legend-dataflow-scripts 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- legend_dataflow_scripts-0.1.0.dist-info/METADATA +57 -0
- legend_dataflow_scripts-0.1.0.dist-info/RECORD +36 -0
- legend_dataflow_scripts-0.1.0.dist-info/WHEEL +5 -0
- legend_dataflow_scripts-0.1.0.dist-info/entry_points.txt +18 -0
- legend_dataflow_scripts-0.1.0.dist-info/top_level.txt +1 -0
- legenddataflowscripts/__init__.py +17 -0
- legenddataflowscripts/_version.py +21 -0
- legenddataflowscripts/par/__init__.py +0 -0
- legenddataflowscripts/par/geds/__init__.py +0 -0
- legenddataflowscripts/par/geds/dsp/__init__.py +0 -0
- legenddataflowscripts/par/geds/dsp/dplms.py +145 -0
- legenddataflowscripts/par/geds/dsp/eopt.py +398 -0
- legenddataflowscripts/par/geds/dsp/evtsel.py +400 -0
- legenddataflowscripts/par/geds/dsp/nopt.py +120 -0
- legenddataflowscripts/par/geds/dsp/pz.py +217 -0
- legenddataflowscripts/par/geds/dsp/svm.py +28 -0
- legenddataflowscripts/par/geds/dsp/svm_build.py +69 -0
- legenddataflowscripts/par/geds/hit/__init__.py +0 -0
- legenddataflowscripts/par/geds/hit/aoe.py +245 -0
- legenddataflowscripts/par/geds/hit/ecal.py +778 -0
- legenddataflowscripts/par/geds/hit/lq.py +213 -0
- legenddataflowscripts/par/geds/hit/qc.py +326 -0
- legenddataflowscripts/tier/__init__.py +0 -0
- legenddataflowscripts/tier/dsp.py +263 -0
- legenddataflowscripts/tier/hit.py +148 -0
- legenddataflowscripts/utils/__init__.py +15 -0
- legenddataflowscripts/utils/alias_table.py +28 -0
- legenddataflowscripts/utils/cfgtools.py +14 -0
- legenddataflowscripts/utils/convert_np.py +31 -0
- legenddataflowscripts/utils/log.py +77 -0
- legenddataflowscripts/utils/pulser_removal.py +16 -0
- legenddataflowscripts/workflow/__init__.py +20 -0
- legenddataflowscripts/workflow/execenv.py +327 -0
- legenddataflowscripts/workflow/filedb.py +107 -0
- legenddataflowscripts/workflow/pre_compile_catalog.py +24 -0
- legenddataflowscripts/workflow/utils.py +113 -0
|
@@ -0,0 +1,398 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import argparse
|
|
4
|
+
import pickle as pkl
|
|
5
|
+
import time
|
|
6
|
+
import warnings
|
|
7
|
+
from pathlib import Path
|
|
8
|
+
|
|
9
|
+
import numpy as np
|
|
10
|
+
import pygama.pargen.energy_optimisation as om # noqa: F401
|
|
11
|
+
import sklearn.gaussian_process.kernels as ker
|
|
12
|
+
from dbetto import TextDB
|
|
13
|
+
from dbetto.catalog import Props
|
|
14
|
+
from dspeed.units import unit_registry as ureg
|
|
15
|
+
from lgdo import lh5
|
|
16
|
+
from pygama.math.distributions import hpge_peak
|
|
17
|
+
from pygama.pargen.dsp_optimize import (
|
|
18
|
+
BayesianOptimizer,
|
|
19
|
+
run_bayesian_optimisation,
|
|
20
|
+
run_one_dsp,
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
from ....utils import build_log
|
|
24
|
+
|
|
25
|
+
warnings.filterwarnings(action="ignore", category=RuntimeWarning)
|
|
26
|
+
warnings.filterwarnings(action="ignore", category=np.exceptions.RankWarning)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def par_geds_dsp_eopt() -> None:
|
|
30
|
+
argparser = argparse.ArgumentParser()
|
|
31
|
+
|
|
32
|
+
argparser.add_argument("--peak-file", help="tcm_filelist", type=str, required=True)
|
|
33
|
+
argparser.add_argument("--decay-const", help="decay_const", type=str, required=True)
|
|
34
|
+
argparser.add_argument("--inplots", help="in_plot_path", type=str)
|
|
35
|
+
|
|
36
|
+
argparser.add_argument("--log", help="log_file", type=str)
|
|
37
|
+
argparser.add_argument("--configs", help="configs", type=str, required=True)
|
|
38
|
+
|
|
39
|
+
argparser.add_argument("--datatype", help="Datatype", type=str, required=True)
|
|
40
|
+
argparser.add_argument("--timestamp", help="Timestamp", type=str, required=True)
|
|
41
|
+
argparser.add_argument("--channel", help="Channel", type=str, required=True)
|
|
42
|
+
argparser.add_argument(
|
|
43
|
+
"--raw-table-name", help="raw table name", type=str, required=True
|
|
44
|
+
)
|
|
45
|
+
|
|
46
|
+
argparser.add_argument(
|
|
47
|
+
"--final-dsp-pars", help="final_dsp_pars", type=str, required=True
|
|
48
|
+
)
|
|
49
|
+
argparser.add_argument("--qbb-grid-path", help="qbb_grid_path", type=str)
|
|
50
|
+
argparser.add_argument("--plot-path", help="plot_path", type=str)
|
|
51
|
+
|
|
52
|
+
argparser.add_argument(
|
|
53
|
+
"--plot-save-path", help="plot_save_path", type=str, required=False
|
|
54
|
+
)
|
|
55
|
+
args = argparser.parse_args()
|
|
56
|
+
|
|
57
|
+
configs = TextDB(args.configs, lazy=True).on(args.timestamp, system=args.datatype)
|
|
58
|
+
config_dict = configs["snakemake_rules"]["pars_dsp_eopt"]
|
|
59
|
+
|
|
60
|
+
log = build_log(config_dict, args.log)
|
|
61
|
+
|
|
62
|
+
t0 = time.time()
|
|
63
|
+
|
|
64
|
+
dsp_config = config_dict["inputs"]["processing_chain"][args.channel]
|
|
65
|
+
opt_json = config_dict["inputs"]["optimiser_config"][args.channel]
|
|
66
|
+
|
|
67
|
+
opt_dict = Props.read_from(opt_json)
|
|
68
|
+
db_dict = Props.read_from(args.decay_const)
|
|
69
|
+
|
|
70
|
+
if opt_dict.pop("run_eopt") is True:
|
|
71
|
+
peaks_kev = np.array(opt_dict["peaks"])
|
|
72
|
+
kev_widths = [tuple(kev_width) for kev_width in opt_dict["kev_widths"]]
|
|
73
|
+
|
|
74
|
+
kwarg_dicts_cusp = []
|
|
75
|
+
kwarg_dicts_trap = []
|
|
76
|
+
kwarg_dicts_zac = []
|
|
77
|
+
for peak in peaks_kev:
|
|
78
|
+
peak_idx = np.where(peaks_kev == peak)[0][0]
|
|
79
|
+
kev_width = kev_widths[peak_idx]
|
|
80
|
+
|
|
81
|
+
kwarg_dicts_cusp.append(
|
|
82
|
+
{
|
|
83
|
+
"parameter": "cuspEmax",
|
|
84
|
+
"func": hpge_peak,
|
|
85
|
+
"peak": peak,
|
|
86
|
+
"kev_width": kev_width,
|
|
87
|
+
"bin_width": 5,
|
|
88
|
+
}
|
|
89
|
+
)
|
|
90
|
+
kwarg_dicts_zac.append(
|
|
91
|
+
{
|
|
92
|
+
"parameter": "zacEmax",
|
|
93
|
+
"func": hpge_peak,
|
|
94
|
+
"peak": peak,
|
|
95
|
+
"kev_width": kev_width,
|
|
96
|
+
"bin_width": 5,
|
|
97
|
+
}
|
|
98
|
+
)
|
|
99
|
+
kwarg_dicts_trap.append(
|
|
100
|
+
{
|
|
101
|
+
"parameter": "trapEmax",
|
|
102
|
+
"func": hpge_peak,
|
|
103
|
+
"peak": peak,
|
|
104
|
+
"kev_width": kev_width,
|
|
105
|
+
"bin_width": 5,
|
|
106
|
+
}
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
peaks_rounded = [int(peak) for peak in peaks_kev]
|
|
110
|
+
peaks = lh5.read_as(f"{args.raw_table_name}/peak", args.peak_file, library="np")
|
|
111
|
+
ids = np.isin(peaks, peaks_rounded)
|
|
112
|
+
peaks = peaks[ids]
|
|
113
|
+
idx_list = [np.where(peaks == peak)[0] for peak in peaks_rounded]
|
|
114
|
+
|
|
115
|
+
tb_data = lh5.read(args.raw_table_name, args.peak_file, idx=ids)
|
|
116
|
+
|
|
117
|
+
t1 = time.time()
|
|
118
|
+
msg = f"Data Loaded in {(t1 - t0) / 60} minutes"
|
|
119
|
+
log.info(msg)
|
|
120
|
+
|
|
121
|
+
if isinstance(dsp_config, str | list):
|
|
122
|
+
dsp_config = Props.read_from(dsp_config)
|
|
123
|
+
|
|
124
|
+
dsp_config["outputs"] = ["tp_99", "tp_0_est", "dt_eff"]
|
|
125
|
+
|
|
126
|
+
init_data = run_one_dsp(tb_data, dsp_config, db_dict=db_dict, verbosity=0)
|
|
127
|
+
full_dt = (init_data["tp_99"].nda - init_data["tp_0_est"].nda)[idx_list[-1]]
|
|
128
|
+
flat_val = np.ceil(1.1 * np.nanpercentile(full_dt, 99) / 100) / 10
|
|
129
|
+
|
|
130
|
+
if flat_val < 1.0:
|
|
131
|
+
flat_val = 1.0
|
|
132
|
+
elif flat_val > 4:
|
|
133
|
+
flat_val = 4
|
|
134
|
+
flat_val = f"{flat_val}*us"
|
|
135
|
+
|
|
136
|
+
db_dict["cusp"] = {"flat": flat_val}
|
|
137
|
+
db_dict["zac"] = {"flat": flat_val}
|
|
138
|
+
db_dict["etrap"] = {"flat": flat_val}
|
|
139
|
+
|
|
140
|
+
tb_data.add_column("dt_eff", init_data["dt_eff"])
|
|
141
|
+
|
|
142
|
+
dsp_config["processors"].pop("dt_eff")
|
|
143
|
+
|
|
144
|
+
dsp_config["outputs"] = ["zacEmax", "cuspEmax", "trapEmax", "dt_eff"]
|
|
145
|
+
|
|
146
|
+
kwarg_dict = [
|
|
147
|
+
{
|
|
148
|
+
"peak_dicts": kwarg_dicts_cusp,
|
|
149
|
+
"ctc_param": "dt_eff",
|
|
150
|
+
"idx_list": idx_list,
|
|
151
|
+
"peaks_kev": peaks_kev,
|
|
152
|
+
},
|
|
153
|
+
{
|
|
154
|
+
"peak_dicts": kwarg_dicts_zac,
|
|
155
|
+
"ctc_param": "dt_eff",
|
|
156
|
+
"idx_list": idx_list,
|
|
157
|
+
"peaks_kev": peaks_kev,
|
|
158
|
+
},
|
|
159
|
+
{
|
|
160
|
+
"peak_dicts": kwarg_dicts_trap,
|
|
161
|
+
"ctc_param": "dt_eff",
|
|
162
|
+
"idx_list": idx_list,
|
|
163
|
+
"peaks_kev": peaks_kev,
|
|
164
|
+
},
|
|
165
|
+
]
|
|
166
|
+
|
|
167
|
+
fom = eval(opt_dict["fom"])
|
|
168
|
+
out_field = opt_dict["fom_field"]
|
|
169
|
+
out_err_field = opt_dict["fom_err_field"]
|
|
170
|
+
sample_x = np.array(opt_dict["initial_samples"])
|
|
171
|
+
|
|
172
|
+
results_cusp = []
|
|
173
|
+
results_zac = []
|
|
174
|
+
results_trap = []
|
|
175
|
+
|
|
176
|
+
sample_y_cusp = []
|
|
177
|
+
sample_y_zac = []
|
|
178
|
+
sample_y_trap = []
|
|
179
|
+
|
|
180
|
+
err_y_cusp = []
|
|
181
|
+
err_y_zac = []
|
|
182
|
+
err_y_trap = []
|
|
183
|
+
|
|
184
|
+
for i, x in enumerate(sample_x):
|
|
185
|
+
db_dict["cusp"]["sigma"] = f"{x[0]}*us"
|
|
186
|
+
db_dict["zac"]["sigma"] = f"{x[0]}*us"
|
|
187
|
+
db_dict["etrap"]["rise"] = f"{x[0]}*us"
|
|
188
|
+
|
|
189
|
+
msg = f"Initialising values {i + 1} : {db_dict}"
|
|
190
|
+
log.info(msg)
|
|
191
|
+
|
|
192
|
+
tb_out = run_one_dsp(tb_data, dsp_config, db_dict=db_dict, verbosity=0)
|
|
193
|
+
|
|
194
|
+
res = fom(tb_out, kwarg_dict[0])
|
|
195
|
+
results_cusp.append(res)
|
|
196
|
+
sample_y_cusp.append(res[out_field])
|
|
197
|
+
err_y_cusp.append(res[out_err_field])
|
|
198
|
+
|
|
199
|
+
res = fom(tb_out, kwarg_dict[1])
|
|
200
|
+
results_zac.append(res)
|
|
201
|
+
sample_y_zac.append(res[out_field])
|
|
202
|
+
err_y_zac.append(res[out_err_field])
|
|
203
|
+
|
|
204
|
+
res = fom(tb_out, kwarg_dict[2])
|
|
205
|
+
results_trap.append(res)
|
|
206
|
+
sample_y_trap.append(res[out_field])
|
|
207
|
+
err_y_trap.append(res[out_err_field])
|
|
208
|
+
|
|
209
|
+
msg = f"{i + 1} Finished"
|
|
210
|
+
log.info(msg)
|
|
211
|
+
|
|
212
|
+
if np.isnan(sample_y_cusp).all():
|
|
213
|
+
max_cusp = opt_dict["nan_default"]
|
|
214
|
+
else:
|
|
215
|
+
max_cusp = np.ceil(np.nanmax(sample_y_cusp) * 2)
|
|
216
|
+
if np.isnan(sample_y_zac).all():
|
|
217
|
+
max_zac = opt_dict["nan_default"]
|
|
218
|
+
else:
|
|
219
|
+
max_zac = np.ceil(np.nanmax(sample_y_zac) * 2)
|
|
220
|
+
if np.isnan(sample_y_trap).all():
|
|
221
|
+
max_trap = opt_dict["nan_default"]
|
|
222
|
+
else:
|
|
223
|
+
max_trap = np.ceil(np.nanmax(sample_y_trap) * 2)
|
|
224
|
+
|
|
225
|
+
nan_vals = [max_cusp, max_zac, max_trap]
|
|
226
|
+
|
|
227
|
+
for i in range(len(sample_x)):
|
|
228
|
+
if np.isnan(sample_y_cusp[i]):
|
|
229
|
+
results_cusp[i]["y_val"] = max_cusp
|
|
230
|
+
sample_y_cusp[i] = max_cusp
|
|
231
|
+
|
|
232
|
+
if np.isnan(sample_y_zac[i]):
|
|
233
|
+
results_zac[i]["y_val"] = max_zac
|
|
234
|
+
sample_y_zac[i] = max_zac
|
|
235
|
+
|
|
236
|
+
if np.isnan(sample_y_trap[i]):
|
|
237
|
+
results_trap[i]["y_val"] = max_trap
|
|
238
|
+
sample_y_trap[i] = max_trap
|
|
239
|
+
|
|
240
|
+
kernel = (
|
|
241
|
+
ker.ConstantKernel(2.0, constant_value_bounds="fixed")
|
|
242
|
+
+ 1.0 * ker.RBF(1.0, length_scale_bounds=[0.5, 2.5])
|
|
243
|
+
+ ker.WhiteKernel(noise_level=0.1, noise_level_bounds=(1e-5, 1e1))
|
|
244
|
+
)
|
|
245
|
+
|
|
246
|
+
lambda_param = 5
|
|
247
|
+
sampling_rate = tb_data["waveform_presummed"]["dt"][0]
|
|
248
|
+
sampling_unit = ureg.Quantity(
|
|
249
|
+
tb_data["waveform_presummed"]["dt"].attrs["units"]
|
|
250
|
+
)
|
|
251
|
+
waveform_sampling = sampling_rate * sampling_unit
|
|
252
|
+
|
|
253
|
+
bopt_cusp = BayesianOptimizer(
|
|
254
|
+
acq_func=opt_dict["acq_func"],
|
|
255
|
+
batch_size=opt_dict["batch_size"],
|
|
256
|
+
kernel=kernel,
|
|
257
|
+
sampling_rate=waveform_sampling,
|
|
258
|
+
fom_value=out_field,
|
|
259
|
+
fom_error=out_err_field,
|
|
260
|
+
)
|
|
261
|
+
bopt_cusp.lambda_param = lambda_param
|
|
262
|
+
bopt_cusp.add_dimension("cusp", "sigma", 0.5, 16, True, "us")
|
|
263
|
+
|
|
264
|
+
bopt_zac = BayesianOptimizer(
|
|
265
|
+
acq_func=opt_dict["acq_func"],
|
|
266
|
+
batch_size=opt_dict["batch_size"],
|
|
267
|
+
kernel=kernel,
|
|
268
|
+
sampling_rate=waveform_sampling,
|
|
269
|
+
fom_value=out_field,
|
|
270
|
+
fom_error=out_err_field,
|
|
271
|
+
)
|
|
272
|
+
bopt_zac.lambda_param = lambda_param
|
|
273
|
+
bopt_zac.add_dimension("zac", "sigma", 0.5, 16, True, "us")
|
|
274
|
+
|
|
275
|
+
bopt_trap = BayesianOptimizer(
|
|
276
|
+
acq_func=opt_dict["acq_func"],
|
|
277
|
+
batch_size=opt_dict["batch_size"],
|
|
278
|
+
kernel=kernel,
|
|
279
|
+
sampling_rate=waveform_sampling,
|
|
280
|
+
fom_value=out_field,
|
|
281
|
+
fom_error=out_err_field,
|
|
282
|
+
)
|
|
283
|
+
bopt_trap.lambda_param = lambda_param
|
|
284
|
+
bopt_trap.add_dimension("etrap", "rise", 1, 12, True, "us")
|
|
285
|
+
|
|
286
|
+
bopt_cusp.add_initial_values(
|
|
287
|
+
x_init=sample_x, y_init=sample_y_cusp, yerr_init=err_y_cusp
|
|
288
|
+
)
|
|
289
|
+
bopt_zac.add_initial_values(
|
|
290
|
+
x_init=sample_x, y_init=sample_y_zac, yerr_init=err_y_zac
|
|
291
|
+
)
|
|
292
|
+
bopt_trap.add_initial_values(
|
|
293
|
+
x_init=sample_x, y_init=sample_y_trap, yerr_init=err_y_trap
|
|
294
|
+
)
|
|
295
|
+
|
|
296
|
+
best_idx = np.nanargmin(sample_y_cusp)
|
|
297
|
+
bopt_cusp.optimal_results = results_cusp[best_idx]
|
|
298
|
+
bopt_cusp.optimal_x = sample_x[best_idx]
|
|
299
|
+
|
|
300
|
+
best_idx = np.nanargmin(sample_y_zac)
|
|
301
|
+
bopt_zac.optimal_results = results_zac[best_idx]
|
|
302
|
+
bopt_zac.optimal_x = sample_x[best_idx]
|
|
303
|
+
|
|
304
|
+
best_idx = np.nanargmin(sample_y_trap)
|
|
305
|
+
bopt_trap.optimal_results = results_trap[best_idx]
|
|
306
|
+
bopt_trap.optimal_x = sample_x[best_idx]
|
|
307
|
+
|
|
308
|
+
optimisers = [bopt_cusp, bopt_zac, bopt_trap]
|
|
309
|
+
|
|
310
|
+
out_param_dict, out_results_list = run_bayesian_optimisation(
|
|
311
|
+
tb_data,
|
|
312
|
+
dsp_config,
|
|
313
|
+
[fom],
|
|
314
|
+
optimisers,
|
|
315
|
+
fom_kwargs=kwarg_dict,
|
|
316
|
+
db_dict=db_dict,
|
|
317
|
+
nan_val=nan_vals,
|
|
318
|
+
n_iter=opt_dict["n_iter"],
|
|
319
|
+
)
|
|
320
|
+
|
|
321
|
+
Props.add_to(db_dict, out_param_dict)
|
|
322
|
+
|
|
323
|
+
# db_dict.update(out_param_dict)
|
|
324
|
+
|
|
325
|
+
t2 = time.time()
|
|
326
|
+
msg = f"Optimiser finished in {(t2 - t1) / 60} minutes"
|
|
327
|
+
log.info(msg)
|
|
328
|
+
|
|
329
|
+
out_alpha_dict = {}
|
|
330
|
+
out_alpha_dict["cuspEmax_ctc"] = {
|
|
331
|
+
"expression": "cuspEmax*(1+dt_eff*a)",
|
|
332
|
+
"parameters": {"a": float(round(bopt_cusp.optimal_results["alpha"], 9))},
|
|
333
|
+
}
|
|
334
|
+
|
|
335
|
+
out_alpha_dict["cuspEftp_ctc"] = {
|
|
336
|
+
"expression": "cuspEftp*(1+dt_eff*a)",
|
|
337
|
+
"parameters": {"a": float(round(bopt_cusp.optimal_results["alpha"], 9))},
|
|
338
|
+
}
|
|
339
|
+
|
|
340
|
+
out_alpha_dict["zacEmax_ctc"] = {
|
|
341
|
+
"expression": "zacEmax*(1+dt_eff*a)",
|
|
342
|
+
"parameters": {"a": float(round(bopt_zac.optimal_results["alpha"], 9))},
|
|
343
|
+
}
|
|
344
|
+
|
|
345
|
+
out_alpha_dict["zacEftp_ctc"] = {
|
|
346
|
+
"expression": "zacEftp*(1+dt_eff*a)",
|
|
347
|
+
"parameters": {"a": float(round(bopt_zac.optimal_results["alpha"], 9))},
|
|
348
|
+
}
|
|
349
|
+
|
|
350
|
+
out_alpha_dict["trapEmax_ctc"] = {
|
|
351
|
+
"expression": "trapEmax*(1+dt_eff*a)",
|
|
352
|
+
"parameters": {"a": float(round(bopt_trap.optimal_results["alpha"], 9))},
|
|
353
|
+
}
|
|
354
|
+
|
|
355
|
+
out_alpha_dict["trapEftp_ctc"] = {
|
|
356
|
+
"expression": "trapEftp*(1+dt_eff*a)",
|
|
357
|
+
"parameters": {"a": float(round(bopt_trap.optimal_results["alpha"], 9))},
|
|
358
|
+
}
|
|
359
|
+
if "ctc_params" in db_dict:
|
|
360
|
+
db_dict["ctc_params"].update(out_alpha_dict)
|
|
361
|
+
else:
|
|
362
|
+
db_dict.update({"ctc_params": out_alpha_dict})
|
|
363
|
+
|
|
364
|
+
Path(args.qbb_grid_path).parent.mkdir(parents=True, exist_ok=True)
|
|
365
|
+
with Path(args.qbb_grid_path).open("wb") as f:
|
|
366
|
+
pkl.dump(optimisers, f)
|
|
367
|
+
|
|
368
|
+
else:
|
|
369
|
+
Path(args.qbb_grid_path).touch()
|
|
370
|
+
|
|
371
|
+
Path(args.final_dsp_pars).parent.mkdir(parents=True, exist_ok=True)
|
|
372
|
+
Props.write_to(args.final_dsp_pars, db_dict)
|
|
373
|
+
|
|
374
|
+
if args.plot_path:
|
|
375
|
+
if args.inplots:
|
|
376
|
+
with Path(args.inplots).open("rb") as r:
|
|
377
|
+
plot_dict = pkl.load(r)
|
|
378
|
+
else:
|
|
379
|
+
plot_dict = {}
|
|
380
|
+
|
|
381
|
+
plot_dict["trap_optimisation"] = {
|
|
382
|
+
"kernel_space": bopt_trap.plot(init_samples=sample_x),
|
|
383
|
+
"acq_space": bopt_trap.plot_acq(init_samples=sample_x),
|
|
384
|
+
}
|
|
385
|
+
|
|
386
|
+
plot_dict["cusp_optimisation"] = {
|
|
387
|
+
"kernel_space": bopt_cusp.plot(init_samples=sample_x),
|
|
388
|
+
"acq_space": bopt_cusp.plot_acq(init_samples=sample_x),
|
|
389
|
+
}
|
|
390
|
+
|
|
391
|
+
plot_dict["zac_optimisation"] = {
|
|
392
|
+
"kernel_space": bopt_zac.plot(init_samples=sample_x),
|
|
393
|
+
"acq_space": bopt_zac.plot_acq(init_samples=sample_x),
|
|
394
|
+
}
|
|
395
|
+
|
|
396
|
+
Path(args.plot_path).parent.mkdir(parents=True, exist_ok=True)
|
|
397
|
+
with Path(args.plot_path).open("wb") as w:
|
|
398
|
+
pkl.dump(plot_dict, w, protocol=pkl.HIGHEST_PROTOCOL)
|