liger-kernel-nightly 0.6.2.dev20251011154427__py3-none-any.whl → 0.6.4.dev20251202054858__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (67) hide show
  1. liger_kernel/chunked_loss/cosine_similarity_loss.py +13 -4
  2. liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
  3. liger_kernel/chunked_loss/fused_linear_ppo.py +21 -5
  4. liger_kernel/chunked_loss/grpo_loss.py +8 -5
  5. liger_kernel/chunked_loss/jsd_loss.py +18 -5
  6. liger_kernel/ops/cross_entropy.py +65 -11
  7. liger_kernel/ops/dyt.py +5 -2
  8. liger_kernel/ops/fused_add_rms_norm.py +5 -1
  9. liger_kernel/ops/fused_linear_cross_entropy.py +43 -13
  10. liger_kernel/ops/geglu.py +2 -1
  11. liger_kernel/ops/group_norm.py +2 -1
  12. liger_kernel/ops/grpo_loss.py +3 -1
  13. liger_kernel/ops/layer_norm.py +86 -66
  14. liger_kernel/ops/poly_norm.py +390 -0
  15. liger_kernel/ops/rms_norm.py +7 -2
  16. liger_kernel/ops/tiled_mlp.py +136 -0
  17. liger_kernel/ops/utils.py +2 -0
  18. liger_kernel/transformers/__init__.py +27 -0
  19. liger_kernel/transformers/cross_entropy.py +8 -3
  20. liger_kernel/transformers/functional.py +29 -6
  21. liger_kernel/transformers/fused_linear_cross_entropy.py +8 -3
  22. liger_kernel/transformers/grpo_loss.py +56 -1
  23. liger_kernel/transformers/model/falcon_h1.py +19 -5
  24. liger_kernel/transformers/model/gemma.py +17 -6
  25. liger_kernel/transformers/model/gemma2.py +14 -5
  26. liger_kernel/transformers/model/gemma3.py +25 -12
  27. liger_kernel/transformers/model/glm4.py +16 -4
  28. liger_kernel/transformers/model/glm4v.py +16 -4
  29. liger_kernel/transformers/model/glm4v_moe.py +23 -4
  30. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  31. liger_kernel/transformers/model/internvl.py +12 -5
  32. liger_kernel/transformers/model/llama.py +14 -5
  33. liger_kernel/transformers/model/llama4.py +16 -4
  34. liger_kernel/transformers/model/llava.py +12 -4
  35. liger_kernel/transformers/model/loss_utils.py +31 -3
  36. liger_kernel/transformers/model/mistral.py +15 -6
  37. liger_kernel/transformers/model/mixtral.py +16 -7
  38. liger_kernel/transformers/model/mllama.py +12 -4
  39. liger_kernel/transformers/model/olmo2.py +16 -4
  40. liger_kernel/transformers/model/olmo3.py +142 -0
  41. liger_kernel/transformers/model/output_classes.py +147 -0
  42. liger_kernel/transformers/model/paligemma.py +22 -5
  43. liger_kernel/transformers/model/phi3.py +14 -7
  44. liger_kernel/transformers/model/qwen2.py +16 -3
  45. liger_kernel/transformers/model/qwen2_5_vl.py +14 -6
  46. liger_kernel/transformers/model/qwen2_vl.py +16 -4
  47. liger_kernel/transformers/model/qwen3.py +20 -5
  48. liger_kernel/transformers/model/qwen3_moe.py +19 -5
  49. liger_kernel/transformers/model/qwen3_next.py +146 -0
  50. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  51. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  52. liger_kernel/transformers/model/smollm3.py +15 -6
  53. liger_kernel/transformers/model/smolvlm.py +158 -0
  54. liger_kernel/transformers/monkey_patch.py +594 -19
  55. liger_kernel/transformers/poly_norm.py +42 -0
  56. liger_kernel/transformers/rms_norm.py +7 -0
  57. liger_kernel/transformers/rope.py +43 -0
  58. liger_kernel/transformers/swiglu.py +17 -0
  59. liger_kernel/transformers/tiled_mlp.py +133 -0
  60. liger_kernel/utils.py +25 -0
  61. {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/METADATA +4 -1
  62. liger_kernel_nightly-0.6.4.dev20251202054858.dist-info/RECORD +118 -0
  63. liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/RECORD +0 -107
  64. {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/LICENSE +0 -0
  65. {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/NOTICE +0 -0
  66. {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/WHEEL +0 -0
  67. {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/top_level.txt +0 -0
@@ -3,6 +3,7 @@ from typing import Optional
3
3
  import torch
4
4
 
5
5
  from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
6
+ from liger_kernel.transformers.functional import CrossEntropyOutput
6
7
 
7
8
 
8
9
  class LigerCrossEntropyLoss(torch.nn.Module):
@@ -15,6 +16,7 @@ class LigerCrossEntropyLoss(torch.nn.Module):
15
16
  reduction: str = "mean",
16
17
  softcap: Optional[float] = None,
17
18
  return_z_loss: bool = False,
19
+ return_token_accuracy: bool = False,
18
20
  ):
19
21
  super().__init__()
20
22
  assert (label_smoothing >= 0) and (label_smoothing <= 1), (
@@ -33,9 +35,10 @@ class LigerCrossEntropyLoss(torch.nn.Module):
33
35
  self.reduction = reduction
34
36
  self.softcap = softcap
35
37
  self.return_z_loss = return_z_loss
38
+ self.return_token_accuracy = return_token_accuracy
36
39
 
37
40
  def forward(self, _input: torch.Tensor, target: torch.Tensor):
38
- loss, z_loss = LigerCrossEntropyFunction.apply(
41
+ loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
39
42
  _input,
40
43
  target,
41
44
  self.weight,
@@ -45,7 +48,9 @@ class LigerCrossEntropyLoss(torch.nn.Module):
45
48
  self.reduction,
46
49
  self.softcap,
47
50
  self.return_z_loss,
51
+ self.return_token_accuracy,
48
52
  )
49
- if not self.return_z_loss:
53
+ if not self.return_z_loss and not self.return_token_accuracy:
50
54
  return loss
51
- return loss, z_loss
55
+
56
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
@@ -1,5 +1,8 @@
1
+ from dataclasses import dataclass
1
2
  from typing import Optional
2
3
 
4
+ import torch
5
+
3
6
  from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
4
7
  from liger_kernel.ops.dyt import LigerDyTFunction
5
8
  from liger_kernel.ops.fused_add_rms_norm import LigerFusedAddRMSNormFunction
@@ -12,6 +15,7 @@ from liger_kernel.ops.jsd import LigerJSDFunction
12
15
  from liger_kernel.ops.kl_div import LigerKLDivLossFunction
13
16
  from liger_kernel.ops.layer_norm import LigerLayerNormFunction
14
17
  from liger_kernel.ops.multi_token_attention import LigerMultiTokenAttentionFunction
18
+ from liger_kernel.ops.poly_norm import LigerPolyNormFunction
15
19
  from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
16
20
  from liger_kernel.ops.rms_norm import LigerRMSNormFunction
17
21
  from liger_kernel.ops.rope import LigerRopeFunction
@@ -21,6 +25,13 @@ from liger_kernel.ops.swiglu import LigerSiLUMulFunction
21
25
  from liger_kernel.ops.tvd import LigerTVDLossFunction
22
26
 
23
27
 
28
+ @dataclass
29
+ class CrossEntropyOutput:
30
+ loss: torch.Tensor
31
+ z_loss: Optional[torch.Tensor] = None
32
+ token_accuracy: Optional[torch.Tensor] = None
33
+
34
+
24
35
  # conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
25
36
  # `weight` and `size_average` are placeholders and not implemented yet
26
37
  def liger_cross_entropy(
@@ -35,8 +46,9 @@ def liger_cross_entropy(
35
46
  lse_square_scale: float = 0.0,
36
47
  softcap: Optional[float] = None,
37
48
  return_z_loss: bool = False,
49
+ return_token_accuracy: bool = False,
38
50
  ):
39
- loss, z_loss = LigerCrossEntropyFunction.apply(
51
+ loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
40
52
  input,
41
53
  target,
42
54
  weight,
@@ -46,10 +58,13 @@ def liger_cross_entropy(
46
58
  reduction,
47
59
  softcap,
48
60
  return_z_loss,
61
+ return_token_accuracy,
49
62
  )
50
- if not return_z_loss:
63
+
64
+ if not return_z_loss and not return_token_accuracy:
51
65
  return loss
52
- return loss, z_loss
66
+
67
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
53
68
 
54
69
 
55
70
  def liger_fused_linear_cross_entropy(
@@ -66,8 +81,9 @@ def liger_fused_linear_cross_entropy(
66
81
  return_z_loss: bool = False,
67
82
  accum_dtype=None,
68
83
  use_token_scaling: bool = False,
84
+ return_token_accuracy: bool = False,
69
85
  ):
70
- loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
86
+ loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
71
87
  input,
72
88
  weight,
73
89
  target,
@@ -81,10 +97,13 @@ def liger_fused_linear_cross_entropy(
81
97
  return_z_loss,
82
98
  accum_dtype,
83
99
  use_token_scaling,
100
+ return_token_accuracy,
84
101
  )
85
- if not return_z_loss:
102
+
103
+ if not return_z_loss and not return_token_accuracy:
86
104
  return loss
87
- return loss, z_loss
105
+
106
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
88
107
 
89
108
 
90
109
  def liger_fused_linear_jsd(
@@ -258,6 +277,10 @@ def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama",
258
277
  return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
259
278
 
260
279
 
280
+ def liger_poly_norm(X, W, B, eps=1e-6, in_place=True):
281
+ return LigerPolyNormFunction.apply(X, W, B, eps, in_place)
282
+
283
+
261
284
  def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
262
285
  return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
263
286
 
@@ -3,6 +3,7 @@ from typing import Optional
3
3
  import torch
4
4
 
5
5
  from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
6
+ from liger_kernel.transformers.functional import CrossEntropyOutput
6
7
 
7
8
 
8
9
  class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
@@ -17,6 +18,7 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
17
18
  return_z_loss: bool = False,
18
19
  accum_dtype: Optional[torch.dtype] = None,
19
20
  use_token_scaling: bool = False,
21
+ return_token_accuracy: bool = False,
20
22
  ):
21
23
  super().__init__()
22
24
  assert (label_smoothing >= 0) and (label_smoothing <= 1), (
@@ -37,9 +39,10 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
37
39
  self.return_z_loss = return_z_loss
38
40
  self.accum_dtype = accum_dtype
39
41
  self.use_token_scaling = use_token_scaling
42
+ self.return_token_accuracy = return_token_accuracy
40
43
 
41
44
  def forward(self, lin_weight, _input, target, bias=None):
42
- loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
45
+ loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
43
46
  _input,
44
47
  lin_weight,
45
48
  target,
@@ -53,7 +56,9 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
53
56
  self.return_z_loss,
54
57
  self.accum_dtype,
55
58
  self.use_token_scaling,
59
+ self.return_token_accuracy,
56
60
  )
57
- if not self.return_z_loss:
61
+ if not self.return_z_loss and not self.return_token_accuracy:
58
62
  return loss
59
- return loss, z_loss
63
+
64
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
@@ -1,3 +1,6 @@
1
+ import torch
2
+
3
+ from liger_kernel.chunked_loss.fused_linear_ppo import LigerFusedLinearPPOBase
1
4
  from liger_kernel.ops.grpo_loss import GrpoLossFunction
2
5
 
3
6
 
@@ -13,12 +16,20 @@ def triton_grpo_loss(
13
16
  eps_low=0.2,
14
17
  eps_high=0.4,
15
18
  inplace=True,
19
+ loss_type="dapo",
20
+ max_completion_length=None,
21
+ importance_sampling_level="token",
22
+ reduce=False,
16
23
  ):
17
24
  assert logits is not None and completion_ids is not None and advantages is not None, (
18
25
  "must provide logits、completion_ids and advantages"
19
26
  )
27
+ if importance_sampling_level != "token":
28
+ raise ValueError(
29
+ f"Triton GRPO loss only supports token-level importance sampling. Got {importance_sampling_level}."
30
+ )
20
31
 
21
- return GrpoLossFunction.apply(
32
+ per_token_loss, per_token_kl, is_clipped = GrpoLossFunction.apply(
22
33
  logits,
23
34
  old_logp,
24
35
  ref_logp,
@@ -31,6 +42,50 @@ def triton_grpo_loss(
31
42
  eps_high,
32
43
  inplace,
33
44
  )
45
+ if not reduce:
46
+ return per_token_loss, per_token_kl, is_clipped
47
+
48
+ loss = _reduce_grpo_loss(
49
+ per_token_loss,
50
+ completion_mask,
51
+ loss_type=loss_type,
52
+ max_completion_length=max_completion_length,
53
+ )
54
+
55
+ metrics = []
56
+ if beta != 0.0 and per_token_kl is not None:
57
+ metrics.append(_masked_mean(per_token_kl, completion_mask))
58
+ metrics.append(_masked_mean(is_clipped.float(), completion_mask))
59
+ return loss, metrics
60
+
61
+
62
+ def _reduce_grpo_loss(per_token_loss, completion_mask, loss_type, max_completion_length):
63
+ mask = completion_mask
64
+ if mask is None:
65
+ mask = torch.ones_like(per_token_loss, dtype=per_token_loss.dtype, device=per_token_loss.device)
66
+ mask = mask.to(per_token_loss.dtype)
67
+
68
+ if loss_type == "grpo":
69
+ per_seq = (per_token_loss * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)
70
+ return per_seq.mean()
71
+ if loss_type == "bnpo":
72
+ return (per_token_loss * mask).sum() / mask.sum().clamp(min=1.0)
73
+ if loss_type == "dr_grpo":
74
+ if max_completion_length is None:
75
+ raise ValueError("max_completion_length must be provided when using loss_type='dr_grpo'")
76
+ batch = per_token_loss.shape[0]
77
+ return (per_token_loss * mask).sum() / (batch * max_completion_length)
78
+ if loss_type == "dapo":
79
+ normalizer = LigerFusedLinearPPOBase._compute_dapo_normalizer(mask)
80
+ return (per_token_loss * mask).sum() / normalizer
81
+ raise ValueError(f"Unsupported loss_type '{loss_type}' for Triton GRPO loss.")
82
+
83
+
84
+ def _masked_mean(values, mask):
85
+ if mask is None:
86
+ mask = torch.ones_like(values, dtype=values.dtype, device=values.device)
87
+ mask = mask.to(values.dtype)
88
+ return (values * mask).sum() / mask.sum().clamp(min=1.0)
34
89
 
35
90
 
36
91
  # This is a demo how to use grpo_loss in GRPOTrainer. The Trl version must be 0.16
@@ -4,12 +4,12 @@ from typing import Union
4
4
 
5
5
  import torch
6
6
 
7
- from transformers.modeling_outputs import CausalLMOutputWithPast
8
-
9
7
  if TYPE_CHECKING:
10
8
  from transformers.models.falcon_h1.modeling_falcon_h1 import FalconHybridMambaAttentionDynamicCache
11
9
 
12
10
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
13
13
 
14
14
 
15
15
  def lce_forward(
@@ -26,8 +26,9 @@ def lce_forward(
26
26
  cache_position: Optional[torch.LongTensor] = None,
27
27
  logits_to_keep: Union[int, torch.Tensor] = 0,
28
28
  skip_logits: Optional[bool] = None,
29
+ return_dict: Optional[bool] = None,
29
30
  **kwargs,
30
- ) -> Union[tuple, CausalLMOutputWithPast]:
31
+ ) -> Union[tuple, LigerCausalLMOutputWithPast]:
31
32
  r"""
32
33
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
33
34
  Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
@@ -54,6 +55,7 @@ def lce_forward(
54
55
  output_hidden_states = (
55
56
  output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
56
57
  )
58
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
57
59
 
58
60
  # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
59
61
  outputs = self.model(
@@ -77,6 +79,8 @@ def lce_forward(
77
79
  shift_labels = kwargs.pop("shift_labels", None)
78
80
  logits = None
79
81
  loss = None
82
+ token_accuracy = None
83
+
80
84
  # if in training mode, don't materialize logits
81
85
  if skip_logits and labels is None:
82
86
  raise ValueError("skip_logits is True, but labels and shift_labels are None")
@@ -85,8 +89,9 @@ def lce_forward(
85
89
  # By default, if in training mode, don't materialize logits
86
90
  skip_logits = self.training and labels is not None
87
91
 
92
+ # Compute loss
88
93
  if skip_logits:
89
- loss = LigerForCausalLMLoss(
94
+ result = LigerForCausalLMLoss(
90
95
  hidden_states=kept_hidden_states,
91
96
  lm_head_weight=self.lm_head.weight,
92
97
  labels=labels,
@@ -94,15 +99,24 @@ def lce_forward(
94
99
  hidden_size=self.config.hidden_size,
95
100
  **kwargs,
96
101
  )
102
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
97
103
  else:
98
104
  logits = self.lm_head(kept_hidden_states)
99
105
  if labels is not None or shift_labels is not None:
100
106
  loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
101
107
 
102
- return CausalLMOutputWithPast(
108
+ if not return_dict:
109
+ output = (logits,) + outputs[1:]
110
+ output = ((loss,) + output) if loss is not None else output
111
+ output = output + (token_accuracy,) if token_accuracy is not None else output
112
+ return output
113
+
114
+ # Return custom output class with token_accuracy field
115
+ return LigerCausalLMOutputWithPast(
103
116
  loss=loss,
104
117
  logits=logits,
105
118
  past_key_values=outputs.past_key_values,
106
119
  hidden_states=outputs.hidden_states,
107
120
  attentions=outputs.attentions,
121
+ token_accuracy=token_accuracy,
108
122
  )
@@ -12,6 +12,8 @@ from transformers.utils.deprecation import deprecate_kwarg
12
12
 
13
13
  from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
14
14
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
15
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
16
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
15
17
 
16
18
 
17
19
  def lce_forward_deprecated(
@@ -147,7 +149,7 @@ def lce_forward(
147
149
  logits_to_keep: Union[int, torch.Tensor] = 0,
148
150
  skip_logits: Optional[bool] = None,
149
151
  **kwargs,
150
- ) -> Union[Tuple, CausalLMOutputWithPast]:
152
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
151
153
  r"""
152
154
  Args:
153
155
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
@@ -209,6 +211,7 @@ def lce_forward(
209
211
  shift_labels = kwargs.pop("shift_labels", None)
210
212
  logits = None
211
213
  loss = None
214
+ token_accuracy = None
212
215
 
213
216
  if skip_logits and labels is None and shift_labels is None:
214
217
  raise ValueError("skip_logits is True, but labels and shift_labels are None")
@@ -217,8 +220,9 @@ def lce_forward(
217
220
  # By default, if in training mode, don't materialize logits
218
221
  skip_logits = self.training and (labels is not None or shift_labels is not None)
219
222
 
223
+ # Compute loss
220
224
  if skip_logits:
221
- loss = LigerForCausalLMLoss(
225
+ result = LigerForCausalLMLoss(
222
226
  hidden_states=kept_hidden_states,
223
227
  lm_head_weight=self.lm_head.weight,
224
228
  labels=labels,
@@ -226,6 +230,7 @@ def lce_forward(
226
230
  hidden_size=self.config.hidden_size,
227
231
  **kwargs,
228
232
  )
233
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
229
234
  else:
230
235
  logits = self.lm_head(kept_hidden_states)
231
236
  if labels is not None or shift_labels is not None:
@@ -238,13 +243,19 @@ def lce_forward(
238
243
  )
239
244
 
240
245
  if not return_dict:
241
- output = (logits,) + outputs[1:]
242
- return (loss,) + output if loss is not None else output
243
-
244
- return CausalLMOutputWithPast(
246
+ output_tuple = (logits,) + outputs[1:]
247
+ if loss is not None:
248
+ output_tuple = (loss,) + output_tuple
249
+ if token_accuracy is not None:
250
+ output_tuple = output_tuple + (token_accuracy,)
251
+ return output_tuple
252
+
253
+ # Return custom output class with token_accuracy field
254
+ return LigerCausalLMOutputWithPast(
245
255
  loss=loss,
246
256
  logits=logits,
247
257
  past_key_values=outputs.past_key_values,
248
258
  hidden_states=outputs.hidden_states,
249
259
  attentions=outputs.attentions,
260
+ token_accuracy=token_accuracy,
250
261
  )
@@ -13,6 +13,8 @@ from transformers.utils.deprecation import deprecate_kwarg
13
13
 
14
14
  from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
15
15
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
16
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
17
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
16
18
 
17
19
  logger = logging.getLogger(__name__)
18
20
 
@@ -158,7 +160,7 @@ def lce_forward(
158
160
  logits_to_keep: Union[int, torch.Tensor] = 0,
159
161
  skip_logits: Optional[bool] = None,
160
162
  **kwargs,
161
- ) -> Union[Tuple, CausalLMOutputWithPast]:
163
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
162
164
  r"""
163
165
  Args:
164
166
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
@@ -225,6 +227,7 @@ def lce_forward(
225
227
  shift_labels = kwargs.pop("shift_labels", None)
226
228
  logits = None
227
229
  loss = None
230
+ token_accuracy = None
228
231
 
229
232
  if skip_logits and labels is None and shift_labels is None:
230
233
  raise ValueError("skip_logits is True, but labels and shift_labels are None")
@@ -233,8 +236,9 @@ def lce_forward(
233
236
  # By default, if in training mode, don't materialize logits
234
237
  skip_logits = self.training and (labels is not None or shift_labels is not None)
235
238
 
239
+ # Compute loss
236
240
  if skip_logits:
237
- loss = LigerForCausalLMLoss(
241
+ result = LigerForCausalLMLoss(
238
242
  hidden_states=kept_hidden_states,
239
243
  lm_head_weight=self.lm_head.weight,
240
244
  labels=labels,
@@ -243,6 +247,7 @@ def lce_forward(
243
247
  final_logit_softcapping=self.config.final_logit_softcapping,
244
248
  **kwargs,
245
249
  )
250
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
246
251
 
247
252
  else:
248
253
  logits = self.lm_head(kept_hidden_states)
@@ -262,13 +267,17 @@ def lce_forward(
262
267
  )
263
268
 
264
269
  if not return_dict:
265
- output = (logits,) + outputs[1:]
266
- return (loss,) + output if loss is not None else output
270
+ output_tuple = (logits,) + outputs[1:]
271
+ output_tuple = (loss,) + output_tuple if loss is not None else output_tuple
272
+ output_tuple = output_tuple + (token_accuracy,) if token_accuracy is not None else output_tuple
273
+ return output_tuple
267
274
 
268
- return CausalLMOutputWithPast(
275
+ # Return custom output class with token_accuracy field
276
+ return LigerCausalLMOutputWithPast(
269
277
  loss=loss,
270
278
  logits=logits,
271
279
  past_key_values=outputs.past_key_values,
272
280
  hidden_states=outputs.hidden_states,
273
281
  attentions=outputs.attentions,
282
+ token_accuracy=token_accuracy,
274
283
  )
@@ -7,12 +7,13 @@ import torch.nn as nn
7
7
 
8
8
  from transformers.cache_utils import Cache
9
9
  from transformers.cache_utils import HybridCache
10
- from transformers.modeling_outputs import CausalLMOutputWithPast
11
- from transformers.models.gemma3.modeling_gemma3 import Gemma3CausalLMOutputWithPast
12
10
  from transformers.utils import logging
13
11
 
14
12
  from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
15
13
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
14
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
15
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
16
+ from liger_kernel.transformers.model.output_classes import LigerGemma3CausalLMOutputWithPast
16
17
 
17
18
  logger = logging.get_logger(__name__)
18
19
 
@@ -33,7 +34,7 @@ def causal_forward(
33
34
  logits_to_keep: Union[int, torch.Tensor] = 0,
34
35
  skip_logits: Optional[bool] = None,
35
36
  **loss_kwargs,
36
- ) -> Union[Tuple, CausalLMOutputWithPast]:
37
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
37
38
  r"""
38
39
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
39
40
  Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
@@ -98,12 +99,14 @@ def causal_forward(
98
99
  shift_labels = loss_kwargs.pop("shift_labels", None)
99
100
  loss = None
100
101
  logits = None
102
+ token_accuracy = None
101
103
 
102
104
  if skip_logits is None:
103
105
  skip_logits = self.training and (labels is not None or shift_labels is not None)
104
106
 
107
+ # Compute loss
105
108
  if skip_logits:
106
- loss = LigerForCausalLMLoss(
109
+ result = LigerForCausalLMLoss(
107
110
  hidden_states=kept_hidden_states,
108
111
  lm_head_weight=self.lm_head.weight,
109
112
  labels=labels,
@@ -112,7 +115,7 @@ def causal_forward(
112
115
  final_logit_softcapping=self.config.final_logit_softcapping,
113
116
  **loss_kwargs,
114
117
  )
115
-
118
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
116
119
  else:
117
120
  logits = self.lm_head(kept_hidden_states)
118
121
  if self.config.final_logit_softcapping is not None:
@@ -129,15 +132,19 @@ def causal_forward(
129
132
  )
130
133
 
131
134
  if not return_dict:
132
- output = (logits,) + outputs[1:]
133
- return (loss,) + output if loss is not None else output
135
+ output_tuple = (logits,) + outputs[1:]
136
+ output_tuple = (loss,) + output_tuple if loss is not None else output_tuple
137
+ output_tuple = output_tuple + (token_accuracy,) if token_accuracy is not None else output_tuple
138
+ return output_tuple
134
139
 
135
- return CausalLMOutputWithPast(
140
+ # Return custom output class with token_accuracy field
141
+ return LigerCausalLMOutputWithPast(
136
142
  loss=loss,
137
143
  logits=logits,
138
144
  past_key_values=outputs.past_key_values,
139
145
  hidden_states=outputs.hidden_states,
140
146
  attentions=outputs.attentions,
147
+ token_accuracy=token_accuracy,
141
148
  )
142
149
 
143
150
 
@@ -159,7 +166,7 @@ def multimodal_forward(
159
166
  logits_to_keep: Union[int, torch.Tensor] = 0,
160
167
  skip_logits: Optional[bool] = None,
161
168
  **lm_kwargs,
162
- ) -> Union[tuple, Gemma3CausalLMOutputWithPast]:
169
+ ) -> Union[tuple, LigerGemma3CausalLMOutputWithPast]:
163
170
  r"""
164
171
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
165
172
  Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
@@ -235,6 +242,7 @@ def multimodal_forward(
235
242
 
236
243
  loss = None
237
244
  logits = None
245
+ token_accuracy = None
238
246
  if skip_logits and labels is None:
239
247
  raise ValueError("skip_logits is True, but labels is None")
240
248
 
@@ -261,7 +269,9 @@ def multimodal_forward(
261
269
  shift_labels = shift_labels.view(-1).to(hidden_device)
262
270
 
263
271
  lce = LigerFusedLinearCrossEntropyLoss()
264
- loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
272
+ result = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
273
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
274
+
265
275
  else:
266
276
  logits = self.lm_head(kept_hidden_states)
267
277
  if labels is not None:
@@ -306,13 +316,16 @@ def multimodal_forward(
306
316
 
307
317
  if not return_dict:
308
318
  output = (logits,) + outputs[1:]
309
- return (loss,) + output if loss is not None else output
319
+ output = (loss,) + output if loss is not None else output
320
+ output = output + (token_accuracy,) if token_accuracy is not None else output
321
+ return output
310
322
 
311
- return Gemma3CausalLMOutputWithPast(
323
+ return LigerGemma3CausalLMOutputWithPast(
312
324
  loss=loss,
313
325
  logits=logits,
314
326
  past_key_values=outputs.past_key_values,
315
327
  hidden_states=outputs.hidden_states,
316
328
  attentions=outputs.attentions,
317
329
  image_hidden_states=outputs.image_hidden_states,
330
+ token_accuracy=token_accuracy,
318
331
  )
@@ -5,10 +5,11 @@ from typing import Union
5
5
 
6
6
  import torch
7
7
 
8
- from transformers.modeling_outputs import CausalLMOutputWithPast
9
8
  from transformers.utils.deprecation import deprecate_kwarg
10
9
 
11
10
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
12
13
 
13
14
 
14
15
  @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@@ -28,7 +29,7 @@ def lce_forward(
28
29
  logits_to_keep: Union[int, torch.Tensor] = 0,
29
30
  skip_logits: Optional[bool] = None,
30
31
  **kwargs,
31
- ) -> Union[Tuple, CausalLMOutputWithPast]:
32
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
32
33
  r"""
33
34
  Args:
34
35
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
@@ -91,6 +92,7 @@ def lce_forward(
91
92
  shift_labels = kwargs.pop("shift_labels", None)
92
93
  logits = None
93
94
  loss = None
95
+ token_accuracy = None
94
96
 
95
97
  if skip_logits and labels is None and shift_labels is None:
96
98
  raise ValueError("skip_logits is True, but labels and shift_labels are None")
@@ -99,8 +101,9 @@ def lce_forward(
99
101
  # By default, if in training mode, don't materialize logits
100
102
  skip_logits = self.training and (labels is not None or shift_labels is not None)
101
103
 
104
+ # Compute loss
102
105
  if skip_logits:
103
- loss = LigerForCausalLMLoss(
106
+ result = LigerForCausalLMLoss(
104
107
  hidden_states=kept_hidden_states,
105
108
  lm_head_weight=self.lm_head.weight,
106
109
  labels=labels,
@@ -108,6 +111,7 @@ def lce_forward(
108
111
  hidden_size=self.config.hidden_size,
109
112
  **kwargs,
110
113
  )
114
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
111
115
 
112
116
  else:
113
117
  logits = self.lm_head(kept_hidden_states)
@@ -120,10 +124,18 @@ def lce_forward(
120
124
  **kwargs,
121
125
  )
122
126
 
123
- return CausalLMOutputWithPast(
127
+ if not return_dict:
128
+ output = (logits,) + outputs[1:]
129
+ output = ((loss,) + output) if loss is not None else output
130
+ output = output + (token_accuracy,) if token_accuracy is not None else output
131
+ return output
132
+
133
+ # Return custom output class with token_accuracy field
134
+ return LigerCausalLMOutputWithPast(
124
135
  loss=loss,
125
136
  logits=logits,
126
137
  past_key_values=outputs.past_key_values,
127
138
  hidden_states=outputs.hidden_states,
128
139
  attentions=outputs.attentions,
140
+ token_accuracy=token_accuracy,
129
141
  )