legend-dataflow-scripts 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- legend_dataflow_scripts-0.1.0.dist-info/METADATA +57 -0
- legend_dataflow_scripts-0.1.0.dist-info/RECORD +36 -0
- legend_dataflow_scripts-0.1.0.dist-info/WHEEL +5 -0
- legend_dataflow_scripts-0.1.0.dist-info/entry_points.txt +18 -0
- legend_dataflow_scripts-0.1.0.dist-info/top_level.txt +1 -0
- legenddataflowscripts/__init__.py +17 -0
- legenddataflowscripts/_version.py +21 -0
- legenddataflowscripts/par/__init__.py +0 -0
- legenddataflowscripts/par/geds/__init__.py +0 -0
- legenddataflowscripts/par/geds/dsp/__init__.py +0 -0
- legenddataflowscripts/par/geds/dsp/dplms.py +145 -0
- legenddataflowscripts/par/geds/dsp/eopt.py +398 -0
- legenddataflowscripts/par/geds/dsp/evtsel.py +400 -0
- legenddataflowscripts/par/geds/dsp/nopt.py +120 -0
- legenddataflowscripts/par/geds/dsp/pz.py +217 -0
- legenddataflowscripts/par/geds/dsp/svm.py +28 -0
- legenddataflowscripts/par/geds/dsp/svm_build.py +69 -0
- legenddataflowscripts/par/geds/hit/__init__.py +0 -0
- legenddataflowscripts/par/geds/hit/aoe.py +245 -0
- legenddataflowscripts/par/geds/hit/ecal.py +778 -0
- legenddataflowscripts/par/geds/hit/lq.py +213 -0
- legenddataflowscripts/par/geds/hit/qc.py +326 -0
- legenddataflowscripts/tier/__init__.py +0 -0
- legenddataflowscripts/tier/dsp.py +263 -0
- legenddataflowscripts/tier/hit.py +148 -0
- legenddataflowscripts/utils/__init__.py +15 -0
- legenddataflowscripts/utils/alias_table.py +28 -0
- legenddataflowscripts/utils/cfgtools.py +14 -0
- legenddataflowscripts/utils/convert_np.py +31 -0
- legenddataflowscripts/utils/log.py +77 -0
- legenddataflowscripts/utils/pulser_removal.py +16 -0
- legenddataflowscripts/workflow/__init__.py +20 -0
- legenddataflowscripts/workflow/execenv.py +327 -0
- legenddataflowscripts/workflow/filedb.py +107 -0
- legenddataflowscripts/workflow/pre_compile_catalog.py +24 -0
- legenddataflowscripts/workflow/utils.py +113 -0
|
@@ -0,0 +1,778 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import argparse
|
|
4
|
+
import copy
|
|
5
|
+
import pickle as pkl
|
|
6
|
+
import warnings
|
|
7
|
+
from datetime import datetime
|
|
8
|
+
from pathlib import Path
|
|
9
|
+
|
|
10
|
+
import matplotlib as mpl
|
|
11
|
+
import matplotlib.pyplot as plt
|
|
12
|
+
import numpy as np
|
|
13
|
+
import pygama.math.distributions as pgf
|
|
14
|
+
import pygama.math.histogram as pgh
|
|
15
|
+
from dbetto import TextDB
|
|
16
|
+
from dbetto.catalog import Props
|
|
17
|
+
from legendmeta import LegendMetadata
|
|
18
|
+
from lgdo import lh5
|
|
19
|
+
from matplotlib.colors import LogNorm
|
|
20
|
+
from pygama.math.distributions import nb_poly
|
|
21
|
+
from pygama.pargen.data_cleaning import get_mode_stdev
|
|
22
|
+
from pygama.pargen.energy_cal import FWHMLinear, FWHMQuadratic, HPGeCalibration
|
|
23
|
+
from pygama.pargen.utils import load_data
|
|
24
|
+
from scipy.stats import binned_statistic
|
|
25
|
+
|
|
26
|
+
from ....utils import (
|
|
27
|
+
build_log,
|
|
28
|
+
convert_dict_np_to_float,
|
|
29
|
+
get_pulser_mask,
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
mpl.use("agg")
|
|
33
|
+
sto = lh5.LH5Store()
|
|
34
|
+
|
|
35
|
+
warnings.filterwarnings(action="ignore", category=RuntimeWarning)
|
|
36
|
+
warnings.filterwarnings(action="ignore", category=np.exceptions.RankWarning)
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
def plot_2614_timemap(
|
|
40
|
+
data,
|
|
41
|
+
cal_energy_param,
|
|
42
|
+
selection_string,
|
|
43
|
+
figsize=(8, 6),
|
|
44
|
+
fontsize=12,
|
|
45
|
+
erange=(2580, 2630),
|
|
46
|
+
dx=1,
|
|
47
|
+
time_dx=180,
|
|
48
|
+
):
|
|
49
|
+
plt.rcParams["figure.figsize"] = figsize
|
|
50
|
+
plt.rcParams["font.size"] = fontsize
|
|
51
|
+
|
|
52
|
+
selection = data.query(
|
|
53
|
+
f"{cal_energy_param}>2560&{cal_energy_param}<2660&{selection_string}"
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
fig = plt.figure()
|
|
57
|
+
if len(selection) == 0:
|
|
58
|
+
pass
|
|
59
|
+
else:
|
|
60
|
+
time_bins = np.arange(
|
|
61
|
+
(np.amin(data["timestamp"]) // time_dx) * time_dx,
|
|
62
|
+
((np.amax(data["timestamp"]) // time_dx) + 2) * time_dx,
|
|
63
|
+
time_dx,
|
|
64
|
+
)
|
|
65
|
+
|
|
66
|
+
plt.hist2d(
|
|
67
|
+
selection["timestamp"],
|
|
68
|
+
selection[cal_energy_param],
|
|
69
|
+
bins=[time_bins, np.arange(erange[0], erange[1] + dx, dx)],
|
|
70
|
+
norm=LogNorm(),
|
|
71
|
+
)
|
|
72
|
+
|
|
73
|
+
ticks, labels = plt.xticks()
|
|
74
|
+
plt.xlabel(
|
|
75
|
+
f"Time starting : {datetime.utcfromtimestamp(ticks[0]).strftime('%d/%m/%y %H:%M')}"
|
|
76
|
+
)
|
|
77
|
+
plt.ylabel("Energy(keV)")
|
|
78
|
+
plt.ylim([erange[0], erange[1]])
|
|
79
|
+
|
|
80
|
+
plt.xticks(
|
|
81
|
+
ticks,
|
|
82
|
+
[datetime.utcfromtimestamp(tick).strftime("%H:%M") for tick in ticks],
|
|
83
|
+
)
|
|
84
|
+
plt.close()
|
|
85
|
+
return fig
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def plot_pulser_timemap(
|
|
89
|
+
data,
|
|
90
|
+
cal_energy_param,
|
|
91
|
+
selection_string, # noqa: ARG001
|
|
92
|
+
pulser_field="is_pulser",
|
|
93
|
+
figsize=(8, 6),
|
|
94
|
+
fontsize=12,
|
|
95
|
+
dx=0.2,
|
|
96
|
+
time_dx=180,
|
|
97
|
+
n_spread=3,
|
|
98
|
+
):
|
|
99
|
+
plt.rcParams["figure.figsize"] = figsize
|
|
100
|
+
plt.rcParams["font.size"] = fontsize
|
|
101
|
+
|
|
102
|
+
time_bins = np.arange(
|
|
103
|
+
(np.amin(data["timestamp"]) // time_dx) * time_dx,
|
|
104
|
+
((np.amax(data["timestamp"]) // time_dx) + 2) * time_dx,
|
|
105
|
+
time_dx,
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
selection = data.query(pulser_field)
|
|
109
|
+
fig = plt.figure()
|
|
110
|
+
if len(selection) == 0:
|
|
111
|
+
pass
|
|
112
|
+
|
|
113
|
+
else:
|
|
114
|
+
mean = np.nanpercentile(selection[cal_energy_param], 50)
|
|
115
|
+
spread = mean - np.nanpercentile(selection[cal_energy_param], 10)
|
|
116
|
+
|
|
117
|
+
plt.hist2d(
|
|
118
|
+
selection["timestamp"],
|
|
119
|
+
selection[cal_energy_param],
|
|
120
|
+
bins=[
|
|
121
|
+
time_bins,
|
|
122
|
+
np.arange(mean - n_spread * spread, mean + n_spread * spread + dx, dx),
|
|
123
|
+
],
|
|
124
|
+
norm=LogNorm(),
|
|
125
|
+
)
|
|
126
|
+
plt.ylim([mean - n_spread * spread, mean + n_spread * spread])
|
|
127
|
+
ticks, labels = plt.xticks()
|
|
128
|
+
plt.xlabel(
|
|
129
|
+
f"Time starting : {datetime.utcfromtimestamp(ticks[0]).strftime('%d/%m/%y %H:%M')}"
|
|
130
|
+
)
|
|
131
|
+
plt.ylabel("Energy(keV)")
|
|
132
|
+
|
|
133
|
+
plt.xticks(
|
|
134
|
+
ticks,
|
|
135
|
+
[datetime.utcfromtimestamp(tick).strftime("%H:%M") for tick in ticks],
|
|
136
|
+
)
|
|
137
|
+
plt.close()
|
|
138
|
+
return fig
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
def get_median(x):
|
|
142
|
+
if len(x[~np.isnan(x)]) >= 10:
|
|
143
|
+
return np.nan
|
|
144
|
+
return np.nanpercentile(x, 50)
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
def get_err(x):
|
|
148
|
+
if len(x[~np.isnan(x)]) >= 10:
|
|
149
|
+
return np.nan
|
|
150
|
+
return np.nanvar(x) / np.sqrt(len(x))
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
def bin_pulser_stability(
|
|
154
|
+
data,
|
|
155
|
+
cal_energy_param,
|
|
156
|
+
selection_string, # noqa: ARG001
|
|
157
|
+
pulser_field="is_pulser",
|
|
158
|
+
time_slice=180,
|
|
159
|
+
):
|
|
160
|
+
selection = data.query(pulser_field)
|
|
161
|
+
|
|
162
|
+
utime_array = data["timestamp"]
|
|
163
|
+
select_energies = selection[cal_energy_param].to_numpy()
|
|
164
|
+
|
|
165
|
+
time_bins = np.arange(
|
|
166
|
+
(np.amin(utime_array) // time_slice) * time_slice,
|
|
167
|
+
((np.amax(utime_array) // time_slice) + 2) * time_slice,
|
|
168
|
+
time_slice,
|
|
169
|
+
)
|
|
170
|
+
# bin time values
|
|
171
|
+
times_average = (time_bins[:-1] + time_bins[1:]) / 2
|
|
172
|
+
|
|
173
|
+
if len(selection) == 0:
|
|
174
|
+
return {
|
|
175
|
+
"time": times_average,
|
|
176
|
+
"energy": np.full_like(times_average, np.nan),
|
|
177
|
+
"spread": np.full_like(times_average, np.nan),
|
|
178
|
+
}
|
|
179
|
+
|
|
180
|
+
par_average, _, _ = binned_statistic(
|
|
181
|
+
selection["timestamp"], select_energies, statistic=get_median, bins=time_bins
|
|
182
|
+
)
|
|
183
|
+
par_error, _, _ = binned_statistic(
|
|
184
|
+
selection["timestamp"], select_energies, statistic=get_err, bins=time_bins
|
|
185
|
+
)
|
|
186
|
+
|
|
187
|
+
return {"time": times_average, "energy": par_average, "spread": par_error}
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+
def bin_stability(
|
|
191
|
+
data,
|
|
192
|
+
cal_energy_param,
|
|
193
|
+
selection_string,
|
|
194
|
+
time_slice=180,
|
|
195
|
+
energy_range=(2585, 2660),
|
|
196
|
+
):
|
|
197
|
+
selection = data.query(
|
|
198
|
+
f"{cal_energy_param}>{energy_range[0]}&{cal_energy_param}<{energy_range[1]}&{selection_string}"
|
|
199
|
+
)
|
|
200
|
+
|
|
201
|
+
utime_array = data["timestamp"]
|
|
202
|
+
select_energies = selection[cal_energy_param].to_numpy()
|
|
203
|
+
|
|
204
|
+
time_bins = np.arange(
|
|
205
|
+
(np.amin(utime_array) // time_slice) * time_slice,
|
|
206
|
+
((np.amax(utime_array) // time_slice) + 2) * time_slice,
|
|
207
|
+
time_slice,
|
|
208
|
+
)
|
|
209
|
+
# bin time values
|
|
210
|
+
times_average = (time_bins[:-1] + time_bins[1:]) / 2
|
|
211
|
+
|
|
212
|
+
if len(selection) == 0:
|
|
213
|
+
return {
|
|
214
|
+
"time": times_average,
|
|
215
|
+
"energy": np.full_like(times_average, np.nan),
|
|
216
|
+
"spread": np.full_like(times_average, np.nan),
|
|
217
|
+
}
|
|
218
|
+
|
|
219
|
+
par_average, _, _ = binned_statistic(
|
|
220
|
+
selection["timestamp"], select_energies, statistic=get_median, bins=time_bins
|
|
221
|
+
)
|
|
222
|
+
par_error, _, _ = binned_statistic(
|
|
223
|
+
selection["timestamp"], select_energies, statistic=get_err, bins=time_bins
|
|
224
|
+
)
|
|
225
|
+
|
|
226
|
+
return {"time": times_average, "energy": par_average, "spread": par_error}
|
|
227
|
+
|
|
228
|
+
|
|
229
|
+
def bin_spectrum(
|
|
230
|
+
data,
|
|
231
|
+
cal_energy_param,
|
|
232
|
+
selection_string,
|
|
233
|
+
cut_field="is_valid_cal",
|
|
234
|
+
pulser_field="is_pulser",
|
|
235
|
+
erange=(0, 3000),
|
|
236
|
+
dx=0.5,
|
|
237
|
+
):
|
|
238
|
+
bins = np.arange(erange[0], erange[1] + dx, dx)
|
|
239
|
+
return {
|
|
240
|
+
"bins": pgh.get_bin_centers(bins),
|
|
241
|
+
"counts": np.histogram(data.query(selection_string)[cal_energy_param], bins)[0],
|
|
242
|
+
"cut_counts": np.histogram(
|
|
243
|
+
data.query(f"(~{cut_field})&(~{pulser_field})")[cal_energy_param],
|
|
244
|
+
bins,
|
|
245
|
+
)[0],
|
|
246
|
+
"pulser_counts": np.histogram(
|
|
247
|
+
data.query(pulser_field)[cal_energy_param],
|
|
248
|
+
bins,
|
|
249
|
+
)[0],
|
|
250
|
+
}
|
|
251
|
+
|
|
252
|
+
|
|
253
|
+
def bin_survival_fraction(
|
|
254
|
+
data,
|
|
255
|
+
cal_energy_param,
|
|
256
|
+
selection_string,
|
|
257
|
+
cut_field="is_valid_cal",
|
|
258
|
+
pulser_field="is_pulser",
|
|
259
|
+
erange=(0, 3000),
|
|
260
|
+
dx=6,
|
|
261
|
+
):
|
|
262
|
+
counts_pass, bins_pass, _ = pgh.get_hist(
|
|
263
|
+
data.query(selection_string)[cal_energy_param],
|
|
264
|
+
bins=np.arange(erange[0], erange[1] + dx, dx),
|
|
265
|
+
)
|
|
266
|
+
counts_fail, bins_fail, _ = pgh.get_hist(
|
|
267
|
+
data.query(f"(~{cut_field})&(~{pulser_field})")[cal_energy_param],
|
|
268
|
+
bins=np.arange(erange[0], erange[1] + dx, dx),
|
|
269
|
+
)
|
|
270
|
+
sf = 100 * (counts_pass + 10 ** (-6)) / (counts_pass + counts_fail + 10 ** (-6))
|
|
271
|
+
return {"bins": pgh.get_bin_centers(bins_pass), "sf": sf}
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
def plot_baseline_timemap(
|
|
275
|
+
data,
|
|
276
|
+
figsize=(8, 6),
|
|
277
|
+
fontsize=12,
|
|
278
|
+
parameter="bl_mean",
|
|
279
|
+
dx=1,
|
|
280
|
+
n_spread=5,
|
|
281
|
+
time_dx=180,
|
|
282
|
+
):
|
|
283
|
+
plt.rcParams["figure.figsize"] = figsize
|
|
284
|
+
plt.rcParams["font.size"] = fontsize
|
|
285
|
+
|
|
286
|
+
time_bins = np.arange(
|
|
287
|
+
(np.amin(data["timestamp"]) // time_dx) * time_dx,
|
|
288
|
+
((np.amax(data["timestamp"]) // time_dx) + 2) * time_dx,
|
|
289
|
+
time_dx,
|
|
290
|
+
)
|
|
291
|
+
|
|
292
|
+
mean = np.nanpercentile(data[parameter], 50)
|
|
293
|
+
spread = mean - np.nanpercentile(data[parameter], 10)
|
|
294
|
+
fig = plt.figure()
|
|
295
|
+
plt.hist2d(
|
|
296
|
+
data["timestamp"],
|
|
297
|
+
data[parameter],
|
|
298
|
+
bins=[
|
|
299
|
+
time_bins,
|
|
300
|
+
np.arange(mean - n_spread * spread, mean + n_spread * spread + dx, dx),
|
|
301
|
+
],
|
|
302
|
+
norm=LogNorm(),
|
|
303
|
+
)
|
|
304
|
+
|
|
305
|
+
ticks, labels = plt.xticks()
|
|
306
|
+
plt.xlabel(
|
|
307
|
+
f"Time starting : {datetime.utcfromtimestamp(ticks[0]).strftime('%d/%m/%y %H:%M')}"
|
|
308
|
+
)
|
|
309
|
+
plt.ylabel("Baseline Value")
|
|
310
|
+
plt.ylim([mean - n_spread * spread, mean + n_spread * spread])
|
|
311
|
+
|
|
312
|
+
plt.xticks(
|
|
313
|
+
ticks,
|
|
314
|
+
[datetime.utcfromtimestamp(tick).strftime("%H:%M") for tick in ticks],
|
|
315
|
+
)
|
|
316
|
+
plt.close()
|
|
317
|
+
return fig
|
|
318
|
+
|
|
319
|
+
|
|
320
|
+
def bin_bl_stability(data, time_slice=180, parameter="bl_mean"):
|
|
321
|
+
utime_array = data["timestamp"]
|
|
322
|
+
select_bls = data[parameter].to_numpy()
|
|
323
|
+
|
|
324
|
+
time_bins = np.arange(
|
|
325
|
+
(np.amin(utime_array) // time_slice) * time_slice,
|
|
326
|
+
((np.amax(utime_array) // time_slice) + 2) * time_slice,
|
|
327
|
+
time_slice,
|
|
328
|
+
)
|
|
329
|
+
# bin time values
|
|
330
|
+
times_average = (time_bins[:-1] + time_bins[1:]) / 2
|
|
331
|
+
|
|
332
|
+
def nanmedian(x):
|
|
333
|
+
return np.nanpercentile(x, 50) if len(x) >= 10 else np.nan
|
|
334
|
+
|
|
335
|
+
def error(x):
|
|
336
|
+
return np.nanvar(x) / np.sqrt(len(x)) if len(x) >= 10 else np.nan
|
|
337
|
+
|
|
338
|
+
par_average, _, _ = binned_statistic(
|
|
339
|
+
data["timestamp"], select_bls, statistic=nanmedian, bins=time_bins
|
|
340
|
+
)
|
|
341
|
+
par_error, _, _ = binned_statistic(
|
|
342
|
+
data["timestamp"], select_bls, statistic=error, bins=time_bins
|
|
343
|
+
)
|
|
344
|
+
|
|
345
|
+
return {"time": times_average, "baseline": par_average, "spread": par_error}
|
|
346
|
+
|
|
347
|
+
|
|
348
|
+
def bin_baseline(data, parameter="bl_mean-baseline", dx=1, bl_range=None):
|
|
349
|
+
if bl_range is None:
|
|
350
|
+
bl_range = [-500, 500]
|
|
351
|
+
par_array = data.eval(parameter)
|
|
352
|
+
bins = np.arange(bl_range[0], bl_range[1], dx)
|
|
353
|
+
bl_array, bins, _ = pgh.get_hist(par_array, bins=bins)
|
|
354
|
+
return {"bl_array": bl_array, "bins": (bins[1:] + bins[:-1]) / 2}
|
|
355
|
+
|
|
356
|
+
|
|
357
|
+
def baseline_tracking_plots(files, lh5_path, plot_options=None):
|
|
358
|
+
if plot_options is None:
|
|
359
|
+
plot_options = {}
|
|
360
|
+
plot_dict = {}
|
|
361
|
+
data = lh5.read_as(
|
|
362
|
+
lh5_path, files, "pd", field_mask=["bl_mean", "baseline", "timestamp"]
|
|
363
|
+
)
|
|
364
|
+
for key, item in plot_options.items():
|
|
365
|
+
if item["options"] is not None:
|
|
366
|
+
plot_dict[key] = item["function"](data, **item["options"])
|
|
367
|
+
else:
|
|
368
|
+
plot_dict[key] = item["function"](data)
|
|
369
|
+
return plot_dict
|
|
370
|
+
|
|
371
|
+
|
|
372
|
+
def monitor_parameters(files, lh5_path, parameters):
|
|
373
|
+
data = lh5.read_as(lh5_path, files, "pd", field_mask=parameters)
|
|
374
|
+
out_dict = {}
|
|
375
|
+
for param in parameters:
|
|
376
|
+
mode, stdev = get_mode_stdev(data[param].to_numpy())
|
|
377
|
+
out_dict[param] = {"mode": mode, "stdev": stdev}
|
|
378
|
+
return out_dict
|
|
379
|
+
|
|
380
|
+
|
|
381
|
+
def get_results_dict(ecal_class, data, cal_energy_param, selection_string):
|
|
382
|
+
if np.isnan(ecal_class.pars).all():
|
|
383
|
+
return {}
|
|
384
|
+
results_dict = copy.deepcopy(ecal_class.results["hpge_fit_energy_peaks_1"])
|
|
385
|
+
|
|
386
|
+
if "FWHMLinear" in results_dict:
|
|
387
|
+
fwhm_linear = results_dict["FWHMLinear"]
|
|
388
|
+
fwhm_linear["function"] = fwhm_linear["function"].__name__
|
|
389
|
+
fwhm_linear["parameters"] = fwhm_linear["parameters"].to_dict()
|
|
390
|
+
fwhm_linear["uncertainties"] = fwhm_linear["uncertainties"].to_dict()
|
|
391
|
+
fwhm_linear["cov"] = fwhm_linear["cov"].tolist()
|
|
392
|
+
else:
|
|
393
|
+
fwhm_linear = None
|
|
394
|
+
|
|
395
|
+
if "FWHMQuadratic" in results_dict:
|
|
396
|
+
fwhm_quad = results_dict["FWHMQuadratic"]
|
|
397
|
+
fwhm_quad["function"] = fwhm_quad["function"].__name__
|
|
398
|
+
fwhm_quad["parameters"] = fwhm_quad["parameters"].to_dict()
|
|
399
|
+
fwhm_quad["uncertainties"] = fwhm_quad["uncertainties"].to_dict()
|
|
400
|
+
fwhm_quad["cov"] = fwhm_quad["cov"].tolist()
|
|
401
|
+
else:
|
|
402
|
+
fwhm_quad = None
|
|
403
|
+
|
|
404
|
+
pk_dict = results_dict["peak_parameters"]
|
|
405
|
+
|
|
406
|
+
for _, dic in pk_dict.items():
|
|
407
|
+
dic["function"] = dic["function"].name
|
|
408
|
+
dic["parameters"] = dic["parameters"].to_dict()
|
|
409
|
+
dic["uncertainties"] = dic["uncertainties"].to_dict()
|
|
410
|
+
dic.pop("covariance")
|
|
411
|
+
|
|
412
|
+
return {
|
|
413
|
+
"total_fep": len(
|
|
414
|
+
data.query(f"{cal_energy_param}>2604&{cal_energy_param}<2624")
|
|
415
|
+
),
|
|
416
|
+
"total_sep": len(
|
|
417
|
+
data.query(f"{cal_energy_param}>2095&{cal_energy_param}<2115")
|
|
418
|
+
),
|
|
419
|
+
"total_dep": len(
|
|
420
|
+
data.query(f"{cal_energy_param}>1587&{cal_energy_param}<1597")
|
|
421
|
+
),
|
|
422
|
+
"pass_fep": len(
|
|
423
|
+
data.query(
|
|
424
|
+
f"{cal_energy_param}>2604&{cal_energy_param}<2624&{selection_string}"
|
|
425
|
+
)
|
|
426
|
+
),
|
|
427
|
+
"pass_sep": len(
|
|
428
|
+
data.query(
|
|
429
|
+
f"{cal_energy_param}>2095&{cal_energy_param}<2115&{selection_string}"
|
|
430
|
+
)
|
|
431
|
+
),
|
|
432
|
+
"pass_dep": len(
|
|
433
|
+
data.query(
|
|
434
|
+
f"{cal_energy_param}>1587&{cal_energy_param}<1597&{selection_string}"
|
|
435
|
+
)
|
|
436
|
+
),
|
|
437
|
+
"eres_linear": fwhm_linear,
|
|
438
|
+
"eres_quadratic": fwhm_quad,
|
|
439
|
+
# "calibration_parameters":results_dict["calibration_parameters"].to_dict(),
|
|
440
|
+
# "calibration_uncertainty":results_dict["calibration_uncertainties"].to_dict(),
|
|
441
|
+
"fitted_peaks": ecal_class.peaks_kev.tolist(),
|
|
442
|
+
"pk_fits": pk_dict,
|
|
443
|
+
}
|
|
444
|
+
|
|
445
|
+
|
|
446
|
+
def par_geds_hit_ecal() -> None:
|
|
447
|
+
argparser = argparse.ArgumentParser()
|
|
448
|
+
argparser.add_argument("--files", help="filelist", nargs="*", type=str)
|
|
449
|
+
argparser.add_argument(
|
|
450
|
+
"--tcm-filelist", help="tcm_filelist", type=str, required=False
|
|
451
|
+
)
|
|
452
|
+
argparser.add_argument(
|
|
453
|
+
"--pulser-file", help="pulser_file", type=str, required=False
|
|
454
|
+
)
|
|
455
|
+
|
|
456
|
+
argparser.add_argument("--ctc-dict", help="ctc_dict", nargs="*")
|
|
457
|
+
argparser.add_argument("--in-hit-dict", help="in_hit_dict", required=False)
|
|
458
|
+
argparser.add_argument("--inplot-dict", help="inplot_dict", required=False)
|
|
459
|
+
|
|
460
|
+
argparser.add_argument("--datatype", help="Datatype", type=str, required=True)
|
|
461
|
+
argparser.add_argument("--timestamp", help="Timestamp", type=str, required=True)
|
|
462
|
+
argparser.add_argument("--channel", help="Channel", type=str, required=True)
|
|
463
|
+
argparser.add_argument("--table-name", help="table name", type=str, required=True)
|
|
464
|
+
|
|
465
|
+
argparser.add_argument("--tier", help="tier", type=str, default="hit")
|
|
466
|
+
argparser.add_argument("--configs", help="config", type=str, required=True)
|
|
467
|
+
argparser.add_argument("--metadata", help="metadata path", type=str, required=True)
|
|
468
|
+
|
|
469
|
+
argparser.add_argument("--log", help="log_file", type=str)
|
|
470
|
+
|
|
471
|
+
argparser.add_argument("--plot-path", help="plot_path", type=str, required=False)
|
|
472
|
+
argparser.add_argument("--save-path", help="save_path", type=str)
|
|
473
|
+
argparser.add_argument("--results-path", help="results_path", type=str)
|
|
474
|
+
|
|
475
|
+
argparser.add_argument("-d", "--debug", help="debug_mode", action="store_true")
|
|
476
|
+
args = argparser.parse_args()
|
|
477
|
+
|
|
478
|
+
configs = TextDB(args.configs, lazy=True).on(args.timestamp, system=args.datatype)
|
|
479
|
+
config_dict = configs["snakemake_rules"]
|
|
480
|
+
if args.tier == "hit":
|
|
481
|
+
config_dict = config_dict["pars_hit_ecal"]
|
|
482
|
+
elif args.tier == "pht":
|
|
483
|
+
config_dict = config_dict["pars_pht_ecal"]
|
|
484
|
+
else:
|
|
485
|
+
msg = "invalid tier"
|
|
486
|
+
raise ValueError(msg)
|
|
487
|
+
|
|
488
|
+
build_log(config_dict, args.log)
|
|
489
|
+
|
|
490
|
+
chmap = LegendMetadata(args.metadata).channelmap(
|
|
491
|
+
args.timestamp, system=args.datatype
|
|
492
|
+
)
|
|
493
|
+
det_status = chmap[args.channel]["analysis"]["usability"]
|
|
494
|
+
|
|
495
|
+
if args.in_hit_dict:
|
|
496
|
+
hit_dict = Props.read_from(args.in_hit_dict)
|
|
497
|
+
in_results_dict = hit_dict.get("results", {})
|
|
498
|
+
hit_dict = hit_dict.get("operations", hit_dict)
|
|
499
|
+
|
|
500
|
+
db_files = [
|
|
501
|
+
par_file
|
|
502
|
+
for par_file in args.ctc_dict
|
|
503
|
+
if Path(par_file).suffix in (".json", ".yml", ".yaml")
|
|
504
|
+
]
|
|
505
|
+
|
|
506
|
+
database_dic = Props.read_from(db_files)
|
|
507
|
+
|
|
508
|
+
hit_dict.update(database_dic[args.channel]["ctc_params"])
|
|
509
|
+
|
|
510
|
+
channel_dict = config_dict["inputs"]["ecal_config"][args.channel]
|
|
511
|
+
kwarg_dict = Props.read_from(channel_dict)
|
|
512
|
+
|
|
513
|
+
# convert plot functions from strings to functions and split off baseline and common plots
|
|
514
|
+
for field, item in kwarg_dict["plot_options"].items():
|
|
515
|
+
kwarg_dict["plot_options"][field]["function"] = eval(item["function"])
|
|
516
|
+
|
|
517
|
+
bl_plots = kwarg_dict.pop("bl_plot_options")
|
|
518
|
+
for field, item in bl_plots.items():
|
|
519
|
+
bl_plots[field]["function"] = eval(item["function"])
|
|
520
|
+
common_plots = kwarg_dict.pop("common_plots")
|
|
521
|
+
|
|
522
|
+
with Path(args.files[0]).open() as f:
|
|
523
|
+
files = f.read().splitlines()
|
|
524
|
+
files = sorted(files)
|
|
525
|
+
|
|
526
|
+
# load data in
|
|
527
|
+
data, threshold_mask = load_data(
|
|
528
|
+
files,
|
|
529
|
+
args.table_name,
|
|
530
|
+
hit_dict,
|
|
531
|
+
params=[
|
|
532
|
+
*kwarg_dict["energy_params"],
|
|
533
|
+
kwarg_dict["cut_param"],
|
|
534
|
+
"timestamp",
|
|
535
|
+
"trapTmax",
|
|
536
|
+
],
|
|
537
|
+
threshold=kwarg_dict["threshold"],
|
|
538
|
+
return_selection_mask=True,
|
|
539
|
+
cal_energy_param="trapTmax",
|
|
540
|
+
)
|
|
541
|
+
|
|
542
|
+
mask = get_pulser_mask(
|
|
543
|
+
pulser_file=args.pulser_file,
|
|
544
|
+
)
|
|
545
|
+
|
|
546
|
+
data["is_pulser"] = mask[threshold_mask]
|
|
547
|
+
|
|
548
|
+
pk_pars = [
|
|
549
|
+
(583.191, (20, 20), pgf.hpge_peak),
|
|
550
|
+
(727.330, (30, 30), pgf.hpge_peak),
|
|
551
|
+
(860.564, (30, 25), pgf.hpge_peak),
|
|
552
|
+
(1592.511, (40, 20), pgf.gauss_on_step),
|
|
553
|
+
(1620.50, (20, 40), pgf.gauss_on_step),
|
|
554
|
+
(2103.511, (40, 40), pgf.gauss_on_step),
|
|
555
|
+
(2614.511, (40, 40), pgf.hpge_peak),
|
|
556
|
+
]
|
|
557
|
+
|
|
558
|
+
glines = [pk_par[0] for pk_par in pk_pars]
|
|
559
|
+
|
|
560
|
+
if "cal_energy_params" not in kwarg_dict:
|
|
561
|
+
cal_energy_params = [
|
|
562
|
+
energy_param + "_cal" for energy_param in kwarg_dict["energy_params"]
|
|
563
|
+
]
|
|
564
|
+
else:
|
|
565
|
+
cal_energy_params = kwarg_dict["cal_energy_params"]
|
|
566
|
+
|
|
567
|
+
selection_string = f"~is_pulser&{kwarg_dict['cut_param']}"
|
|
568
|
+
|
|
569
|
+
results_dict = {}
|
|
570
|
+
plot_dict = {}
|
|
571
|
+
full_object_dict = {}
|
|
572
|
+
|
|
573
|
+
for energy_param, cal_energy_param in zip(
|
|
574
|
+
kwarg_dict["energy_params"], cal_energy_params, strict=False
|
|
575
|
+
):
|
|
576
|
+
e_uncal = data.query(selection_string)[energy_param].to_numpy()
|
|
577
|
+
|
|
578
|
+
hist, bins, bar = pgh.get_hist(
|
|
579
|
+
e_uncal[
|
|
580
|
+
(e_uncal > np.nanpercentile(e_uncal, 95))
|
|
581
|
+
& (e_uncal < np.nanpercentile(e_uncal, 99.9))
|
|
582
|
+
],
|
|
583
|
+
dx=1,
|
|
584
|
+
range=[np.nanpercentile(e_uncal, 95), np.nanpercentile(e_uncal, 99.9)],
|
|
585
|
+
)
|
|
586
|
+
|
|
587
|
+
guess = 2614.511 / bins[np.nanargmax(hist)]
|
|
588
|
+
full_object_dict[cal_energy_param] = HPGeCalibration(
|
|
589
|
+
energy_param,
|
|
590
|
+
glines,
|
|
591
|
+
guess,
|
|
592
|
+
kwarg_dict.get("deg", 0),
|
|
593
|
+
debug_mode=kwarg_dict.get("debug_mode", False) | args.debug,
|
|
594
|
+
)
|
|
595
|
+
full_object_dict[cal_energy_param].hpge_get_energy_peaks(
|
|
596
|
+
e_uncal, etol_kev=5 if det_status == "on" else 20
|
|
597
|
+
)
|
|
598
|
+
if 2614.511 not in full_object_dict[cal_energy_param].peaks_kev:
|
|
599
|
+
full_object_dict[cal_energy_param] = HPGeCalibration(
|
|
600
|
+
energy_param,
|
|
601
|
+
glines,
|
|
602
|
+
guess,
|
|
603
|
+
kwarg_dict.get("deg", 0),
|
|
604
|
+
debug_mode=kwarg_dict.get("debug_mode", False),
|
|
605
|
+
)
|
|
606
|
+
full_object_dict[cal_energy_param].hpge_get_energy_peaks(
|
|
607
|
+
e_uncal, etol_kev=5 if det_status == "on" else 30, n_sigma=2
|
|
608
|
+
)
|
|
609
|
+
got_peaks_kev = full_object_dict[cal_energy_param].peaks_kev.copy()
|
|
610
|
+
if det_status != "on":
|
|
611
|
+
full_object_dict[cal_energy_param].hpge_cal_energy_peak_tops(
|
|
612
|
+
e_uncal,
|
|
613
|
+
peaks_kev=got_peaks_kev,
|
|
614
|
+
update_cal_pars=True,
|
|
615
|
+
allowed_p_val=0,
|
|
616
|
+
)
|
|
617
|
+
full_object_dict[cal_energy_param].hpge_fit_energy_peaks(
|
|
618
|
+
e_uncal,
|
|
619
|
+
peaks_kev=[2614.511],
|
|
620
|
+
peak_pars=pk_pars,
|
|
621
|
+
tail_weight=kwarg_dict.get("tail_weight", 0),
|
|
622
|
+
n_events=kwarg_dict.get("n_events", None),
|
|
623
|
+
allowed_p_val=kwarg_dict.get("p_val", 0),
|
|
624
|
+
update_cal_pars=bool(det_status == "on"),
|
|
625
|
+
bin_width_kev=0.5,
|
|
626
|
+
)
|
|
627
|
+
full_object_dict[cal_energy_param].hpge_fit_energy_peaks(
|
|
628
|
+
e_uncal,
|
|
629
|
+
peaks_kev=got_peaks_kev,
|
|
630
|
+
peak_pars=pk_pars,
|
|
631
|
+
tail_weight=kwarg_dict.get("tail_weight", 0),
|
|
632
|
+
n_events=kwarg_dict.get("n_events", None),
|
|
633
|
+
allowed_p_val=kwarg_dict.get("p_val", 0),
|
|
634
|
+
update_cal_pars=False,
|
|
635
|
+
bin_width_kev=0.5,
|
|
636
|
+
)
|
|
637
|
+
|
|
638
|
+
full_object_dict[cal_energy_param].get_energy_res_curve(
|
|
639
|
+
FWHMLinear,
|
|
640
|
+
interp_energy_kev={"Qbb": 2039.0},
|
|
641
|
+
)
|
|
642
|
+
full_object_dict[cal_energy_param].get_energy_res_curve(
|
|
643
|
+
FWHMQuadratic,
|
|
644
|
+
interp_energy_kev={"Qbb": 2039.0},
|
|
645
|
+
)
|
|
646
|
+
|
|
647
|
+
data[cal_energy_param] = nb_poly(
|
|
648
|
+
data[energy_param].to_numpy(), full_object_dict[cal_energy_param].pars
|
|
649
|
+
)
|
|
650
|
+
|
|
651
|
+
results_dict[cal_energy_param] = get_results_dict(
|
|
652
|
+
full_object_dict[cal_energy_param], data, cal_energy_param, selection_string
|
|
653
|
+
)
|
|
654
|
+
|
|
655
|
+
hit_dict.update(
|
|
656
|
+
{cal_energy_param: full_object_dict[cal_energy_param].gen_pars_dict()}
|
|
657
|
+
)
|
|
658
|
+
if "ctc" in cal_energy_param:
|
|
659
|
+
no_ctc_dict = full_object_dict[cal_energy_param].gen_pars_dict()
|
|
660
|
+
no_ctc_dict["expression"] = no_ctc_dict["expression"].replace("_ctc", "")
|
|
661
|
+
hit_dict.update({cal_energy_param.replace("ctc", "noctc"): no_ctc_dict})
|
|
662
|
+
hit_dict.update(
|
|
663
|
+
{
|
|
664
|
+
cal_energy_param.replace("_ctc", ""): {
|
|
665
|
+
"expression": f"where({cal_energy_param.replace('ctc', 'noctc')}>{kwarg_dict.get('dt_theshold_kev', 100)}, {cal_energy_param}, {cal_energy_param.replace('ctc', 'noctc')})",
|
|
666
|
+
"parameters": {},
|
|
667
|
+
}
|
|
668
|
+
}
|
|
669
|
+
)
|
|
670
|
+
if args.plot_path:
|
|
671
|
+
param_plot_dict = {}
|
|
672
|
+
if ~np.isnan(full_object_dict[cal_energy_param].pars).all():
|
|
673
|
+
param_plot_dict["fwhm_fit"] = full_object_dict[
|
|
674
|
+
cal_energy_param
|
|
675
|
+
].plot_eres_fit(e_uncal)
|
|
676
|
+
param_plot_dict["cal_fit"] = full_object_dict[
|
|
677
|
+
cal_energy_param
|
|
678
|
+
].plot_cal_fit(e_uncal)
|
|
679
|
+
param_plot_dict["peak_fits"] = full_object_dict[
|
|
680
|
+
cal_energy_param
|
|
681
|
+
].plot_fits(e_uncal)
|
|
682
|
+
|
|
683
|
+
if "plot_options" in kwarg_dict:
|
|
684
|
+
for key, item in kwarg_dict["plot_options"].items():
|
|
685
|
+
if item["options"] is not None:
|
|
686
|
+
param_plot_dict[key] = item["function"](
|
|
687
|
+
data,
|
|
688
|
+
cal_energy_param,
|
|
689
|
+
selection_string,
|
|
690
|
+
**item["options"],
|
|
691
|
+
)
|
|
692
|
+
else:
|
|
693
|
+
param_plot_dict[key] = item["function"](
|
|
694
|
+
data,
|
|
695
|
+
cal_energy_param,
|
|
696
|
+
selection_string,
|
|
697
|
+
)
|
|
698
|
+
plot_dict[cal_energy_param] = param_plot_dict
|
|
699
|
+
|
|
700
|
+
for peak_dict in (
|
|
701
|
+
full_object_dict[cal_energy_param]
|
|
702
|
+
.results["hpge_fit_energy_peaks_1"]["peak_parameters"]
|
|
703
|
+
.values()
|
|
704
|
+
):
|
|
705
|
+
peak_dict["function"] = peak_dict["function"].name
|
|
706
|
+
peak_dict["parameters"] = peak_dict["parameters"].to_dict()
|
|
707
|
+
peak_dict["uncertainties"] = peak_dict["uncertainties"].to_dict()
|
|
708
|
+
for peak_dict in (
|
|
709
|
+
full_object_dict[cal_energy_param]
|
|
710
|
+
.results["hpge_fit_energy_peaks"]["peak_parameters"]
|
|
711
|
+
.values()
|
|
712
|
+
):
|
|
713
|
+
peak_dict["function"] = peak_dict["function"].name
|
|
714
|
+
peak_dict["parameters"] = peak_dict["parameters"].to_dict()
|
|
715
|
+
peak_dict["uncertainties"] = peak_dict["uncertainties"].to_dict()
|
|
716
|
+
|
|
717
|
+
if det_status != "on":
|
|
718
|
+
for peak_dict in (
|
|
719
|
+
full_object_dict[cal_energy_param]
|
|
720
|
+
.results["hpge_cal_energy_peak_tops"]["peak_parameters"]
|
|
721
|
+
.values()
|
|
722
|
+
):
|
|
723
|
+
peak_dict["function"] = peak_dict["function"].name
|
|
724
|
+
peak_dict["parameters"] = peak_dict["parameters"].to_dict()
|
|
725
|
+
peak_dict["uncertainties"] = peak_dict["uncertainties"].to_dict()
|
|
726
|
+
|
|
727
|
+
if "monitoring_parameters" in kwarg_dict:
|
|
728
|
+
monitor_dict = monitor_parameters(
|
|
729
|
+
files, args.table_name, kwarg_dict["monitoring_parameters"]
|
|
730
|
+
)
|
|
731
|
+
results_dict.update({"monitoring_parameters": monitor_dict})
|
|
732
|
+
|
|
733
|
+
# get baseline plots and save all plots to file
|
|
734
|
+
if args.plot_path:
|
|
735
|
+
common_dict = baseline_tracking_plots(
|
|
736
|
+
sorted(files), args.table_name, plot_options=bl_plots
|
|
737
|
+
)
|
|
738
|
+
|
|
739
|
+
for plot in list(common_dict):
|
|
740
|
+
if plot not in common_plots:
|
|
741
|
+
plot_item = common_dict.pop(plot)
|
|
742
|
+
plot_dict.update({plot: plot_item})
|
|
743
|
+
|
|
744
|
+
for key, item in plot_dict.items():
|
|
745
|
+
if isinstance(item, dict) and len(item) > 0:
|
|
746
|
+
param_dict = {}
|
|
747
|
+
for plot in common_plots:
|
|
748
|
+
if plot in item:
|
|
749
|
+
param_dict.update({plot: item[plot]})
|
|
750
|
+
common_dict.update({key: param_dict})
|
|
751
|
+
|
|
752
|
+
if args.inplot_dict:
|
|
753
|
+
with Path(args.inplot_dict).open("rb") as f:
|
|
754
|
+
total_plot_dict = pkl.load(f)
|
|
755
|
+
else:
|
|
756
|
+
total_plot_dict = {}
|
|
757
|
+
|
|
758
|
+
if "common" in total_plot_dict:
|
|
759
|
+
total_plot_dict["common"].update(common_dict)
|
|
760
|
+
else:
|
|
761
|
+
total_plot_dict["common"] = common_dict
|
|
762
|
+
|
|
763
|
+
total_plot_dict.update({"ecal": plot_dict})
|
|
764
|
+
|
|
765
|
+
Path(args.plot_path).parent.mkdir(parents=True, exist_ok=True)
|
|
766
|
+
with Path(args.plot_path).open("wb") as f:
|
|
767
|
+
pkl.dump(total_plot_dict, f, protocol=pkl.HIGHEST_PROTOCOL)
|
|
768
|
+
|
|
769
|
+
# save output dictionary
|
|
770
|
+
output_dict = convert_dict_np_to_float(
|
|
771
|
+
{"pars": hit_dict, "results": dict(**in_results_dict, ecal=results_dict)}
|
|
772
|
+
)
|
|
773
|
+
Props.write_to(args.save_path, output_dict)
|
|
774
|
+
|
|
775
|
+
# save calibration objects
|
|
776
|
+
with Path(args.results_path).open("wb") as fp:
|
|
777
|
+
Path(args.results_path).parent.mkdir(parents=True, exist_ok=True)
|
|
778
|
+
pkl.dump({"ecal": full_object_dict}, fp, protocol=pkl.HIGHEST_PROTOCOL)
|