legend-dataflow-scripts 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- legend_dataflow_scripts-0.1.0.dist-info/METADATA +57 -0
- legend_dataflow_scripts-0.1.0.dist-info/RECORD +36 -0
- legend_dataflow_scripts-0.1.0.dist-info/WHEEL +5 -0
- legend_dataflow_scripts-0.1.0.dist-info/entry_points.txt +18 -0
- legend_dataflow_scripts-0.1.0.dist-info/top_level.txt +1 -0
- legenddataflowscripts/__init__.py +17 -0
- legenddataflowscripts/_version.py +21 -0
- legenddataflowscripts/par/__init__.py +0 -0
- legenddataflowscripts/par/geds/__init__.py +0 -0
- legenddataflowscripts/par/geds/dsp/__init__.py +0 -0
- legenddataflowscripts/par/geds/dsp/dplms.py +145 -0
- legenddataflowscripts/par/geds/dsp/eopt.py +398 -0
- legenddataflowscripts/par/geds/dsp/evtsel.py +400 -0
- legenddataflowscripts/par/geds/dsp/nopt.py +120 -0
- legenddataflowscripts/par/geds/dsp/pz.py +217 -0
- legenddataflowscripts/par/geds/dsp/svm.py +28 -0
- legenddataflowscripts/par/geds/dsp/svm_build.py +69 -0
- legenddataflowscripts/par/geds/hit/__init__.py +0 -0
- legenddataflowscripts/par/geds/hit/aoe.py +245 -0
- legenddataflowscripts/par/geds/hit/ecal.py +778 -0
- legenddataflowscripts/par/geds/hit/lq.py +213 -0
- legenddataflowscripts/par/geds/hit/qc.py +326 -0
- legenddataflowscripts/tier/__init__.py +0 -0
- legenddataflowscripts/tier/dsp.py +263 -0
- legenddataflowscripts/tier/hit.py +148 -0
- legenddataflowscripts/utils/__init__.py +15 -0
- legenddataflowscripts/utils/alias_table.py +28 -0
- legenddataflowscripts/utils/cfgtools.py +14 -0
- legenddataflowscripts/utils/convert_np.py +31 -0
- legenddataflowscripts/utils/log.py +77 -0
- legenddataflowscripts/utils/pulser_removal.py +16 -0
- legenddataflowscripts/workflow/__init__.py +20 -0
- legenddataflowscripts/workflow/execenv.py +327 -0
- legenddataflowscripts/workflow/filedb.py +107 -0
- legenddataflowscripts/workflow/pre_compile_catalog.py +24 -0
- legenddataflowscripts/workflow/utils.py +113 -0
|
@@ -0,0 +1,400 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import argparse
|
|
4
|
+
import json
|
|
5
|
+
import time
|
|
6
|
+
import warnings
|
|
7
|
+
from bisect import bisect_left
|
|
8
|
+
from pathlib import Path
|
|
9
|
+
|
|
10
|
+
import lgdo
|
|
11
|
+
import numpy as np
|
|
12
|
+
import pygama.math.histogram as pgh
|
|
13
|
+
import pygama.pargen.energy_cal as pgc
|
|
14
|
+
from dbetto import TextDB
|
|
15
|
+
from dbetto.catalog import Props
|
|
16
|
+
from lgdo import lh5
|
|
17
|
+
from pygama.pargen.data_cleaning import generate_cuts, get_keys
|
|
18
|
+
from pygama.pargen.dsp_optimize import run_one_dsp
|
|
19
|
+
|
|
20
|
+
from ....utils import build_log, get_pulser_mask
|
|
21
|
+
|
|
22
|
+
warnings.filterwarnings(action="ignore", category=RuntimeWarning)
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def get_out_data(
|
|
26
|
+
raw_data,
|
|
27
|
+
dsp_data,
|
|
28
|
+
cut_dict,
|
|
29
|
+
e_lower_lim,
|
|
30
|
+
e_upper_lim,
|
|
31
|
+
ecal_pars,
|
|
32
|
+
raw_dict,
|
|
33
|
+
peak,
|
|
34
|
+
final_cut_field="is_valid_cal",
|
|
35
|
+
energy_param="trapTmax",
|
|
36
|
+
):
|
|
37
|
+
for outname, info in cut_dict.items():
|
|
38
|
+
outcol = dsp_data.eval(info["expression"], info.get("parameters", None))
|
|
39
|
+
dsp_data.add_column(outname, outcol)
|
|
40
|
+
|
|
41
|
+
for outname, info in raw_dict.items():
|
|
42
|
+
outcol = raw_data.eval(info["expression"], info.get("parameters", None))
|
|
43
|
+
raw_data.add_column(outname, outcol)
|
|
44
|
+
|
|
45
|
+
final_mask = (
|
|
46
|
+
(dsp_data[energy_param].nda > e_lower_lim)
|
|
47
|
+
& (dsp_data[energy_param].nda < e_upper_lim)
|
|
48
|
+
& (dsp_data[final_cut_field].nda)
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
wavefrom_windowed = lgdo.WaveformTable(
|
|
52
|
+
t0=raw_data["waveform_windowed"]["t0"].nda[final_mask],
|
|
53
|
+
t0_units=raw_data["waveform_windowed"]["t0"].attrs["units"],
|
|
54
|
+
dt=raw_data["waveform_windowed"]["dt"].nda[final_mask],
|
|
55
|
+
dt_units=raw_data["waveform_windowed"]["dt"].attrs["units"],
|
|
56
|
+
values=raw_data["waveform_windowed"]["values"].nda[final_mask],
|
|
57
|
+
)
|
|
58
|
+
wavefrom_presummed = lgdo.WaveformTable(
|
|
59
|
+
t0=raw_data["waveform_presummed"]["t0"].nda[final_mask],
|
|
60
|
+
t0_units=raw_data["waveform_presummed"]["t0"].attrs["units"],
|
|
61
|
+
dt=raw_data["waveform_presummed"]["dt"].nda[final_mask],
|
|
62
|
+
dt_units=raw_data["waveform_presummed"]["dt"].attrs["units"],
|
|
63
|
+
values=raw_data["waveform_presummed"]["values"].nda[final_mask],
|
|
64
|
+
)
|
|
65
|
+
|
|
66
|
+
out_tbl = lgdo.Table(
|
|
67
|
+
col_dict={
|
|
68
|
+
"waveform_presummed": wavefrom_presummed,
|
|
69
|
+
"waveform_windowed": wavefrom_windowed,
|
|
70
|
+
"presum_rate": lgdo.Array(raw_data["presum_rate"].nda[final_mask]),
|
|
71
|
+
"timestamp": lgdo.Array(raw_data["timestamp"].nda[final_mask]),
|
|
72
|
+
"baseline": lgdo.Array(raw_data["baseline"].nda[final_mask]),
|
|
73
|
+
"daqenergy": lgdo.Array(raw_data["daqenergy"].nda[final_mask]),
|
|
74
|
+
"daqenergy_cal": lgdo.Array(raw_data["daqenergy_cal"].nda[final_mask]),
|
|
75
|
+
"trapTmax_cal": lgdo.Array(
|
|
76
|
+
dsp_data["trapTmax"].nda[final_mask] * ecal_pars
|
|
77
|
+
),
|
|
78
|
+
"peak": lgdo.Array(np.full(len(np.where(final_mask)[0]), int(peak))),
|
|
79
|
+
}
|
|
80
|
+
)
|
|
81
|
+
return out_tbl, len(np.where(final_mask)[0])
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def par_geds_dsp_evtsel() -> None:
|
|
85
|
+
argparser = argparse.ArgumentParser()
|
|
86
|
+
argparser.add_argument("--raw-filelist", help="raw_filelist", type=str)
|
|
87
|
+
argparser.add_argument(
|
|
88
|
+
"--pulser-file", help="pulser-file", type=str, required=False
|
|
89
|
+
)
|
|
90
|
+
argparser.add_argument(
|
|
91
|
+
"-p", "--no-pulse", help="no pulser present", action="store_true"
|
|
92
|
+
)
|
|
93
|
+
|
|
94
|
+
argparser.add_argument("--decay-const", help="decay_const", type=str, required=True)
|
|
95
|
+
argparser.add_argument(
|
|
96
|
+
"--raw-cal-curve",
|
|
97
|
+
help="raw calibration curve file(s)",
|
|
98
|
+
type=str,
|
|
99
|
+
nargs="*",
|
|
100
|
+
required=True,
|
|
101
|
+
)
|
|
102
|
+
|
|
103
|
+
argparser.add_argument("--log", help="log_file", type=str)
|
|
104
|
+
argparser.add_argument("--configs", help="configs", type=str, required=True)
|
|
105
|
+
|
|
106
|
+
argparser.add_argument("--datatype", help="Datatype", type=str, required=True)
|
|
107
|
+
argparser.add_argument("--timestamp", help="Timestamp", type=str, required=True)
|
|
108
|
+
argparser.add_argument("--channel", help="Channel", type=str, required=True)
|
|
109
|
+
argparser.add_argument(
|
|
110
|
+
"--raw-table-name", help="raw table name", type=str, required=True
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
argparser.add_argument("--peak-file", help="peak_file", type=str, required=True)
|
|
114
|
+
args = argparser.parse_args()
|
|
115
|
+
|
|
116
|
+
configs = TextDB(args.configs, lazy=True).on(args.timestamp, system=args.datatype)
|
|
117
|
+
config_dict = configs["snakemake_rules"]["pars_dsp_peak_selection"]
|
|
118
|
+
|
|
119
|
+
log = build_log(config_dict, args.log)
|
|
120
|
+
|
|
121
|
+
sto = lh5.LH5Store()
|
|
122
|
+
t0 = time.time()
|
|
123
|
+
|
|
124
|
+
dsp_config = config_dict["inputs"]["processing_chain"][args.channel]
|
|
125
|
+
peak_json = config_dict["inputs"]["peak_config"][args.channel]
|
|
126
|
+
|
|
127
|
+
peak_dict = Props.read_from(peak_json)
|
|
128
|
+
db_dict = Props.read_from(args.decay_const)
|
|
129
|
+
|
|
130
|
+
Path(args.peak_file).parent.mkdir(parents=True, exist_ok=True)
|
|
131
|
+
rng = np.random.default_rng()
|
|
132
|
+
rand_num = f"{rng.integers(0, 99999):05d}"
|
|
133
|
+
temp_output = f"{args.peak_file}.{rand_num}"
|
|
134
|
+
if peak_dict.pop("run_selection") is True:
|
|
135
|
+
log.debug("Starting peak selection")
|
|
136
|
+
|
|
137
|
+
with Path(args.raw_filelist).open() as f:
|
|
138
|
+
files = f.read().splitlines()
|
|
139
|
+
raw_files = sorted(files)
|
|
140
|
+
|
|
141
|
+
raw_dict = Props.read_from(args.raw_cal_curve)[args.channel]["pars"][
|
|
142
|
+
"operations"
|
|
143
|
+
]
|
|
144
|
+
|
|
145
|
+
peaks_kev = peak_dict["peaks"]
|
|
146
|
+
kev_widths = peak_dict["kev_widths"]
|
|
147
|
+
cut_parameters = peak_dict["cut_parameters"]
|
|
148
|
+
n_events = peak_dict["n_events"]
|
|
149
|
+
final_cut_field = peak_dict["final_cut_field"]
|
|
150
|
+
energy_parameter = peak_dict.get("energy_parameter", "trapTmax")
|
|
151
|
+
|
|
152
|
+
lh5_path = args.raw_table_name
|
|
153
|
+
|
|
154
|
+
if not isinstance(kev_widths, list):
|
|
155
|
+
kev_widths = [kev_widths]
|
|
156
|
+
|
|
157
|
+
if lh5_path[-1] != "/":
|
|
158
|
+
lh5_path += "/"
|
|
159
|
+
|
|
160
|
+
tb = lh5.read(
|
|
161
|
+
lh5_path, raw_files, field_mask=["daqenergy", "t_sat_lo", "timestamp"]
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
if args.no_pulse is False:
|
|
165
|
+
mask = get_pulser_mask(
|
|
166
|
+
args.pulser_file,
|
|
167
|
+
)
|
|
168
|
+
else:
|
|
169
|
+
mask = np.full(len(tb), False)
|
|
170
|
+
|
|
171
|
+
discharges = tb["t_sat_lo"].nda > 0
|
|
172
|
+
discharge_timestamps = np.where(tb["timestamp"].nda[discharges])[0]
|
|
173
|
+
is_recovering = np.full(len(tb), False, dtype=bool)
|
|
174
|
+
for tstamp in discharge_timestamps:
|
|
175
|
+
is_recovering = is_recovering | np.where(
|
|
176
|
+
(
|
|
177
|
+
((tb["timestamp"].nda - tstamp) < 0.01)
|
|
178
|
+
& ((tb["timestamp"].nda - tstamp) > 0)
|
|
179
|
+
),
|
|
180
|
+
True,
|
|
181
|
+
False,
|
|
182
|
+
)
|
|
183
|
+
|
|
184
|
+
for outname, info in raw_dict.items():
|
|
185
|
+
outcol = tb.eval(info["expression"], info.get("parameters", None))
|
|
186
|
+
tb.add_column(outname, outcol)
|
|
187
|
+
|
|
188
|
+
rough_energy = tb["daqenergy_cal"].nda
|
|
189
|
+
|
|
190
|
+
masks = {}
|
|
191
|
+
for peak, kev_width in zip(peaks_kev, kev_widths, strict=False):
|
|
192
|
+
e_mask = (
|
|
193
|
+
(rough_energy > peak - 1.1 * kev_width[0])
|
|
194
|
+
& (rough_energy < peak + 1.1 * kev_width[0])
|
|
195
|
+
& (~mask)
|
|
196
|
+
)
|
|
197
|
+
masks[peak] = np.where(e_mask & (~is_recovering))[0]
|
|
198
|
+
msg = f"{len(masks[peak])} events found in energy range for {peak}"
|
|
199
|
+
log.debug(msg)
|
|
200
|
+
|
|
201
|
+
input_data = lh5.read(
|
|
202
|
+
f"{lh5_path}", raw_files, n_rows=10000, idx=np.where(~mask)[0]
|
|
203
|
+
)
|
|
204
|
+
|
|
205
|
+
if isinstance(dsp_config, str):
|
|
206
|
+
dsp_config = Props.read_from(dsp_config)
|
|
207
|
+
|
|
208
|
+
dsp_config["outputs"] = [
|
|
209
|
+
*get_keys(dsp_config["outputs"], cut_parameters),
|
|
210
|
+
energy_parameter,
|
|
211
|
+
]
|
|
212
|
+
|
|
213
|
+
log.debug("Processing data")
|
|
214
|
+
tb_data = run_one_dsp(input_data, dsp_config, db_dict=db_dict)
|
|
215
|
+
|
|
216
|
+
if cut_parameters is not None:
|
|
217
|
+
cut_dict = generate_cuts(tb_data, cut_parameters)
|
|
218
|
+
msg = f"Cuts are calculated: {json.dumps(cut_dict, indent=2)}"
|
|
219
|
+
log.debug(msg)
|
|
220
|
+
else:
|
|
221
|
+
cut_dict = None
|
|
222
|
+
|
|
223
|
+
pk_dicts = {}
|
|
224
|
+
for peak, kev_width in zip(peaks_kev, kev_widths, strict=False):
|
|
225
|
+
pk_dicts[peak] = {
|
|
226
|
+
"idxs": (masks[peak],),
|
|
227
|
+
"n_rows_read": 0,
|
|
228
|
+
"obj_buf_start": 0,
|
|
229
|
+
"obj_buf": None,
|
|
230
|
+
"kev_width": kev_width,
|
|
231
|
+
}
|
|
232
|
+
|
|
233
|
+
for file in raw_files:
|
|
234
|
+
log.debug(Path(file).name)
|
|
235
|
+
for peak, peak_dict in pk_dicts.items():
|
|
236
|
+
if peak_dict["idxs"] is not None:
|
|
237
|
+
# idx is a long continuous array
|
|
238
|
+
n_rows_i = sto.read_n_rows(lh5_path, file)
|
|
239
|
+
# find the length of the subset of idx that contains indices
|
|
240
|
+
# that are less than n_rows_i
|
|
241
|
+
n_rows_to_read_i = bisect_left(peak_dict["idxs"][0], n_rows_i)
|
|
242
|
+
# now split idx into idx_i and the remainder
|
|
243
|
+
idx_i = (peak_dict["idxs"][0][:n_rows_to_read_i],)
|
|
244
|
+
peak_dict["idxs"] = (
|
|
245
|
+
peak_dict["idxs"][0][n_rows_to_read_i:] - n_rows_i,
|
|
246
|
+
)
|
|
247
|
+
if len(idx_i[0]) > 0:
|
|
248
|
+
peak_dict["obj_buf"] = lh5.read(
|
|
249
|
+
lh5_path,
|
|
250
|
+
file,
|
|
251
|
+
start_row=0,
|
|
252
|
+
idx=idx_i,
|
|
253
|
+
obj_buf=peak_dict["obj_buf"],
|
|
254
|
+
obj_buf_start=peak_dict["obj_buf_start"],
|
|
255
|
+
)
|
|
256
|
+
n_rows_read_i = len(peak_dict["obj_buf"])
|
|
257
|
+
|
|
258
|
+
peak_dict["n_rows_read"] += n_rows_read_i
|
|
259
|
+
msg = f"{peak}: {peak_dict['n_rows_read']}"
|
|
260
|
+
log.debug(msg)
|
|
261
|
+
peak_dict["obj_buf_start"] += n_rows_read_i
|
|
262
|
+
if peak_dict["n_rows_read"] >= 10000 or file == raw_files[-1]:
|
|
263
|
+
if "e_lower_lim" not in peak_dict:
|
|
264
|
+
tb_out = run_one_dsp(
|
|
265
|
+
peak_dict["obj_buf"], dsp_config, db_dict=db_dict
|
|
266
|
+
)
|
|
267
|
+
energy = tb_out[energy_parameter].nda
|
|
268
|
+
|
|
269
|
+
init_bin_width = (
|
|
270
|
+
2
|
|
271
|
+
* (
|
|
272
|
+
np.nanpercentile(energy, 75)
|
|
273
|
+
- np.nanpercentile(energy, 25)
|
|
274
|
+
)
|
|
275
|
+
* len(energy) ** (-1 / 3)
|
|
276
|
+
)
|
|
277
|
+
|
|
278
|
+
init_bin_width = min(init_bin_width, 2)
|
|
279
|
+
|
|
280
|
+
hist, bins, var = pgh.get_hist(
|
|
281
|
+
energy,
|
|
282
|
+
range=(
|
|
283
|
+
np.floor(np.nanpercentile(energy, 1)),
|
|
284
|
+
np.ceil(np.nanpercentile(energy, 99)),
|
|
285
|
+
),
|
|
286
|
+
dx=init_bin_width,
|
|
287
|
+
)
|
|
288
|
+
peak_loc = pgh.get_bin_centers(bins)[np.nanargmax(hist)]
|
|
289
|
+
|
|
290
|
+
peak_top_pars = pgc.hpge_fit_energy_peak_tops(
|
|
291
|
+
hist,
|
|
292
|
+
bins,
|
|
293
|
+
var,
|
|
294
|
+
[peak_loc],
|
|
295
|
+
n_to_fit=7,
|
|
296
|
+
)[0][0]
|
|
297
|
+
try:
|
|
298
|
+
mu = peak_top_pars[0]
|
|
299
|
+
if mu > np.nanmax(bins) or mu < np.nanmin(bins):
|
|
300
|
+
raise ValueError
|
|
301
|
+
except Exception:
|
|
302
|
+
mu = np.nan
|
|
303
|
+
if mu is None or np.isnan(mu):
|
|
304
|
+
log.debug("Fit failed, using max guess")
|
|
305
|
+
rough_adc_to_kev = peak / peak_loc
|
|
306
|
+
e_lower_lim = (
|
|
307
|
+
peak_loc
|
|
308
|
+
- (1.5 * peak_dict["kev_width"][0])
|
|
309
|
+
/ rough_adc_to_kev
|
|
310
|
+
)
|
|
311
|
+
e_upper_lim = (
|
|
312
|
+
peak_loc
|
|
313
|
+
+ (1.5 * peak_dict["kev_width"][1])
|
|
314
|
+
/ rough_adc_to_kev
|
|
315
|
+
)
|
|
316
|
+
hist, bins, var = pgh.get_hist(
|
|
317
|
+
energy,
|
|
318
|
+
range=(int(e_lower_lim), int(e_upper_lim)),
|
|
319
|
+
dx=init_bin_width,
|
|
320
|
+
)
|
|
321
|
+
mu = pgh.get_bin_centers(bins)[np.nanargmax(hist)]
|
|
322
|
+
|
|
323
|
+
updated_adc_to_kev = peak / mu
|
|
324
|
+
e_lower_lim = (
|
|
325
|
+
mu - (peak_dict["kev_width"][0]) / updated_adc_to_kev
|
|
326
|
+
)
|
|
327
|
+
e_upper_lim = (
|
|
328
|
+
mu + (peak_dict["kev_width"][1]) / updated_adc_to_kev
|
|
329
|
+
)
|
|
330
|
+
msg = f"{peak}: lower lim is :{e_lower_lim}, upper lim is {e_upper_lim}"
|
|
331
|
+
log.info(msg)
|
|
332
|
+
peak_dict["e_lower_lim"] = e_lower_lim
|
|
333
|
+
peak_dict["e_upper_lim"] = e_upper_lim
|
|
334
|
+
peak_dict["ecal_par"] = updated_adc_to_kev
|
|
335
|
+
|
|
336
|
+
out_tbl, n_wfs = get_out_data(
|
|
337
|
+
peak_dict["obj_buf"],
|
|
338
|
+
tb_out,
|
|
339
|
+
cut_dict,
|
|
340
|
+
e_lower_lim,
|
|
341
|
+
e_upper_lim,
|
|
342
|
+
peak_dict["ecal_par"],
|
|
343
|
+
raw_dict,
|
|
344
|
+
int(peak),
|
|
345
|
+
final_cut_field=final_cut_field,
|
|
346
|
+
energy_param=energy_parameter,
|
|
347
|
+
)
|
|
348
|
+
lh5.write(
|
|
349
|
+
out_tbl,
|
|
350
|
+
name=lh5_path,
|
|
351
|
+
lh5_file=temp_output,
|
|
352
|
+
wo_mode="a",
|
|
353
|
+
)
|
|
354
|
+
peak_dict["obj_buf"] = None
|
|
355
|
+
peak_dict["obj_buf_start"] = 0
|
|
356
|
+
peak_dict["n_events"] = n_wfs
|
|
357
|
+
msg = f"found {peak_dict['n_events']} events for {peak}"
|
|
358
|
+
log.debug(msg)
|
|
359
|
+
elif (
|
|
360
|
+
peak_dict["obj_buf"] is not None
|
|
361
|
+
and len(peak_dict["obj_buf"]) > 0
|
|
362
|
+
):
|
|
363
|
+
tb_out = run_one_dsp(
|
|
364
|
+
peak_dict["obj_buf"], dsp_config, db_dict=db_dict
|
|
365
|
+
)
|
|
366
|
+
out_tbl, n_wfs = get_out_data(
|
|
367
|
+
peak_dict["obj_buf"],
|
|
368
|
+
tb_out,
|
|
369
|
+
cut_dict,
|
|
370
|
+
peak_dict["e_lower_lim"],
|
|
371
|
+
peak_dict["e_upper_lim"],
|
|
372
|
+
peak_dict["ecal_par"],
|
|
373
|
+
raw_dict,
|
|
374
|
+
int(peak),
|
|
375
|
+
final_cut_field=final_cut_field,
|
|
376
|
+
energy_param=energy_parameter,
|
|
377
|
+
)
|
|
378
|
+
peak_dict["n_events"] += n_wfs
|
|
379
|
+
lh5.write(
|
|
380
|
+
out_tbl,
|
|
381
|
+
name=lh5_path,
|
|
382
|
+
lh5_file=temp_output,
|
|
383
|
+
wo_mode="a",
|
|
384
|
+
)
|
|
385
|
+
peak_dict["obj_buf"] = None
|
|
386
|
+
peak_dict["obj_buf_start"] = 0
|
|
387
|
+
msg = f"found {peak_dict['n_events']} events for {peak}"
|
|
388
|
+
log.debug(msg)
|
|
389
|
+
if peak_dict["n_events"] >= n_events:
|
|
390
|
+
peak_dict["idxs"] = None
|
|
391
|
+
msg = (
|
|
392
|
+
f"{peak} has reached the required number of events"
|
|
393
|
+
)
|
|
394
|
+
log.debug(msg)
|
|
395
|
+
|
|
396
|
+
else:
|
|
397
|
+
Path(temp_output).touch()
|
|
398
|
+
msg = f"event selection completed in {time.time() - t0} seconds"
|
|
399
|
+
log.debug(msg)
|
|
400
|
+
Path(temp_output).rename(args.peak_file)
|
|
@@ -0,0 +1,120 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import argparse
|
|
4
|
+
import pickle as pkl
|
|
5
|
+
import time
|
|
6
|
+
from pathlib import Path
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
import pygama.pargen.noise_optimization as pno
|
|
10
|
+
from dbetto import TextDB
|
|
11
|
+
from dbetto.catalog import Props
|
|
12
|
+
from lgdo import lh5
|
|
13
|
+
from pygama.pargen.data_cleaning import generate_cuts, get_cut_indexes
|
|
14
|
+
from pygama.pargen.dsp_optimize import run_one_dsp
|
|
15
|
+
|
|
16
|
+
from ....utils import build_log
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def par_geds_dsp_nopt() -> None:
|
|
20
|
+
argparser = argparse.ArgumentParser()
|
|
21
|
+
argparser.add_argument("--raw-filelist", help="raw_filelist", type=str)
|
|
22
|
+
argparser.add_argument("--database", help="database", type=str, required=True)
|
|
23
|
+
argparser.add_argument("--inplots", help="inplots", type=str)
|
|
24
|
+
|
|
25
|
+
argparser.add_argument("--configs", help="configs", type=str, required=True)
|
|
26
|
+
argparser.add_argument("--log", help="log_file", type=str)
|
|
27
|
+
|
|
28
|
+
argparser.add_argument("--datatype", help="Datatype", type=str, required=True)
|
|
29
|
+
argparser.add_argument("--timestamp", help="Timestamp", type=str, required=True)
|
|
30
|
+
argparser.add_argument("--channel", help="Channel", type=str, required=True)
|
|
31
|
+
argparser.add_argument(
|
|
32
|
+
"--raw-table-name", help="raw table name", type=str, required=True
|
|
33
|
+
)
|
|
34
|
+
|
|
35
|
+
argparser.add_argument("--dsp-pars", help="dsp_pars", type=str, required=True)
|
|
36
|
+
argparser.add_argument("--plot-path", help="plot_path", type=str)
|
|
37
|
+
|
|
38
|
+
args = argparser.parse_args()
|
|
39
|
+
|
|
40
|
+
configs = TextDB(args.configs, lazy=True).on(args.timestamp, system=args.datatype)
|
|
41
|
+
config_dict = configs["snakemake_rules"]["pars_dsp_nopt"]
|
|
42
|
+
|
|
43
|
+
log = build_log(config_dict, args.log)
|
|
44
|
+
|
|
45
|
+
t0 = time.time()
|
|
46
|
+
|
|
47
|
+
dsp_config = config_dict["inputs"]["processing_chain"][args.channel]
|
|
48
|
+
opt_json = config_dict["inputs"]["optimiser_config"][args.channel]
|
|
49
|
+
|
|
50
|
+
opt_dict = Props.read_from(opt_json)
|
|
51
|
+
db_dict = Props.read_from(args.database)
|
|
52
|
+
|
|
53
|
+
if opt_dict.pop("run_nopt") is True:
|
|
54
|
+
with Path(args.raw_filelist).open() as f:
|
|
55
|
+
files = f.read().splitlines()
|
|
56
|
+
|
|
57
|
+
raw_files = sorted(files)
|
|
58
|
+
|
|
59
|
+
energies = lh5.read_as(
|
|
60
|
+
f"{args.raw_table_name}/daqenergy", raw_files, library="np"
|
|
61
|
+
)
|
|
62
|
+
idxs = np.where(energies == 0)[0]
|
|
63
|
+
tb_data = lh5.read(
|
|
64
|
+
args.raw_table_name, raw_files, n_rows=opt_dict["n_events"], idx=idxs
|
|
65
|
+
)
|
|
66
|
+
t1 = time.time()
|
|
67
|
+
msg = f"Time to open raw files {t1 - t0:.2f} s, n. baselines {len(tb_data)}"
|
|
68
|
+
log.info(msg)
|
|
69
|
+
|
|
70
|
+
msg = f"Select baselines {len(tb_data)}"
|
|
71
|
+
log.info(msg)
|
|
72
|
+
dsp_data = run_one_dsp(tb_data, dsp_config)
|
|
73
|
+
cut_dict = generate_cuts(dsp_data, cut_dict=opt_dict.pop("cut_pars"))
|
|
74
|
+
cut_idxs = get_cut_indexes(dsp_data, cut_dict)
|
|
75
|
+
tb_data = lh5.read(
|
|
76
|
+
args.raw_table_name,
|
|
77
|
+
raw_files,
|
|
78
|
+
n_rows=opt_dict.pop("n_events"),
|
|
79
|
+
idx=idxs[cut_idxs],
|
|
80
|
+
)
|
|
81
|
+
msg = f"... {len(tb_data)} baselines after cuts"
|
|
82
|
+
log.info(msg)
|
|
83
|
+
|
|
84
|
+
if isinstance(dsp_config, str | list):
|
|
85
|
+
dsp_config = Props.read_from(dsp_config)
|
|
86
|
+
|
|
87
|
+
if args.plot_path:
|
|
88
|
+
out_dict, plot_dict = pno.noise_optimization(
|
|
89
|
+
tb_data,
|
|
90
|
+
dsp_config,
|
|
91
|
+
db_dict.copy(),
|
|
92
|
+
opt_dict,
|
|
93
|
+
args.raw_table_name,
|
|
94
|
+
display=1,
|
|
95
|
+
)
|
|
96
|
+
else:
|
|
97
|
+
out_dict = pno.noise_optimization(
|
|
98
|
+
raw_files, dsp_config, db_dict.copy(), opt_dict, args.raw_table_name
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
t2 = time.time()
|
|
102
|
+
msg = f"Optimiser finished in {(t2 - t0) / 60} minutes"
|
|
103
|
+
log.info(msg)
|
|
104
|
+
else:
|
|
105
|
+
out_dict = {}
|
|
106
|
+
plot_dict = {}
|
|
107
|
+
|
|
108
|
+
if args.plot_path:
|
|
109
|
+
Path(args.plot_path).parent.mkdir(parents=True, exist_ok=True)
|
|
110
|
+
if args.inplots:
|
|
111
|
+
with Path(args.inplots).open("rb") as r:
|
|
112
|
+
old_plot_dict = pkl.load(r)
|
|
113
|
+
plot_dict = dict(noise_optimisation=plot_dict, **old_plot_dict)
|
|
114
|
+
else:
|
|
115
|
+
plot_dict = {"noise_optimisation": plot_dict}
|
|
116
|
+
with Path(args.plot_path).open("wb") as f:
|
|
117
|
+
pkl.dump(plot_dict, f, protocol=pkl.HIGHEST_PROTOCOL)
|
|
118
|
+
|
|
119
|
+
Path(args.dsp_pars).parent.mkdir(parents=True, exist_ok=True)
|
|
120
|
+
Props.write_to(args.dsp_pars, dict(nopt_pars=out_dict, **db_dict))
|