liger-kernel-nightly 0.6.2.dev20251011154427__py3-none-any.whl → 0.6.4.dev20251202054858__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/chunked_loss/cosine_similarity_loss.py +13 -4
- liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
- liger_kernel/chunked_loss/fused_linear_ppo.py +21 -5
- liger_kernel/chunked_loss/grpo_loss.py +8 -5
- liger_kernel/chunked_loss/jsd_loss.py +18 -5
- liger_kernel/ops/cross_entropy.py +65 -11
- liger_kernel/ops/dyt.py +5 -2
- liger_kernel/ops/fused_add_rms_norm.py +5 -1
- liger_kernel/ops/fused_linear_cross_entropy.py +43 -13
- liger_kernel/ops/geglu.py +2 -1
- liger_kernel/ops/group_norm.py +2 -1
- liger_kernel/ops/grpo_loss.py +3 -1
- liger_kernel/ops/layer_norm.py +86 -66
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/rms_norm.py +7 -2
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/utils.py +2 -0
- liger_kernel/transformers/__init__.py +27 -0
- liger_kernel/transformers/cross_entropy.py +8 -3
- liger_kernel/transformers/functional.py +29 -6
- liger_kernel/transformers/fused_linear_cross_entropy.py +8 -3
- liger_kernel/transformers/grpo_loss.py +56 -1
- liger_kernel/transformers/model/falcon_h1.py +19 -5
- liger_kernel/transformers/model/gemma.py +17 -6
- liger_kernel/transformers/model/gemma2.py +14 -5
- liger_kernel/transformers/model/gemma3.py +25 -12
- liger_kernel/transformers/model/glm4.py +16 -4
- liger_kernel/transformers/model/glm4v.py +16 -4
- liger_kernel/transformers/model/glm4v_moe.py +23 -4
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +12 -5
- liger_kernel/transformers/model/llama.py +14 -5
- liger_kernel/transformers/model/llama4.py +16 -4
- liger_kernel/transformers/model/llava.py +12 -4
- liger_kernel/transformers/model/loss_utils.py +31 -3
- liger_kernel/transformers/model/mistral.py +15 -6
- liger_kernel/transformers/model/mixtral.py +16 -7
- liger_kernel/transformers/model/mllama.py +12 -4
- liger_kernel/transformers/model/olmo2.py +16 -4
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +22 -5
- liger_kernel/transformers/model/phi3.py +14 -7
- liger_kernel/transformers/model/qwen2.py +16 -3
- liger_kernel/transformers/model/qwen2_5_vl.py +14 -6
- liger_kernel/transformers/model/qwen2_vl.py +16 -4
- liger_kernel/transformers/model/qwen3.py +20 -5
- liger_kernel/transformers/model/qwen3_moe.py +19 -5
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +15 -6
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +594 -19
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/rms_norm.py +7 -0
- liger_kernel/transformers/rope.py +43 -0
- liger_kernel/transformers/swiglu.py +17 -0
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/utils.py +25 -0
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/METADATA +4 -1
- liger_kernel_nightly-0.6.4.dev20251202054858.dist-info/RECORD +118 -0
- liger_kernel_nightly-0.6.2.dev20251011154427.dist-info/RECORD +0 -107
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.6.2.dev20251011154427.dist-info → liger_kernel_nightly-0.6.4.dev20251202054858.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,390 @@
|
|
|
1
|
+
import operator
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
import triton
|
|
5
|
+
import triton.language as tl
|
|
6
|
+
|
|
7
|
+
from liger_kernel.ops.utils import calculate_settings
|
|
8
|
+
from liger_kernel.ops.utils import compare_version
|
|
9
|
+
from liger_kernel.ops.utils import ensure_contiguous
|
|
10
|
+
from liger_kernel.utils import get_npu_multi_processor_count
|
|
11
|
+
from liger_kernel.utils import is_npu_available
|
|
12
|
+
|
|
13
|
+
if compare_version("triton", operator.ge, "3.0.0") and not is_npu_available():
|
|
14
|
+
try:
|
|
15
|
+
from triton.language.extra.libdevice import rsqrt
|
|
16
|
+
except ModuleNotFoundError:
|
|
17
|
+
from triton.language.extra.cuda.libdevice import rsqrt
|
|
18
|
+
else:
|
|
19
|
+
from triton.language.math import rsqrt
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
@triton.jit
|
|
23
|
+
def _poly_norm_forward_kernel(
|
|
24
|
+
Y_ptr,
|
|
25
|
+
Y_row_stride,
|
|
26
|
+
X_ptr,
|
|
27
|
+
X_row_stride,
|
|
28
|
+
W_ptr, # weight: [3] for [w0, w1, w2]
|
|
29
|
+
B_ptr, # bias: scalar
|
|
30
|
+
RSTD_ptr, # cache rstd for backward: shape (n_rows, 3)
|
|
31
|
+
RSTD_row_stride,
|
|
32
|
+
n_cols,
|
|
33
|
+
eps,
|
|
34
|
+
BLOCK_SIZE: tl.constexpr,
|
|
35
|
+
):
|
|
36
|
+
"""
|
|
37
|
+
PolyNorm formula:
|
|
38
|
+
y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
|
|
39
|
+
where norm(u) = u / sqrt(mean(u²) + ε)
|
|
40
|
+
|
|
41
|
+
Reference:
|
|
42
|
+
1. https://github.com/BryceZhuo/PolyCom/
|
|
43
|
+
2. https://arxiv.org/pdf/2411.03884
|
|
44
|
+
|
|
45
|
+
Cache rstd values for backward pass
|
|
46
|
+
"""
|
|
47
|
+
row_idx = tl.program_id(0).to(tl.int64)
|
|
48
|
+
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
49
|
+
mask = col_offsets < n_cols
|
|
50
|
+
|
|
51
|
+
# Load pointers
|
|
52
|
+
Y_ptr += row_idx * Y_row_stride
|
|
53
|
+
X_ptr += row_idx * X_row_stride
|
|
54
|
+
RSTD_ptr += row_idx * RSTD_row_stride
|
|
55
|
+
|
|
56
|
+
# Load input row
|
|
57
|
+
X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0.0)
|
|
58
|
+
|
|
59
|
+
# Load weights and bias
|
|
60
|
+
w0 = tl.load(W_ptr + 0)
|
|
61
|
+
w1 = tl.load(W_ptr + 1)
|
|
62
|
+
w2 = tl.load(W_ptr + 2)
|
|
63
|
+
b = tl.load(B_ptr)
|
|
64
|
+
|
|
65
|
+
# Compute x³, x², x
|
|
66
|
+
X_pow3 = X_row * X_row * X_row
|
|
67
|
+
X_pow2 = X_row * X_row
|
|
68
|
+
X_pow1 = X_row
|
|
69
|
+
|
|
70
|
+
# Compute norm(x³): norm(u) = u * rsqrt(mean(u²) + eps)
|
|
71
|
+
mean_square_3 = tl.sum(X_pow3 * X_pow3, axis=0) / n_cols
|
|
72
|
+
rstd_3 = rsqrt(mean_square_3 + eps)
|
|
73
|
+
norm_x3 = X_pow3 * rstd_3
|
|
74
|
+
|
|
75
|
+
# Compute norm(x²)
|
|
76
|
+
mean_square_2 = tl.sum(X_pow2 * X_pow2, axis=0) / n_cols
|
|
77
|
+
rstd_2 = rsqrt(mean_square_2 + eps)
|
|
78
|
+
norm_x2 = X_pow2 * rstd_2
|
|
79
|
+
|
|
80
|
+
# Compute norm(x)
|
|
81
|
+
mean_square_1 = tl.sum(X_pow1 * X_pow1, axis=0) / n_cols
|
|
82
|
+
rstd_1 = rsqrt(mean_square_1 + eps)
|
|
83
|
+
norm_x1 = X_pow1 * rstd_1
|
|
84
|
+
|
|
85
|
+
# Cache rstd values for backward
|
|
86
|
+
tl.store(RSTD_ptr + 0, rstd_3)
|
|
87
|
+
tl.store(RSTD_ptr + 1, rstd_2)
|
|
88
|
+
tl.store(RSTD_ptr + 2, rstd_1)
|
|
89
|
+
|
|
90
|
+
# Compute output: y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
|
|
91
|
+
Y_row = w0 * norm_x3 + w1 * norm_x2 + w2 * norm_x1 + b
|
|
92
|
+
|
|
93
|
+
# Store output
|
|
94
|
+
tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
@triton.jit
|
|
98
|
+
def _poly_norm_backward_kernel(
|
|
99
|
+
dY_ptr,
|
|
100
|
+
dY_row_stride,
|
|
101
|
+
dX_ptr,
|
|
102
|
+
dX_row_stride,
|
|
103
|
+
X_ptr,
|
|
104
|
+
X_row_stride,
|
|
105
|
+
W_ptr,
|
|
106
|
+
RSTD_ptr,
|
|
107
|
+
RSTD_row_stride,
|
|
108
|
+
dW_ptr, # shape: (n_programs, 3)
|
|
109
|
+
dW_row_stride,
|
|
110
|
+
dB_ptr, # shape: (n_programs,)
|
|
111
|
+
n_rows,
|
|
112
|
+
n_cols,
|
|
113
|
+
rows_per_program: tl.constexpr,
|
|
114
|
+
BLOCK_SIZE: tl.constexpr,
|
|
115
|
+
):
|
|
116
|
+
"""
|
|
117
|
+
PolyNorm Backward Kernel Gradient:
|
|
118
|
+
∂L/∂x_i = Σ_p w_p * [p*x_i^(p-1) * grad_i/D_p - (p/d)*x_i^(2p-1) * S_p/(D_p³)]
|
|
119
|
+
|
|
120
|
+
where:
|
|
121
|
+
- D_p = RMS(x^p) = 1/rstd_p
|
|
122
|
+
- S_p = sum(grad * x^p) over the row
|
|
123
|
+
- d = n_cols
|
|
124
|
+
- p ∈ {3, 2, 1}
|
|
125
|
+
"""
|
|
126
|
+
row_block_id = tl.program_id(0).to(tl.int64)
|
|
127
|
+
row_start = row_block_id * rows_per_program
|
|
128
|
+
row_end = min((row_block_id + 1) * rows_per_program, n_rows)
|
|
129
|
+
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
130
|
+
mask = col_offsets < n_cols
|
|
131
|
+
|
|
132
|
+
# Initialize accumulators for weight and bias gradients (scalars)
|
|
133
|
+
dW0_acc = 0.0
|
|
134
|
+
dW1_acc = 0.0
|
|
135
|
+
dW2_acc = 0.0
|
|
136
|
+
dB_acc = 0.0
|
|
137
|
+
|
|
138
|
+
# Load weights
|
|
139
|
+
w0 = tl.load(W_ptr + 0).to(tl.float32)
|
|
140
|
+
w1 = tl.load(W_ptr + 1).to(tl.float32)
|
|
141
|
+
w2 = tl.load(W_ptr + 2).to(tl.float32)
|
|
142
|
+
|
|
143
|
+
dY_ptr += row_start * dY_row_stride
|
|
144
|
+
dX_ptr += row_start * dX_row_stride
|
|
145
|
+
X_ptr += row_start * X_row_stride
|
|
146
|
+
RSTD_ptr += row_start * RSTD_row_stride
|
|
147
|
+
|
|
148
|
+
for _ in range(row_start, row_end):
|
|
149
|
+
# Load input and gradient
|
|
150
|
+
dY_row = tl.load(dY_ptr + col_offsets, mask=mask, other=0.0).to(tl.float32)
|
|
151
|
+
X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0.0).to(tl.float32)
|
|
152
|
+
|
|
153
|
+
# Load cached rstd values
|
|
154
|
+
rstd_3 = tl.load(RSTD_ptr + 0).to(tl.float32)
|
|
155
|
+
rstd_2 = tl.load(RSTD_ptr + 1).to(tl.float32)
|
|
156
|
+
rstd_1 = tl.load(RSTD_ptr + 2).to(tl.float32)
|
|
157
|
+
|
|
158
|
+
# Compute powers
|
|
159
|
+
X_pow3 = X_row * X_row * X_row
|
|
160
|
+
X_pow2 = X_row * X_row
|
|
161
|
+
X_pow1 = X_row
|
|
162
|
+
|
|
163
|
+
# Accumulate bias gradient: dB = sum(dY)
|
|
164
|
+
dB_acc += tl.sum(dY_row, axis=0)
|
|
165
|
+
|
|
166
|
+
# Compute gradient w.r.t. input using closed-form formula
|
|
167
|
+
# For p=3: ∂L/∂x from w0 * norm(x³)
|
|
168
|
+
S_3 = tl.sum(dY_row * X_pow3, axis=0) # scalar
|
|
169
|
+
grad_x_3 = w0 * (
|
|
170
|
+
3.0 * X_pow2 * rstd_3 * dY_row
|
|
171
|
+
- (3.0 / n_cols) * X_row * X_row * X_row * X_row * X_row * (rstd_3 * rstd_3 * rstd_3) * S_3
|
|
172
|
+
)
|
|
173
|
+
|
|
174
|
+
# For p=2: ∂L/∂x from w1 * norm(x²)
|
|
175
|
+
S_2 = tl.sum(dY_row * X_pow2, axis=0) # scalar
|
|
176
|
+
grad_x_2 = w1 * (
|
|
177
|
+
2.0 * X_row * rstd_2 * dY_row - (2.0 / n_cols) * X_row * X_row * X_row * (rstd_2 * rstd_2 * rstd_2) * S_2
|
|
178
|
+
)
|
|
179
|
+
|
|
180
|
+
# For p=1: ∂L/∂x from w2 * norm(x)
|
|
181
|
+
S_1 = tl.sum(dY_row * X_pow1, axis=0) # scalar
|
|
182
|
+
grad_x_1 = w2 * (1.0 * rstd_1 * dY_row - (1.0 / n_cols) * X_row * (rstd_1 * rstd_1 * rstd_1) * S_1)
|
|
183
|
+
|
|
184
|
+
# Accumulate weight gradients using closed-form: dW_p = rstd_p * S_p
|
|
185
|
+
dW0_acc += rstd_3 * S_3
|
|
186
|
+
dW1_acc += rstd_2 * S_2
|
|
187
|
+
dW2_acc += rstd_1 * S_1
|
|
188
|
+
|
|
189
|
+
# Total gradient
|
|
190
|
+
dX_row = grad_x_3 + grad_x_2 + grad_x_1
|
|
191
|
+
|
|
192
|
+
# Store gradient
|
|
193
|
+
tl.store(dX_ptr + col_offsets, dX_row, mask=mask)
|
|
194
|
+
|
|
195
|
+
# Update pointers
|
|
196
|
+
dY_ptr += dY_row_stride
|
|
197
|
+
dX_ptr += dX_row_stride
|
|
198
|
+
X_ptr += X_row_stride
|
|
199
|
+
RSTD_ptr += RSTD_row_stride
|
|
200
|
+
|
|
201
|
+
# Store accumulated gradients (scalars)
|
|
202
|
+
tl.store(dW_ptr + row_block_id * dW_row_stride + 0, dW0_acc)
|
|
203
|
+
tl.store(dW_ptr + row_block_id * dW_row_stride + 1, dW1_acc)
|
|
204
|
+
tl.store(dW_ptr + row_block_id * dW_row_stride + 2, dW2_acc)
|
|
205
|
+
tl.store(dB_ptr + row_block_id, dB_acc)
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+
def poly_norm_forward(X, W, B, eps=1e-6):
|
|
209
|
+
"""
|
|
210
|
+
PolyNorm Forward Pass
|
|
211
|
+
|
|
212
|
+
Args:
|
|
213
|
+
X: input tensor of shape (*, H) where H is hidden dimension
|
|
214
|
+
W: weight tensor of shape (3,) for [w0, w1, w2]
|
|
215
|
+
B: bias scalar tensor
|
|
216
|
+
eps: epsilon for numerical stability
|
|
217
|
+
|
|
218
|
+
Returns:
|
|
219
|
+
Y: output tensor of same shape as X
|
|
220
|
+
X: reshaped input (for backward)
|
|
221
|
+
RSTD: cached rstd values (for backward)
|
|
222
|
+
BLOCK_SIZE: block size used
|
|
223
|
+
num_warps: number of warps used
|
|
224
|
+
"""
|
|
225
|
+
shape = X.shape
|
|
226
|
+
dim = shape[-1]
|
|
227
|
+
X = X.view(-1, dim)
|
|
228
|
+
n_rows, n_cols = X.shape
|
|
229
|
+
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
|
|
230
|
+
|
|
231
|
+
# RSTD is to cache rstd for each row
|
|
232
|
+
Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
|
|
233
|
+
RSTD = torch.empty((n_rows, 3), dtype=torch.float32, device=X.device)
|
|
234
|
+
|
|
235
|
+
# Check constraints
|
|
236
|
+
assert W.shape[0] == 3, "Weight tensor must have shape (3,)"
|
|
237
|
+
assert B.numel() == 1, "Bias must be a scalar"
|
|
238
|
+
|
|
239
|
+
# XPU-specific optimization
|
|
240
|
+
kernel_args = {}
|
|
241
|
+
if X.device.type == "xpu":
|
|
242
|
+
kernel_args["grf_mode"] = "large"
|
|
243
|
+
|
|
244
|
+
# Launch kernel
|
|
245
|
+
_poly_norm_forward_kernel[(n_rows,)](
|
|
246
|
+
Y,
|
|
247
|
+
Y.stride(0),
|
|
248
|
+
X,
|
|
249
|
+
X.stride(0),
|
|
250
|
+
W,
|
|
251
|
+
B,
|
|
252
|
+
RSTD,
|
|
253
|
+
RSTD.stride(0),
|
|
254
|
+
n_cols,
|
|
255
|
+
eps,
|
|
256
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
257
|
+
num_warps=num_warps,
|
|
258
|
+
**kernel_args,
|
|
259
|
+
)
|
|
260
|
+
|
|
261
|
+
return Y.view(*shape), X, RSTD, BLOCK_SIZE, num_warps
|
|
262
|
+
|
|
263
|
+
|
|
264
|
+
def poly_norm_backward(dY, X, W, RSTD, BLOCK_SIZE, num_warps, in_place):
|
|
265
|
+
"""
|
|
266
|
+
PolyNorm Backward Pass
|
|
267
|
+
|
|
268
|
+
Args:
|
|
269
|
+
dY: gradient of output
|
|
270
|
+
X: input tensor (already reshaped to 2D)
|
|
271
|
+
W: weight tensor
|
|
272
|
+
RSTD: cached rstd values from forward
|
|
273
|
+
BLOCK_SIZE: block size from forward
|
|
274
|
+
num_warps: number of warps from forward
|
|
275
|
+
in_place: whether to in-place modify dY to store dX (saves memory)
|
|
276
|
+
|
|
277
|
+
Returns:
|
|
278
|
+
dX: gradient w.r.t. input
|
|
279
|
+
dW: gradient w.r.t. weight
|
|
280
|
+
dB: gradient w.r.t. bias
|
|
281
|
+
"""
|
|
282
|
+
shape = dY.shape
|
|
283
|
+
dim = shape[-1]
|
|
284
|
+
dY = dY.view(-1, dim)
|
|
285
|
+
n_rows, n_cols = dY.shape
|
|
286
|
+
|
|
287
|
+
# Get number of SMs for parallelization
|
|
288
|
+
import math
|
|
289
|
+
|
|
290
|
+
sm_count = 1
|
|
291
|
+
if X.device.type == "cuda":
|
|
292
|
+
sm_count = torch.cuda.get_device_properties(X.device).multi_processor_count
|
|
293
|
+
elif X.device.type == "xpu":
|
|
294
|
+
sm_count = torch.xpu.get_device_properties(X.device).gpu_eu_count
|
|
295
|
+
elif X.device.type == "npu":
|
|
296
|
+
sm_count = get_npu_multi_processor_count()
|
|
297
|
+
|
|
298
|
+
# Allocate or reuse gradients
|
|
299
|
+
if in_place is True:
|
|
300
|
+
dX = dY
|
|
301
|
+
else:
|
|
302
|
+
dX = torch.zeros_like(dY)
|
|
303
|
+
|
|
304
|
+
_dW = torch.empty((sm_count, 3), dtype=torch.float32, device=W.device)
|
|
305
|
+
_dB = torch.empty((sm_count,), dtype=torch.float32, device=W.device)
|
|
306
|
+
|
|
307
|
+
rows_per_program = math.ceil(n_rows / sm_count)
|
|
308
|
+
grid = (sm_count,)
|
|
309
|
+
|
|
310
|
+
# XPU-specific optimization
|
|
311
|
+
kernel_args = {}
|
|
312
|
+
if X.device.type == "xpu":
|
|
313
|
+
kernel_args["grf_mode"] = "large"
|
|
314
|
+
|
|
315
|
+
# Launch backward kernel
|
|
316
|
+
_poly_norm_backward_kernel[grid](
|
|
317
|
+
dY,
|
|
318
|
+
dY.stride(0),
|
|
319
|
+
dX,
|
|
320
|
+
dX.stride(0),
|
|
321
|
+
X,
|
|
322
|
+
X.stride(0),
|
|
323
|
+
W,
|
|
324
|
+
RSTD,
|
|
325
|
+
RSTD.stride(0),
|
|
326
|
+
_dW,
|
|
327
|
+
_dW.stride(0),
|
|
328
|
+
_dB,
|
|
329
|
+
n_rows,
|
|
330
|
+
n_cols,
|
|
331
|
+
rows_per_program,
|
|
332
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
333
|
+
num_warps=num_warps,
|
|
334
|
+
**kernel_args,
|
|
335
|
+
)
|
|
336
|
+
|
|
337
|
+
# Reduce gradients across SMs
|
|
338
|
+
dX = dX.view(*shape)
|
|
339
|
+
dW = _dW.sum(dim=0).to(W.dtype)
|
|
340
|
+
dB = _dB.sum().to(W.dtype)
|
|
341
|
+
|
|
342
|
+
return dX, dW, dB
|
|
343
|
+
|
|
344
|
+
|
|
345
|
+
class LigerPolyNormFunction(torch.autograd.Function):
|
|
346
|
+
"""
|
|
347
|
+
PolyNorm Function with forward and backward pass
|
|
348
|
+
|
|
349
|
+
PolyNorm formula:
|
|
350
|
+
y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
|
|
351
|
+
where norm(u) = u / sqrt(mean(u²) + ε)
|
|
352
|
+
|
|
353
|
+
Backward uses closed-form gradient:
|
|
354
|
+
∂L/∂x_i = Σ_p w_p * [p*x_i^(p-1) * grad_i/D_p - (p/d)*x_i^(2p-1) * S_p/(D_p³)]
|
|
355
|
+
"""
|
|
356
|
+
|
|
357
|
+
@staticmethod
|
|
358
|
+
@ensure_contiguous
|
|
359
|
+
def forward(ctx, X, W, B, eps=1e-6, in_place=True):
|
|
360
|
+
"""
|
|
361
|
+
Args:
|
|
362
|
+
X: input tensor of shape (B, T, H) or (BxT, H)
|
|
363
|
+
W: weight tensor of shape (3,) for [w0, w1, w2]
|
|
364
|
+
B: bias scalar
|
|
365
|
+
eps: epsilon for numerical stability
|
|
366
|
+
in_place: whether to in-place modify grad_output in backward (saves memory)
|
|
367
|
+
|
|
368
|
+
Returns:
|
|
369
|
+
Y: output tensor of same shape as X
|
|
370
|
+
"""
|
|
371
|
+
Y, X, RSTD, BLOCK_SIZE, num_warps = poly_norm_forward(X, W, B, eps)
|
|
372
|
+
ctx.BLOCK_SIZE = BLOCK_SIZE
|
|
373
|
+
ctx.num_warps = num_warps
|
|
374
|
+
ctx.in_place = in_place
|
|
375
|
+
ctx.save_for_backward(X, W, RSTD)
|
|
376
|
+
return Y
|
|
377
|
+
|
|
378
|
+
@staticmethod
|
|
379
|
+
@ensure_contiguous
|
|
380
|
+
def backward(ctx, grad_output):
|
|
381
|
+
"""
|
|
382
|
+
Args:
|
|
383
|
+
grad_output: gradient of output
|
|
384
|
+
|
|
385
|
+
Returns:
|
|
386
|
+
dX, dW, dB: gradients w.r.t. X, W, B
|
|
387
|
+
"""
|
|
388
|
+
X, W, RSTD = ctx.saved_tensors
|
|
389
|
+
dX, dW, dB = poly_norm_backward(grad_output, X, W, RSTD, ctx.BLOCK_SIZE, ctx.num_warps, ctx.in_place)
|
|
390
|
+
return dX, dW, dB, None, None
|
liger_kernel/ops/rms_norm.py
CHANGED
|
@@ -21,8 +21,10 @@ from liger_kernel.ops.utils import calculate_settings
|
|
|
21
21
|
from liger_kernel.ops.utils import compare_version
|
|
22
22
|
from liger_kernel.ops.utils import ensure_contiguous
|
|
23
23
|
from liger_kernel.ops.utils import torch_to_triton_dtype
|
|
24
|
+
from liger_kernel.utils import get_npu_multi_processor_count
|
|
25
|
+
from liger_kernel.utils import is_npu_available
|
|
24
26
|
|
|
25
|
-
if compare_version("triton", operator.ge, "3.0.0"):
|
|
27
|
+
if compare_version("triton", operator.ge, "3.0.0") and not is_npu_available():
|
|
26
28
|
try:
|
|
27
29
|
# typical import path with dispatch available
|
|
28
30
|
from triton.language.extra.libdevice import rsqrt
|
|
@@ -349,7 +351,8 @@ def _block_rms_norm_backward_kernel(
|
|
|
349
351
|
|
|
350
352
|
# calculate the gradient of W
|
|
351
353
|
if casting_mode == _CASTING_MODE_LLAMA:
|
|
352
|
-
|
|
354
|
+
# TODO(tcc): use tl.sum(..., dtype=tl.float32) once we upgrade to triton>=3.3.0
|
|
355
|
+
dW_row += tl.sum((dY_row * (X_row * rstd_row[:, None]).to(X_dtype)).to(tl.float32), 0)
|
|
353
356
|
else:
|
|
354
357
|
# here X_row is already in fp32 (see previous if block)
|
|
355
358
|
dW_row += tl.sum(dY_row * (X_row * rstd_row[:, None]), 0)
|
|
@@ -449,6 +452,8 @@ def rms_norm_backward(dY, X, W, RSTD, offset, casting_mode, BLOCK_SIZE, num_warp
|
|
|
449
452
|
sm_count = torch.cuda.get_device_properties(X.device).multi_processor_count
|
|
450
453
|
elif X.device.type == "xpu":
|
|
451
454
|
sm_count = torch.xpu.get_device_properties(X.device).gpu_eu_count
|
|
455
|
+
elif X.device.type == "npu":
|
|
456
|
+
sm_count = get_npu_multi_processor_count()
|
|
452
457
|
|
|
453
458
|
# fp32 for numerical stability especially.
|
|
454
459
|
_dW = torch.empty((sm_count, n_cols), dtype=torch.float32, device=W.device)
|
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
import math
|
|
2
|
+
|
|
3
|
+
from typing import Callable
|
|
4
|
+
from typing import List
|
|
5
|
+
from typing import Optional
|
|
6
|
+
|
|
7
|
+
import torch
|
|
8
|
+
|
|
9
|
+
from liger_kernel.ops.utils import ensure_contiguous
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class LigerTiledMLPFunction(torch.autograd.Function):
|
|
13
|
+
"""
|
|
14
|
+
Based on DeepSpeed's TiledMLP:
|
|
15
|
+
https://github.com/deepspeedai/DeepSpeed/blob/v0.18.2/deepspeed/runtime/sequence_parallel/ulysses_sp.py#L838
|
|
16
|
+
|
|
17
|
+
Perform a tiled MLP computation to massively reduce memory usage needed to compute MLP
|
|
18
|
+
when using very long sequence lengths.
|
|
19
|
+
|
|
20
|
+
This module re-computes `forward` in the `backward`. So the `forward` occurs twice each iteration.
|
|
21
|
+
And if you're using activation checkpointing it then occurs thrice.
|
|
22
|
+
|
|
23
|
+
Args:
|
|
24
|
+
fn: the function to call on sharded inputs (e.g., mlp.forward)
|
|
25
|
+
mlp_module: the MLP nn.Module object
|
|
26
|
+
x: the input to MLP.forward (hidden_states)
|
|
27
|
+
shards: how many shards to use
|
|
28
|
+
compute_params: a list of weights engaged in the compute
|
|
29
|
+
|
|
30
|
+
Returns:
|
|
31
|
+
the computed hidden_states
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
@staticmethod
|
|
35
|
+
@ensure_contiguous
|
|
36
|
+
def forward(
|
|
37
|
+
ctx,
|
|
38
|
+
fn: Callable,
|
|
39
|
+
mlp_module: torch.nn.Module,
|
|
40
|
+
x: torch.Tensor,
|
|
41
|
+
shards: int,
|
|
42
|
+
compute_params: Optional[List[torch.nn.Parameter]] = None,
|
|
43
|
+
) -> torch.Tensor:
|
|
44
|
+
ctx.fn = fn
|
|
45
|
+
ctx.mlp_module = mlp_module
|
|
46
|
+
ctx.shards = shards
|
|
47
|
+
ctx.save_for_backward(x)
|
|
48
|
+
|
|
49
|
+
# x.shape could be [bs, seqlen, hidden_size] or [seqlen, hidden_size] (moe experts)
|
|
50
|
+
x_shards = list(torch.chunk(x, chunks=shards, dim=-2))
|
|
51
|
+
with torch.no_grad():
|
|
52
|
+
output_shards = [fn(mlp_module, x_shard) for x_shard in x_shards]
|
|
53
|
+
output_unsharded = torch.cat(output_shards, dim=-2)
|
|
54
|
+
|
|
55
|
+
return output_unsharded
|
|
56
|
+
|
|
57
|
+
@staticmethod
|
|
58
|
+
@ensure_contiguous
|
|
59
|
+
def backward(ctx, *grads) -> tuple:
|
|
60
|
+
fn = ctx.fn
|
|
61
|
+
(x,) = ctx.saved_tensors
|
|
62
|
+
mlp_module = ctx.mlp_module
|
|
63
|
+
shards = ctx.shards
|
|
64
|
+
|
|
65
|
+
x_requires_grad = x.requires_grad
|
|
66
|
+
x = x.detach()
|
|
67
|
+
# detach() unsets x.requires_grad, so restore it
|
|
68
|
+
x.requires_grad_(x_requires_grad)
|
|
69
|
+
|
|
70
|
+
# x.shape could be [bs, seqlen, hidden_size] or [seqlen, hidden_size] (moe experts)
|
|
71
|
+
hidden_size = x.shape[-1]
|
|
72
|
+
x_shape_orig = x.shape
|
|
73
|
+
|
|
74
|
+
# flatten bs+seqlen to avoid having stride issues when narrowing into seqlen w/ bs>1
|
|
75
|
+
x = x.view(-1, hidden_size)
|
|
76
|
+
incoming_grad = grads[0].view(-1, hidden_size)
|
|
77
|
+
x_grad = torch.zeros_like(x)
|
|
78
|
+
|
|
79
|
+
x_shards = list(torch.chunk(x, chunks=shards, dim=0))
|
|
80
|
+
|
|
81
|
+
for i, x_shard in enumerate(x_shards):
|
|
82
|
+
x_shard.requires_grad_(x_requires_grad)
|
|
83
|
+
|
|
84
|
+
# if seqlen is not exactly divisible by shards the last step will be shorter than shard_step
|
|
85
|
+
shard_step = x_shards[i].shape[0]
|
|
86
|
+
shard_offset = i * x_shards[0].shape[0]
|
|
87
|
+
|
|
88
|
+
x_shard.grad = x_grad.narrow(0, shard_offset, shard_step).view_as(x_shard)
|
|
89
|
+
incoming_grad_shard = incoming_grad.narrow(0, shard_offset, shard_step).view_as(x_shard)
|
|
90
|
+
|
|
91
|
+
with torch.enable_grad():
|
|
92
|
+
output = fn(mlp_module, x_shard)
|
|
93
|
+
torch.autograd.backward(output, incoming_grad_shard)
|
|
94
|
+
|
|
95
|
+
# unflatten
|
|
96
|
+
x_grad = x_grad.view(x_shape_orig)
|
|
97
|
+
|
|
98
|
+
return (None, None, x_grad, None, None)
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def apply_tiled_mlp(
|
|
102
|
+
fn: Callable,
|
|
103
|
+
mlp_module: torch.nn.Module,
|
|
104
|
+
x: torch.Tensor,
|
|
105
|
+
num_shards: Optional[int] = None,
|
|
106
|
+
compute_params: Optional[List[torch.nn.Parameter]] = None,
|
|
107
|
+
) -> torch.Tensor:
|
|
108
|
+
"""
|
|
109
|
+
Apply tiled MLP computation for memory efficiency.
|
|
110
|
+
|
|
111
|
+
Args:
|
|
112
|
+
fn: the function to call on sharded inputs (e.g., lambda module, x: module(x))
|
|
113
|
+
mlp_module: the MLP nn.Module object
|
|
114
|
+
x: the input tensor with shape [bs, seqlen, hidden_size] or [seqlen, hidden_size]
|
|
115
|
+
num_shards: number of shards to use. If None, automatically calculated as ceil(seqlen / hidden_size)
|
|
116
|
+
compute_params: list of parameters for DeepSpeed ZeRO optimization
|
|
117
|
+
|
|
118
|
+
Returns:
|
|
119
|
+
output tensor with the same shape as input
|
|
120
|
+
"""
|
|
121
|
+
if num_shards is None:
|
|
122
|
+
# x.shape could be [bs, seqlen, hidden_size] or [seqlen, hidden_size]
|
|
123
|
+
hidden_size = x.shape[-1]
|
|
124
|
+
seqlen = x.shape[-2]
|
|
125
|
+
num_shards = math.ceil(seqlen / hidden_size)
|
|
126
|
+
|
|
127
|
+
# Ensure num_shards is at least 1
|
|
128
|
+
num_shards = max(1, num_shards)
|
|
129
|
+
|
|
130
|
+
return LigerTiledMLPFunction.apply(
|
|
131
|
+
fn,
|
|
132
|
+
mlp_module,
|
|
133
|
+
x,
|
|
134
|
+
num_shards,
|
|
135
|
+
compute_params,
|
|
136
|
+
)
|
liger_kernel/ops/utils.py
CHANGED
|
@@ -78,6 +78,8 @@ def get_amp_custom_fwd_bwd() -> Callable:
|
|
|
78
78
|
functools.partial(torch.amp.custom_fwd, device_type=device),
|
|
79
79
|
functools.partial(torch.amp.custom_bwd, device_type=device),
|
|
80
80
|
)
|
|
81
|
+
if hasattr(torch, "npu") and getattr(torch.npu, "amp", None) is not None:
|
|
82
|
+
return torch.npu.amp.custom_fwd, torch.npu.amp.custom_bwd
|
|
81
83
|
return torch.cuda.amp.custom_fwd, torch.cuda.amp.custom_bwd
|
|
82
84
|
|
|
83
85
|
|
|
@@ -15,6 +15,7 @@ from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
|
|
|
15
15
|
from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
|
|
16
16
|
from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
|
|
17
17
|
from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
|
|
18
|
+
from liger_kernel.transformers.poly_norm import LigerPolyNorm # noqa: F401
|
|
18
19
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
|
|
19
20
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
|
|
20
21
|
from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
|
|
@@ -23,6 +24,8 @@ from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F4
|
|
|
23
24
|
from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
|
|
24
25
|
from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
|
|
25
26
|
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
|
|
27
|
+
from liger_kernel.transformers.tiled_mlp import LigerTiledGEGLUMLP # noqa: F401
|
|
28
|
+
from liger_kernel.transformers.tiled_mlp import LigerTiledSwiGLUMLP # noqa: F401
|
|
26
29
|
from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
|
|
27
30
|
|
|
28
31
|
# Static-only imports for IDEs and type checkers
|
|
@@ -39,6 +42,8 @@ if TYPE_CHECKING:
|
|
|
39
42
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
|
|
40
43
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
|
|
41
44
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
|
45
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_dense # noqa: F401
|
|
46
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_moe # noqa: F401
|
|
42
47
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
|
|
43
48
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
|
44
49
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
|
|
@@ -47,6 +52,7 @@ if TYPE_CHECKING:
|
|
|
47
52
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
|
|
48
53
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
|
|
49
54
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
|
|
55
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo3 # noqa: F401
|
|
50
56
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
|
|
51
57
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
|
|
52
58
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
|
|
@@ -54,7 +60,11 @@ if TYPE_CHECKING:
|
|
|
54
60
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
|
55
61
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
|
|
56
62
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
|
|
63
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_next # noqa: F401
|
|
64
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl # noqa: F401
|
|
65
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl_moe # noqa: F401
|
|
57
66
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
|
|
67
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smolvlm # noqa: F401
|
|
58
68
|
|
|
59
69
|
|
|
60
70
|
# Check if 'transformers' is installed
|
|
@@ -109,6 +119,7 @@ def __getattr__(name: str):
|
|
|
109
119
|
"apply_liger_kernel_to_mixtral",
|
|
110
120
|
"apply_liger_kernel_to_mllama",
|
|
111
121
|
"apply_liger_kernel_to_olmo2",
|
|
122
|
+
"apply_liger_kernel_to_olmo3",
|
|
112
123
|
"apply_liger_kernel_to_paligemma",
|
|
113
124
|
"apply_liger_kernel_to_phi3",
|
|
114
125
|
"apply_liger_kernel_to_qwen2",
|
|
@@ -116,7 +127,13 @@ def __getattr__(name: str):
|
|
|
116
127
|
"apply_liger_kernel_to_qwen2_vl",
|
|
117
128
|
"apply_liger_kernel_to_qwen3",
|
|
118
129
|
"apply_liger_kernel_to_qwen3_moe",
|
|
130
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
131
|
+
"apply_liger_kernel_to_qwen3_vl",
|
|
132
|
+
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
119
133
|
"apply_liger_kernel_to_smollm3",
|
|
134
|
+
"apply_liger_kernel_to_smolvlm",
|
|
135
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
136
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
120
137
|
}
|
|
121
138
|
|
|
122
139
|
if name in monkey_patch_symbols:
|
|
@@ -137,6 +154,7 @@ __all__ = [
|
|
|
137
154
|
"LigerJSD",
|
|
138
155
|
"LigerLayerNorm",
|
|
139
156
|
"LigerFusedAddRMSNorm",
|
|
157
|
+
"LigerPolyNorm",
|
|
140
158
|
"LigerRMSNorm",
|
|
141
159
|
"liger_rotary_pos_emb",
|
|
142
160
|
"liger_llama4_text_rotary_pos_emb",
|
|
@@ -145,6 +163,8 @@ __all__ = [
|
|
|
145
163
|
"LigerPhi3SwiGLUMLP",
|
|
146
164
|
"LigerQwen3MoeSwiGLUMLP",
|
|
147
165
|
"LigerSwiGLUMLP",
|
|
166
|
+
"LigerTiledGEGLUMLP",
|
|
167
|
+
"LigerTiledSwiGLUMLP",
|
|
148
168
|
"LigerTVDLoss",
|
|
149
169
|
"LigerKLDIVLoss",
|
|
150
170
|
"LigerMultiTokenAttention",
|
|
@@ -176,6 +196,7 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
176
196
|
"apply_liger_kernel_to_mixtral",
|
|
177
197
|
"apply_liger_kernel_to_mllama",
|
|
178
198
|
"apply_liger_kernel_to_olmo2",
|
|
199
|
+
"apply_liger_kernel_to_olmo3",
|
|
179
200
|
"apply_liger_kernel_to_paligemma",
|
|
180
201
|
"apply_liger_kernel_to_phi3",
|
|
181
202
|
"apply_liger_kernel_to_qwen2",
|
|
@@ -183,6 +204,12 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
183
204
|
"apply_liger_kernel_to_qwen2_vl",
|
|
184
205
|
"apply_liger_kernel_to_qwen3",
|
|
185
206
|
"apply_liger_kernel_to_qwen3_moe",
|
|
207
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
208
|
+
"apply_liger_kernel_to_qwen3_vl",
|
|
209
|
+
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
186
210
|
"apply_liger_kernel_to_smollm3",
|
|
211
|
+
"apply_liger_kernel_to_smolvlm",
|
|
212
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
213
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
187
214
|
]
|
|
188
215
|
)
|