liger-kernel-nightly 0.6.2.dev20251011154427__py3-none-any.whl → 0.6.4.dev20251202054858__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/chunked_loss/cosine_similarity_loss.py +13 -4
- liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
- liger_kernel/chunked_loss/fused_linear_ppo.py +21 -5
- liger_kernel/chunked_loss/grpo_loss.py +8 -5
- liger_kernel/chunked_loss/jsd_loss.py +18 -5
- liger_kernel/ops/cross_entropy.py +65 -11
- liger_kernel/ops/dyt.py +5 -2
- liger_kernel/ops/fused_add_rms_norm.py +5 -1
- liger_kernel/ops/fused_linear_cross_entropy.py +43 -13
- liger_kernel/ops/geglu.py +2 -1
- liger_kernel/ops/group_norm.py +2 -1
- liger_kernel/ops/grpo_loss.py +3 -1
- liger_kernel/ops/layer_norm.py +86 -66
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/rms_norm.py +7 -2
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/utils.py +2 -0
- liger_kernel/transformers/__init__.py +27 -0
- liger_kernel/transformers/cross_entropy.py +8 -3
- liger_kernel/transformers/functional.py +29 -6
- liger_kernel/transformers/fused_linear_cross_entropy.py +8 -3
- liger_kernel/transformers/grpo_loss.py +56 -1
- liger_kernel/transformers/model/falcon_h1.py +19 -5
- liger_kernel/transformers/model/gemma.py +17 -6
- liger_kernel/transformers/model/gemma2.py +14 -5
- liger_kernel/transformers/model/gemma3.py +25 -12
- liger_kernel/transformers/model/glm4.py +16 -4
- liger_kernel/transformers/model/glm4v.py +16 -4
- liger_kernel/transformers/model/glm4v_moe.py +23 -4
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +12 -5
- liger_kernel/transformers/model/llama.py +14 -5
- liger_kernel/transformers/model/llama4.py +16 -4
- liger_kernel/transformers/model/llava.py +12 -4
- liger_kernel/transformers/model/loss_utils.py +31 -3
- liger_kernel/transformers/model/mistral.py +15 -6
- liger_kernel/transformers/model/mixtral.py +16 -7
- liger_kernel/transformers/model/mllama.py +12 -4
- liger_kernel/transformers/model/olmo2.py +16 -4
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +22 -5
- liger_kernel/transformers/model/phi3.py +14 -7
- liger_kernel/transformers/model/qwen2.py +16 -3
- liger_kernel/transformers/model/qwen2_5_vl.py +14 -6
- liger_kernel/transformers/model/qwen2_vl.py +16 -4
- liger_kernel/transformers/model/qwen3.py +20 -5
- liger_kernel/transformers/model/qwen3_moe.py +19 -5
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +15 -6
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +594 -19
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/rms_norm.py +7 -0
- liger_kernel/transformers/rope.py +43 -0
- liger_kernel/transformers/swiglu.py +17 -0
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/utils.py +25 -0
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/METADATA +4 -1
- liger_kernel_nightly-0.6.4.dev20251202054858.dist-info/RECORD +118 -0
- liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/RECORD +0 -107
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/top_level.txt +0 -0
|
@@ -6,10 +6,11 @@ from typing import Union
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
8
|
from transformers.cache_utils import Cache
|
|
9
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
10
9
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
11
10
|
|
|
12
11
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
12
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
13
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
13
14
|
|
|
14
15
|
|
|
15
16
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
@@ -29,7 +30,7 @@ def lce_forward(
|
|
|
29
30
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
30
31
|
skip_logits: Optional[bool] = None,
|
|
31
32
|
**kwargs,
|
|
32
|
-
) -> Union[Tuple,
|
|
33
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
33
34
|
r"""
|
|
34
35
|
Copy paste Mistral's forward but replace torch cross entropy with liger fused linear cross entropy
|
|
35
36
|
|
|
@@ -94,6 +95,7 @@ def lce_forward(
|
|
|
94
95
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
95
96
|
loss = None
|
|
96
97
|
logits = None
|
|
98
|
+
token_accuracy = None
|
|
97
99
|
|
|
98
100
|
if skip_logits and labels is None and shift_labels is None:
|
|
99
101
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -101,8 +103,9 @@ def lce_forward(
|
|
|
101
103
|
if skip_logits is None:
|
|
102
104
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
103
105
|
|
|
106
|
+
# Compute loss
|
|
104
107
|
if skip_logits:
|
|
105
|
-
|
|
108
|
+
result = LigerForCausalLMLoss(
|
|
106
109
|
hidden_states=kept_hidden_states,
|
|
107
110
|
lm_head_weight=self.lm_head.weight,
|
|
108
111
|
labels=labels,
|
|
@@ -110,6 +113,7 @@ def lce_forward(
|
|
|
110
113
|
hidden_size=self.config.hidden_size,
|
|
111
114
|
**kwargs,
|
|
112
115
|
)
|
|
116
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
113
117
|
|
|
114
118
|
else:
|
|
115
119
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -123,14 +127,19 @@ def lce_forward(
|
|
|
123
127
|
vocab_size=self.config.vocab_size,
|
|
124
128
|
**kwargs,
|
|
125
129
|
)
|
|
130
|
+
|
|
126
131
|
if not return_dict:
|
|
127
|
-
|
|
128
|
-
|
|
132
|
+
output_tuple = (logits,) + outputs[1:]
|
|
133
|
+
output = (loss,) + output_tuple if loss is not None else output_tuple
|
|
134
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
135
|
+
return output
|
|
129
136
|
|
|
130
|
-
|
|
137
|
+
# Return custom output class with token_accuracy field
|
|
138
|
+
return LigerCausalLMOutputWithPast(
|
|
131
139
|
loss=loss,
|
|
132
140
|
logits=logits,
|
|
133
141
|
past_key_values=outputs.past_key_values,
|
|
134
142
|
hidden_states=outputs.hidden_states,
|
|
135
143
|
attentions=outputs.attentions,
|
|
144
|
+
token_accuracy=token_accuracy,
|
|
136
145
|
)
|
|
@@ -12,6 +12,8 @@ from transformers.utils.deprecation import deprecate_kwarg
|
|
|
12
12
|
|
|
13
13
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
14
14
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
15
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
16
|
+
from liger_kernel.transformers.model.output_classes import LigerMoeCausalLMOutputWithPast
|
|
15
17
|
|
|
16
18
|
|
|
17
19
|
def lce_forward_deprecated(
|
|
@@ -158,7 +160,7 @@ def lce_forward(
|
|
|
158
160
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
159
161
|
skip_logits: Optional[bool] = None,
|
|
160
162
|
**kwargs,
|
|
161
|
-
) -> Union[Tuple,
|
|
163
|
+
) -> Union[Tuple, LigerMoeCausalLMOutputWithPast]:
|
|
162
164
|
r"""
|
|
163
165
|
Args:
|
|
164
166
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -226,6 +228,7 @@ def lce_forward(
|
|
|
226
228
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
227
229
|
logits = None
|
|
228
230
|
loss = None
|
|
231
|
+
token_accuracy = None
|
|
229
232
|
|
|
230
233
|
if skip_logits and labels is None and shift_labels is None:
|
|
231
234
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -234,8 +237,9 @@ def lce_forward(
|
|
|
234
237
|
# By default, if in training mode, don't materialize logits
|
|
235
238
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
236
239
|
|
|
240
|
+
# Compute loss
|
|
237
241
|
if skip_logits:
|
|
238
|
-
|
|
242
|
+
result = LigerForCausalLMLoss(
|
|
239
243
|
hidden_states=kept_hidden_states,
|
|
240
244
|
lm_head_weight=self.lm_head.weight,
|
|
241
245
|
labels=labels,
|
|
@@ -243,6 +247,7 @@ def lce_forward(
|
|
|
243
247
|
hidden_size=self.config.hidden_size,
|
|
244
248
|
**kwargs,
|
|
245
249
|
)
|
|
250
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
246
251
|
|
|
247
252
|
else:
|
|
248
253
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -268,17 +273,21 @@ def lce_forward(
|
|
|
268
273
|
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
|
269
274
|
|
|
270
275
|
if not return_dict:
|
|
271
|
-
|
|
276
|
+
output_tuple = (logits,) + outputs[1:]
|
|
272
277
|
if output_router_logits:
|
|
273
|
-
|
|
274
|
-
|
|
278
|
+
output_tuple = (aux_loss,) + output_tuple
|
|
279
|
+
if token_accuracy is not None:
|
|
280
|
+
output_tuple = output_tuple + (token_accuracy,)
|
|
281
|
+
return (loss,) + output_tuple if loss is not None else output_tuple
|
|
275
282
|
|
|
276
|
-
|
|
283
|
+
# Return custom output class with token_accuracy field
|
|
284
|
+
return LigerMoeCausalLMOutputWithPast(
|
|
277
285
|
loss=loss,
|
|
278
286
|
aux_loss=aux_loss,
|
|
279
287
|
logits=logits,
|
|
280
288
|
past_key_values=outputs.past_key_values,
|
|
281
289
|
hidden_states=outputs.hidden_states,
|
|
282
290
|
attentions=outputs.attentions,
|
|
283
|
-
router_logits=outputs.router_logits,
|
|
291
|
+
router_logits=outputs.router_logits if return_dict else outputs[-1],
|
|
292
|
+
token_accuracy=token_accuracy,
|
|
284
293
|
)
|
|
@@ -12,6 +12,8 @@ from transformers.utils.deprecation import deprecate_kwarg
|
|
|
12
12
|
|
|
13
13
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
14
14
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
15
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
16
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
15
17
|
|
|
16
18
|
|
|
17
19
|
def lce_forward_deprecated(
|
|
@@ -149,7 +151,7 @@ def lce_forward(
|
|
|
149
151
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
150
152
|
skip_logits: Optional[bool] = None,
|
|
151
153
|
**kwargs,
|
|
152
|
-
) -> Union[Tuple,
|
|
154
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
153
155
|
r"""
|
|
154
156
|
Args:
|
|
155
157
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -219,6 +221,7 @@ def lce_forward(
|
|
|
219
221
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
220
222
|
logits = None
|
|
221
223
|
loss = None
|
|
224
|
+
token_accuracy = None
|
|
222
225
|
|
|
223
226
|
if skip_logits and labels is None and shift_labels is None:
|
|
224
227
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -228,7 +231,7 @@ def lce_forward(
|
|
|
228
231
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
229
232
|
|
|
230
233
|
if skip_logits:
|
|
231
|
-
|
|
234
|
+
result = LigerForCausalLMLoss(
|
|
232
235
|
hidden_states=kept_hidden_states,
|
|
233
236
|
lm_head_weight=self.lm_head.weight,
|
|
234
237
|
labels=labels,
|
|
@@ -236,6 +239,7 @@ def lce_forward(
|
|
|
236
239
|
hidden_size=self.config.hidden_size,
|
|
237
240
|
**kwargs,
|
|
238
241
|
)
|
|
242
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
239
243
|
|
|
240
244
|
else:
|
|
241
245
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -250,12 +254,16 @@ def lce_forward(
|
|
|
250
254
|
|
|
251
255
|
if not return_dict:
|
|
252
256
|
output = (logits,) + outputs[1:]
|
|
253
|
-
|
|
257
|
+
output = (loss,) + output if loss is not None else output
|
|
258
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
259
|
+
return output
|
|
254
260
|
|
|
255
|
-
|
|
261
|
+
# Return custom output class with token_accuracy field
|
|
262
|
+
return LigerCausalLMOutputWithPast(
|
|
256
263
|
loss=loss,
|
|
257
264
|
logits=logits,
|
|
258
265
|
past_key_values=outputs.past_key_values,
|
|
259
266
|
hidden_states=outputs.hidden_states,
|
|
260
267
|
attentions=outputs.attentions,
|
|
268
|
+
token_accuracy=token_accuracy,
|
|
261
269
|
)
|
|
@@ -5,10 +5,11 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
9
8
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
10
9
|
|
|
11
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
12
13
|
|
|
13
14
|
|
|
14
15
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
@@ -28,7 +29,7 @@ def lce_forward(
|
|
|
28
29
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
29
30
|
skip_logits: Optional[bool] = None,
|
|
30
31
|
**kwargs,
|
|
31
|
-
) -> Union[Tuple,
|
|
32
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
32
33
|
r"""
|
|
33
34
|
Args:
|
|
34
35
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -91,6 +92,7 @@ def lce_forward(
|
|
|
91
92
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
92
93
|
logits = None
|
|
93
94
|
loss = None
|
|
95
|
+
token_accuracy = None
|
|
94
96
|
|
|
95
97
|
if skip_logits and labels is None and shift_labels is None:
|
|
96
98
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -99,8 +101,9 @@ def lce_forward(
|
|
|
99
101
|
# By default, if in training mode, don't materialize logits
|
|
100
102
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
101
103
|
|
|
104
|
+
# Compute loss
|
|
102
105
|
if skip_logits:
|
|
103
|
-
|
|
106
|
+
result = LigerForCausalLMLoss(
|
|
104
107
|
hidden_states=kept_hidden_states,
|
|
105
108
|
lm_head_weight=self.lm_head.weight,
|
|
106
109
|
labels=labels,
|
|
@@ -108,6 +111,7 @@ def lce_forward(
|
|
|
108
111
|
hidden_size=self.config.hidden_size,
|
|
109
112
|
**kwargs,
|
|
110
113
|
)
|
|
114
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
111
115
|
|
|
112
116
|
else:
|
|
113
117
|
logits = self.lm_head(kept_hidden_states)
|
|
@@ -120,10 +124,18 @@ def lce_forward(
|
|
|
120
124
|
**kwargs,
|
|
121
125
|
)
|
|
122
126
|
|
|
123
|
-
|
|
127
|
+
if not return_dict:
|
|
128
|
+
output = (logits,) + outputs[1:]
|
|
129
|
+
output = ((loss,) + output) if loss is not None else output
|
|
130
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
131
|
+
return output
|
|
132
|
+
|
|
133
|
+
# Return custom output class with token_accuracy field
|
|
134
|
+
return LigerCausalLMOutputWithPast(
|
|
124
135
|
loss=loss,
|
|
125
136
|
logits=logits,
|
|
126
137
|
past_key_values=outputs.past_key_values,
|
|
127
138
|
hidden_states=outputs.hidden_states,
|
|
128
139
|
attentions=outputs.attentions,
|
|
140
|
+
token_accuracy=token_accuracy,
|
|
129
141
|
)
|
|
@@ -0,0 +1,142 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
|
9
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
|
10
|
+
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
12
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
13
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
17
|
+
def lce_forward(
|
|
18
|
+
self,
|
|
19
|
+
input_ids: torch.LongTensor = None,
|
|
20
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
21
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
22
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
23
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
24
|
+
labels: Optional[torch.LongTensor] = None,
|
|
25
|
+
use_cache: Optional[bool] = None,
|
|
26
|
+
output_attentions: Optional[bool] = None,
|
|
27
|
+
output_hidden_states: Optional[bool] = None,
|
|
28
|
+
return_dict: Optional[bool] = None,
|
|
29
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
30
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
31
|
+
skip_logits: Optional[bool] = None,
|
|
32
|
+
**kwargs,
|
|
33
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
34
|
+
r"""
|
|
35
|
+
Args:
|
|
36
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
37
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
38
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
39
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
40
|
+
|
|
41
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
42
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
43
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
44
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
45
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
46
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
47
|
+
|
|
48
|
+
Returns:
|
|
49
|
+
|
|
50
|
+
Example:
|
|
51
|
+
|
|
52
|
+
```python
|
|
53
|
+
>>> from transformers import AutoTokenizer, Olmo3ForCausalLM
|
|
54
|
+
|
|
55
|
+
>>> model = Olmo3ForCausalLM.from_pretrained("allenai/Olmo-3-7B-Instruct")
|
|
56
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/Olmo-3-7B-Instruct")
|
|
57
|
+
|
|
58
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
59
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
60
|
+
|
|
61
|
+
>>> # Generate
|
|
62
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
63
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
64
|
+
'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
|
|
65
|
+
```
|
|
66
|
+
"""
|
|
67
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
68
|
+
output_hidden_states = (
|
|
69
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
70
|
+
)
|
|
71
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
72
|
+
|
|
73
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
74
|
+
outputs: BaseModelOutputWithPast = self.model(
|
|
75
|
+
input_ids=input_ids,
|
|
76
|
+
attention_mask=attention_mask,
|
|
77
|
+
position_ids=position_ids,
|
|
78
|
+
past_key_values=past_key_values,
|
|
79
|
+
inputs_embeds=inputs_embeds,
|
|
80
|
+
use_cache=use_cache,
|
|
81
|
+
output_attentions=output_attentions,
|
|
82
|
+
output_hidden_states=output_hidden_states,
|
|
83
|
+
return_dict=return_dict,
|
|
84
|
+
cache_position=cache_position,
|
|
85
|
+
**kwargs,
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
hidden_states = outputs[0]
|
|
89
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
90
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
91
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
92
|
+
|
|
93
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
94
|
+
logits = None
|
|
95
|
+
loss = None
|
|
96
|
+
token_accuracy = None
|
|
97
|
+
|
|
98
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
99
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
100
|
+
|
|
101
|
+
if skip_logits is None:
|
|
102
|
+
# By default, if in training mode, don't materialize logits
|
|
103
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
104
|
+
|
|
105
|
+
# Compute loss
|
|
106
|
+
if skip_logits:
|
|
107
|
+
result = LigerForCausalLMLoss(
|
|
108
|
+
hidden_states=kept_hidden_states,
|
|
109
|
+
lm_head_weight=self.lm_head.weight,
|
|
110
|
+
labels=labels,
|
|
111
|
+
shift_labels=shift_labels,
|
|
112
|
+
hidden_size=self.config.hidden_size,
|
|
113
|
+
**kwargs,
|
|
114
|
+
)
|
|
115
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
116
|
+
|
|
117
|
+
else:
|
|
118
|
+
logits = self.lm_head(kept_hidden_states)
|
|
119
|
+
if labels is not None or shift_labels is not None:
|
|
120
|
+
loss = self.loss_function(
|
|
121
|
+
logits=logits,
|
|
122
|
+
labels=labels,
|
|
123
|
+
shift_labels=shift_labels,
|
|
124
|
+
vocab_size=self.config.vocab_size,
|
|
125
|
+
**kwargs,
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
if not return_dict:
|
|
129
|
+
output = (logits,) + outputs[1:]
|
|
130
|
+
output = ((loss,) + output) if loss is not None else output
|
|
131
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
132
|
+
return output
|
|
133
|
+
|
|
134
|
+
# Return custom output class with token_accuracy field
|
|
135
|
+
return LigerCausalLMOutputWithPast(
|
|
136
|
+
loss=loss,
|
|
137
|
+
logits=logits,
|
|
138
|
+
past_key_values=outputs.past_key_values,
|
|
139
|
+
hidden_states=outputs.hidden_states,
|
|
140
|
+
attentions=outputs.attentions,
|
|
141
|
+
token_accuracy=token_accuracy,
|
|
142
|
+
)
|
|
@@ -0,0 +1,147 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Custom output classes for Liger-Kernel that extend transformers' ModelOutput classes
|
|
3
|
+
with optional token accuracy field.
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
from dataclasses import dataclass
|
|
7
|
+
from typing import Optional
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
|
|
11
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
12
|
+
from transformers.modeling_outputs import MoeCausalLMOutputWithPast
|
|
13
|
+
|
|
14
|
+
# The following model-specific outputs are optional and depend on the installed
|
|
15
|
+
# transformers version. Guard their imports so our module remains importable
|
|
16
|
+
# even when those models are not available in the environment.
|
|
17
|
+
try:
|
|
18
|
+
from transformers.models.gemma3.modeling_gemma3 import Gemma3CausalLMOutputWithPast as _Gemma3CausalLMOutputWithPast
|
|
19
|
+
except Exception:
|
|
20
|
+
_Gemma3CausalLMOutputWithPast = None
|
|
21
|
+
|
|
22
|
+
try:
|
|
23
|
+
from transformers.models.glm4v_moe.modeling_glm4v_moe import (
|
|
24
|
+
Glm4vMoeCausalLMOutputWithPast as _Glm4vMoeCausalLMOutputWithPast,
|
|
25
|
+
)
|
|
26
|
+
except Exception:
|
|
27
|
+
_Glm4vMoeCausalLMOutputWithPast = None
|
|
28
|
+
|
|
29
|
+
try:
|
|
30
|
+
from transformers.models.internvl.modeling_internvl import (
|
|
31
|
+
InternVLCausalLMOutputWithPast as _InternVLCausalLMOutputWithPast,
|
|
32
|
+
)
|
|
33
|
+
except Exception:
|
|
34
|
+
_InternVLCausalLMOutputWithPast = None
|
|
35
|
+
|
|
36
|
+
try:
|
|
37
|
+
from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast as _LlavaCausalLMOutputWithPast
|
|
38
|
+
except Exception:
|
|
39
|
+
_LlavaCausalLMOutputWithPast = None
|
|
40
|
+
|
|
41
|
+
try:
|
|
42
|
+
from transformers.models.paligemma.modeling_paligemma import (
|
|
43
|
+
PaliGemmaCausalLMOutputWithPast as _PaliGemmaCausalLMOutputWithPast,
|
|
44
|
+
)
|
|
45
|
+
except Exception:
|
|
46
|
+
_PaliGemmaCausalLMOutputWithPast = None
|
|
47
|
+
|
|
48
|
+
try:
|
|
49
|
+
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
|
|
50
|
+
Qwen2_5_VLCausalLMOutputWithPast as _Qwen2_5_VLCausalLMOutputWithPast,
|
|
51
|
+
)
|
|
52
|
+
except Exception:
|
|
53
|
+
_Qwen2_5_VLCausalLMOutputWithPast = None
|
|
54
|
+
|
|
55
|
+
try:
|
|
56
|
+
from transformers.models.qwen2_vl.modeling_qwen2_vl import (
|
|
57
|
+
Qwen2VLCausalLMOutputWithPast as _Qwen2VLCausalLMOutputWithPast,
|
|
58
|
+
)
|
|
59
|
+
except Exception:
|
|
60
|
+
_Qwen2VLCausalLMOutputWithPast = None
|
|
61
|
+
|
|
62
|
+
try:
|
|
63
|
+
from transformers.models.qwen3_vl.modeling_qwen3_vl import (
|
|
64
|
+
Qwen3VLCausalLMOutputWithPast as _Qwen3VLCausalLMOutputWithPast,
|
|
65
|
+
)
|
|
66
|
+
except Exception:
|
|
67
|
+
_Qwen3VLCausalLMOutputWithPast = None
|
|
68
|
+
|
|
69
|
+
try:
|
|
70
|
+
from transformers.models.qwen3_vl_moe.modeling_qwen3_vl_moe import (
|
|
71
|
+
Qwen3VLMoeCausalLMOutputWithPast as _Qwen3VLMoeCausalLMOutputWithPast,
|
|
72
|
+
)
|
|
73
|
+
except Exception:
|
|
74
|
+
_Qwen3VLMoeCausalLMOutputWithPast = None
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
@dataclass
|
|
78
|
+
class LigerCausalLMOutputWithPast(CausalLMOutputWithPast):
|
|
79
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
@dataclass
|
|
83
|
+
class LigerMoeCausalLMOutputWithPast(MoeCausalLMOutputWithPast):
|
|
84
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
if _Gemma3CausalLMOutputWithPast is not None:
|
|
88
|
+
|
|
89
|
+
@dataclass
|
|
90
|
+
class LigerGemma3CausalLMOutputWithPast(_Gemma3CausalLMOutputWithPast):
|
|
91
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
if _Glm4vMoeCausalLMOutputWithPast is not None:
|
|
95
|
+
|
|
96
|
+
@dataclass
|
|
97
|
+
class LigerGlm4vMoeCausalLMOutputWithPast(_Glm4vMoeCausalLMOutputWithPast):
|
|
98
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
if _LlavaCausalLMOutputWithPast is not None:
|
|
102
|
+
|
|
103
|
+
@dataclass
|
|
104
|
+
class LigerLlavaCausalLMOutputWithPast(_LlavaCausalLMOutputWithPast):
|
|
105
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
if _InternVLCausalLMOutputWithPast is not None:
|
|
109
|
+
|
|
110
|
+
@dataclass
|
|
111
|
+
class LigerInternVLCausalLMOutputWithPast(_InternVLCausalLMOutputWithPast):
|
|
112
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
if _PaliGemmaCausalLMOutputWithPast is not None:
|
|
116
|
+
|
|
117
|
+
@dataclass
|
|
118
|
+
class LigerPaliGemmaCausalLMOutputWithPast(_PaliGemmaCausalLMOutputWithPast):
|
|
119
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
if _Qwen2_5_VLCausalLMOutputWithPast is not None:
|
|
123
|
+
|
|
124
|
+
@dataclass
|
|
125
|
+
class LigerQwen2_5_VLCausalLMOutputWithPast(_Qwen2_5_VLCausalLMOutputWithPast):
|
|
126
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
if _Qwen2VLCausalLMOutputWithPast is not None:
|
|
130
|
+
|
|
131
|
+
@dataclass
|
|
132
|
+
class LigerQwen2VLCausalLMOutputWithPast(_Qwen2VLCausalLMOutputWithPast):
|
|
133
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
if _Qwen3VLCausalLMOutputWithPast is not None:
|
|
137
|
+
|
|
138
|
+
@dataclass
|
|
139
|
+
class LigerQwen3VLCausalLMOutputWithPast(_Qwen3VLCausalLMOutputWithPast):
|
|
140
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
if _Qwen3VLMoeCausalLMOutputWithPast is not None:
|
|
144
|
+
|
|
145
|
+
@dataclass
|
|
146
|
+
class LigerQwen3VLMoeCausalLMOutputWithPast(_Qwen3VLMoeCausalLMOutputWithPast):
|
|
147
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
@@ -13,6 +13,9 @@ from transformers.utils import logging
|
|
|
13
13
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
14
14
|
|
|
15
15
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
16
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
17
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
18
|
+
from liger_kernel.transformers.model.output_classes import LigerPaliGemmaCausalLMOutputWithPast
|
|
16
19
|
|
|
17
20
|
logger = logging.get_logger(__name__)
|
|
18
21
|
|
|
@@ -218,7 +221,7 @@ def lce_forward(
|
|
|
218
221
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
219
222
|
skip_logits: Optional[bool] = None,
|
|
220
223
|
**lm_kwargs,
|
|
221
|
-
) -> Union[Tuple,
|
|
224
|
+
) -> Union[Tuple, LigerPaliGemmaCausalLMOutputWithPast]:
|
|
222
225
|
r"""
|
|
223
226
|
Args:
|
|
224
227
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -331,6 +334,7 @@ def lce_forward(
|
|
|
331
334
|
|
|
332
335
|
loss = None
|
|
333
336
|
logits = None
|
|
337
|
+
token_accuracy = None
|
|
334
338
|
|
|
335
339
|
if skip_logits and labels is None:
|
|
336
340
|
raise ValueError("skip_logits is True, but labels is None")
|
|
@@ -358,8 +362,16 @@ def lce_forward(
|
|
|
358
362
|
shift_hidden_states = shift_hidden_states.view(-1, self.config.text_config.hidden_size)
|
|
359
363
|
shift_labels = shift_labels.view(-1).to(hidden_device)
|
|
360
364
|
|
|
361
|
-
|
|
362
|
-
|
|
365
|
+
# Use LigerForCausalLMLoss with accuracy support and pass already shifted labels
|
|
366
|
+
result = LigerForCausalLMLoss(
|
|
367
|
+
hidden_states=shift_hidden_states,
|
|
368
|
+
lm_head_weight=self.language_model.lm_head.weight,
|
|
369
|
+
labels=None,
|
|
370
|
+
shift_labels=shift_labels,
|
|
371
|
+
hidden_size=self.config.text_config.hidden_size,
|
|
372
|
+
**lm_kwargs,
|
|
373
|
+
)
|
|
374
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
363
375
|
else:
|
|
364
376
|
logits = self.language_model.lm_head(hidden_states)
|
|
365
377
|
if labels is not None:
|
|
@@ -401,15 +413,20 @@ def lce_forward(
|
|
|
401
413
|
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
|
|
402
414
|
flat_labels = shift_labels.view(-1).to(shift_logits.device)
|
|
403
415
|
loss = loss_fct(flat_logits, flat_labels)
|
|
416
|
+
|
|
404
417
|
if not return_dict:
|
|
405
418
|
output = (logits,) + outputs[1:]
|
|
406
|
-
|
|
419
|
+
output = (loss,) + output if loss is not None else output
|
|
420
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
421
|
+
return output
|
|
407
422
|
|
|
408
|
-
|
|
423
|
+
# Return PaliGemma output with token_accuracy field
|
|
424
|
+
return LigerPaliGemmaCausalLMOutputWithPast(
|
|
409
425
|
loss=loss,
|
|
410
426
|
logits=logits,
|
|
411
427
|
past_key_values=outputs.past_key_values,
|
|
412
428
|
hidden_states=outputs.hidden_states,
|
|
413
429
|
attentions=outputs.attentions,
|
|
414
430
|
image_hidden_states=image_features if pixel_values is not None else None,
|
|
431
|
+
token_accuracy=token_accuracy,
|
|
415
432
|
)
|