loss,) + output if loss is not None else output
|
|
270
|
+
|
|
271
|
+
return CausalLMOutputWithPast(
|
|
272
|
+
loss=loss,
|
|
273
|
+
logits=logits,
|
|
274
|
+
past_key_values=outputs.past_key_values,
|
|
275
|
+
hidden_states=outputs.hidden_states,
|
|
276
|
+
attentions=outputs.attentions,
|
|
277
|
+
)
|