lamindb 1.4.0__py3-none-any.whl → 1.5.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lamindb/__init__.py +52 -36
- lamindb/_finish.py +17 -10
- lamindb/_tracked.py +1 -1
- lamindb/base/__init__.py +3 -1
- lamindb/base/fields.py +40 -22
- lamindb/base/ids.py +1 -94
- lamindb/base/types.py +2 -0
- lamindb/base/uids.py +117 -0
- lamindb/core/_context.py +203 -102
- lamindb/core/_settings.py +38 -25
- lamindb/core/datasets/__init__.py +11 -4
- lamindb/core/datasets/_core.py +5 -5
- lamindb/core/datasets/_small.py +0 -93
- lamindb/core/datasets/mini_immuno.py +172 -0
- lamindb/core/loaders.py +1 -1
- lamindb/core/storage/_backed_access.py +100 -6
- lamindb/core/storage/_polars_lazy_df.py +51 -0
- lamindb/core/storage/_pyarrow_dataset.py +15 -30
- lamindb/core/storage/_tiledbsoma.py +29 -13
- lamindb/core/storage/objects.py +6 -0
- lamindb/core/subsettings/__init__.py +2 -0
- lamindb/core/subsettings/_annotation_settings.py +11 -0
- lamindb/curators/__init__.py +7 -3349
- lamindb/curators/_legacy.py +2056 -0
- lamindb/curators/core.py +1534 -0
- lamindb/errors.py +11 -0
- lamindb/examples/__init__.py +27 -0
- lamindb/examples/schemas/__init__.py +12 -0
- lamindb/examples/schemas/_anndata.py +25 -0
- lamindb/examples/schemas/_simple.py +19 -0
- lamindb/integrations/_vitessce.py +8 -5
- lamindb/migrations/0091_alter_featurevalue_options_alter_space_options_and_more.py +24 -0
- lamindb/migrations/0092_alter_artifactfeaturevalue_artifact_and_more.py +75 -0
- lamindb/migrations/0093_alter_schemacomponent_unique_together.py +16 -0
- lamindb/models/__init__.py +4 -1
- lamindb/models/_describe.py +21 -4
- lamindb/models/_feature_manager.py +382 -287
- lamindb/models/_label_manager.py +8 -2
- lamindb/models/artifact.py +177 -106
- lamindb/models/artifact_set.py +122 -0
- lamindb/models/collection.py +73 -52
- lamindb/models/core.py +1 -1
- lamindb/models/feature.py +51 -17
- lamindb/models/has_parents.py +69 -14
- lamindb/models/project.py +1 -1
- lamindb/models/query_manager.py +221 -22
- lamindb/models/query_set.py +247 -172
- lamindb/models/record.py +65 -247
- lamindb/models/run.py +4 -4
- lamindb/models/save.py +8 -2
- lamindb/models/schema.py +456 -184
- lamindb/models/transform.py +2 -2
- lamindb/models/ulabel.py +8 -5
- {lamindb-1.4.0.dist-info → lamindb-1.5.1.dist-info}/METADATA +6 -6
- {lamindb-1.4.0.dist-info → lamindb-1.5.1.dist-info}/RECORD +57 -43
- {lamindb-1.4.0.dist-info → lamindb-1.5.1.dist-info}/LICENSE +0 -0
- {lamindb-1.4.0.dist-info → lamindb-1.5.1.dist-info}/WHEEL +0 -0
@@ -0,0 +1,2056 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
|
3
|
+
import re
|
4
|
+
from itertools import chain
|
5
|
+
from typing import TYPE_CHECKING, Any, Iterable, Literal
|
6
|
+
|
7
|
+
import pandas as pd
|
8
|
+
import pyarrow as pa
|
9
|
+
from lamin_utils import colors, logger
|
10
|
+
from lamindb_setup.core import deprecated
|
11
|
+
from lamindb_setup.core.upath import UPath
|
12
|
+
|
13
|
+
from lamindb.core._compat import is_package_installed
|
14
|
+
from lamindb.models.artifact import (
|
15
|
+
data_is_anndata,
|
16
|
+
data_is_mudata,
|
17
|
+
data_is_spatialdata,
|
18
|
+
)
|
19
|
+
|
20
|
+
from ..errors import InvalidArgument
|
21
|
+
|
22
|
+
if TYPE_CHECKING:
|
23
|
+
from lamindb_setup.core.types import UPathStr
|
24
|
+
from mudata import MuData
|
25
|
+
from spatialdata import SpatialData
|
26
|
+
|
27
|
+
from lamindb.models import Record
|
28
|
+
from lamindb.base.types import FieldAttr # noqa
|
29
|
+
from lamindb.models import (
|
30
|
+
Artifact,
|
31
|
+
Feature,
|
32
|
+
Record,
|
33
|
+
Run,
|
34
|
+
Schema,
|
35
|
+
)
|
36
|
+
from lamindb.models.artifact import (
|
37
|
+
add_labels,
|
38
|
+
)
|
39
|
+
from lamindb.models._from_values import _format_values
|
40
|
+
from .core import CatLookup, CatVector
|
41
|
+
from ..errors import ValidationError
|
42
|
+
import anndata as ad
|
43
|
+
|
44
|
+
|
45
|
+
def _ref_is_name(field: FieldAttr | None) -> bool | None:
|
46
|
+
"""Check if the reference field is a name field."""
|
47
|
+
from ..models.can_curate import get_name_field
|
48
|
+
|
49
|
+
if field is not None:
|
50
|
+
name_field = get_name_field(field.field.model)
|
51
|
+
return field.field.name == name_field
|
52
|
+
return None
|
53
|
+
|
54
|
+
|
55
|
+
class CatManager:
|
56
|
+
"""Manage categoricals by updating registries.
|
57
|
+
|
58
|
+
This class is accessible from within a `DataFrameCurator` via the `.cat` attribute.
|
59
|
+
|
60
|
+
If you find non-validated values, you have several options:
|
61
|
+
|
62
|
+
- new values found in the data can be registered via `DataFrameCurator.cat.add_new_from()` :meth:`~lamindb.curators.DataFrameCatManager.add_new_from`
|
63
|
+
- non-validated values can be accessed via `DataFrameCurator.cat.add_new_from()` :meth:`~lamindb.curators.DataFrameCatManager.non_validated` and addressed manually
|
64
|
+
"""
|
65
|
+
|
66
|
+
def __init__(self, *, dataset, categoricals, sources, columns_field=None):
|
67
|
+
# the below is shared with Curator
|
68
|
+
self._artifact: Artifact = None # pass the dataset as an artifact
|
69
|
+
self._dataset: Any = dataset # pass the dataset as a UPathStr or data object
|
70
|
+
if isinstance(self._dataset, Artifact):
|
71
|
+
self._artifact = self._dataset
|
72
|
+
if self._artifact.otype in {"DataFrame", "AnnData"}:
|
73
|
+
self._dataset = self._dataset.load(
|
74
|
+
is_run_input=False # we already track this in the Curator constructor
|
75
|
+
)
|
76
|
+
self._is_validated: bool = False
|
77
|
+
# shared until here
|
78
|
+
self._categoricals = categoricals or {}
|
79
|
+
self._non_validated = None
|
80
|
+
self._sources = sources or {}
|
81
|
+
self._columns_field = columns_field
|
82
|
+
self._validate_category_error_messages: str = ""
|
83
|
+
self._cat_vectors: dict[str, CatVector] = {}
|
84
|
+
|
85
|
+
@property
|
86
|
+
def non_validated(self) -> dict[str, list[str]]:
|
87
|
+
"""Return the non-validated features and labels."""
|
88
|
+
if self._non_validated is None:
|
89
|
+
raise ValidationError("Please run validate() first!")
|
90
|
+
return {
|
91
|
+
key: cat_vector._non_validated
|
92
|
+
for key, cat_vector in self._cat_vectors.items()
|
93
|
+
if cat_vector._non_validated and key != "columns"
|
94
|
+
}
|
95
|
+
|
96
|
+
@property
|
97
|
+
def categoricals(self) -> dict:
|
98
|
+
"""Return the columns fields to validate against."""
|
99
|
+
return self._categoricals
|
100
|
+
|
101
|
+
def validate(self) -> bool:
|
102
|
+
"""Validate dataset.
|
103
|
+
|
104
|
+
This method also registers the validated records in the current instance.
|
105
|
+
|
106
|
+
Returns:
|
107
|
+
The boolean `True` if the dataset is validated. Otherwise, a string with the error message.
|
108
|
+
"""
|
109
|
+
pass # pragma: no cover
|
110
|
+
|
111
|
+
def standardize(self, key: str) -> None:
|
112
|
+
"""Replace synonyms with standardized values.
|
113
|
+
|
114
|
+
Inplace modification of the dataset.
|
115
|
+
|
116
|
+
Args:
|
117
|
+
key: The name of the column to standardize.
|
118
|
+
|
119
|
+
Returns:
|
120
|
+
None
|
121
|
+
"""
|
122
|
+
pass # pragma: no cover
|
123
|
+
|
124
|
+
def save_artifact(
|
125
|
+
self,
|
126
|
+
*,
|
127
|
+
key: str | None = None,
|
128
|
+
description: str | None = None,
|
129
|
+
revises: Artifact | None = None,
|
130
|
+
run: Run | None = None,
|
131
|
+
) -> Artifact:
|
132
|
+
"""{}""" # noqa: D415
|
133
|
+
# Make sure all labels are saved in the current instance
|
134
|
+
if not self._is_validated:
|
135
|
+
self.validate() # returns True or False
|
136
|
+
if not self._is_validated: # need to raise error manually
|
137
|
+
raise ValidationError("Dataset does not validate. Please curate.")
|
138
|
+
|
139
|
+
if self._artifact is None:
|
140
|
+
if isinstance(self._dataset, pd.DataFrame):
|
141
|
+
artifact = Artifact.from_df(
|
142
|
+
self._dataset,
|
143
|
+
key=key,
|
144
|
+
description=description,
|
145
|
+
revises=revises,
|
146
|
+
run=run,
|
147
|
+
)
|
148
|
+
elif isinstance(self._dataset, ad.AnnData):
|
149
|
+
artifact = Artifact.from_anndata(
|
150
|
+
self._dataset,
|
151
|
+
key=key,
|
152
|
+
description=description,
|
153
|
+
revises=revises,
|
154
|
+
run=run,
|
155
|
+
)
|
156
|
+
elif data_is_mudata(self._dataset):
|
157
|
+
artifact = Artifact.from_mudata(
|
158
|
+
self._dataset,
|
159
|
+
key=key,
|
160
|
+
description=description,
|
161
|
+
revises=revises,
|
162
|
+
run=run,
|
163
|
+
)
|
164
|
+
elif data_is_spatialdata(self._dataset):
|
165
|
+
artifact = Artifact.from_spatialdata(
|
166
|
+
self._dataset,
|
167
|
+
key=key,
|
168
|
+
description=description,
|
169
|
+
revises=revises,
|
170
|
+
run=run,
|
171
|
+
)
|
172
|
+
else:
|
173
|
+
raise InvalidArgument( # pragma: no cover
|
174
|
+
"data must be one of pd.Dataframe, AnnData, MuData, SpatialData."
|
175
|
+
)
|
176
|
+
self._artifact = artifact.save()
|
177
|
+
|
178
|
+
legacy_annotate_artifact( # type: ignore
|
179
|
+
self._artifact,
|
180
|
+
index_field=self._columns_field,
|
181
|
+
cat_vectors=self._cat_vectors,
|
182
|
+
)
|
183
|
+
return self._artifact
|
184
|
+
|
185
|
+
|
186
|
+
class DataFrameCatManager(CatManager):
|
187
|
+
"""Categorical manager for `DataFrame`."""
|
188
|
+
|
189
|
+
def __init__(
|
190
|
+
self,
|
191
|
+
df: pd.DataFrame | Artifact,
|
192
|
+
columns_field: FieldAttr = Feature.name,
|
193
|
+
columns_names: Iterable[str] | None = None,
|
194
|
+
categoricals: dict[str, FieldAttr] | None = None,
|
195
|
+
sources: dict[str, Record] | None = None,
|
196
|
+
index: Feature | None = None,
|
197
|
+
) -> None:
|
198
|
+
self._non_validated = None
|
199
|
+
self._index = index
|
200
|
+
super().__init__(
|
201
|
+
dataset=df,
|
202
|
+
columns_field=columns_field,
|
203
|
+
categoricals=categoricals,
|
204
|
+
sources=sources,
|
205
|
+
)
|
206
|
+
if columns_names is None:
|
207
|
+
columns_names = []
|
208
|
+
if columns_field == Feature.name:
|
209
|
+
values = list(self._categoricals.keys()) # backward compat
|
210
|
+
self._cat_vectors["columns"] = CatVector(
|
211
|
+
values_getter=values,
|
212
|
+
field=self._columns_field,
|
213
|
+
key="columns" if isinstance(self._dataset, pd.DataFrame) else "keys",
|
214
|
+
source=self._sources.get("columns"),
|
215
|
+
)
|
216
|
+
if isinstance(self._categoricals, dict): # backward compat
|
217
|
+
self._cat_vectors["columns"].validate()
|
218
|
+
else:
|
219
|
+
# NOTE: for var_index right now
|
220
|
+
self._cat_vectors["columns"] = CatVector(
|
221
|
+
values_getter=lambda: self._dataset.columns, # lambda ensures the inplace update
|
222
|
+
values_setter=lambda new_values: setattr(
|
223
|
+
self._dataset, "columns", pd.Index(new_values)
|
224
|
+
),
|
225
|
+
field=self._columns_field,
|
226
|
+
key="columns",
|
227
|
+
source=self._sources.get("columns"),
|
228
|
+
)
|
229
|
+
for key, field in self._categoricals.items():
|
230
|
+
self._cat_vectors[key] = CatVector(
|
231
|
+
values_getter=lambda k=key: self._dataset[
|
232
|
+
k
|
233
|
+
], # Capture key as default argument
|
234
|
+
values_setter=lambda new_values, k=key: self._dataset.__setitem__(
|
235
|
+
k, new_values
|
236
|
+
),
|
237
|
+
field=field,
|
238
|
+
key=key,
|
239
|
+
source=self._sources.get(key),
|
240
|
+
feature=Feature.get(name=key),
|
241
|
+
)
|
242
|
+
|
243
|
+
def lookup(self, public: bool = False) -> CatLookup:
|
244
|
+
"""Lookup categories.
|
245
|
+
|
246
|
+
Args:
|
247
|
+
public: If "public", the lookup is performed on the public reference.
|
248
|
+
"""
|
249
|
+
return CatLookup(
|
250
|
+
categoricals=self._categoricals,
|
251
|
+
slots={"columns": self._columns_field},
|
252
|
+
public=public,
|
253
|
+
sources=self._sources,
|
254
|
+
)
|
255
|
+
|
256
|
+
def validate(self) -> bool:
|
257
|
+
"""Validate variables and categorical observations."""
|
258
|
+
self._validate_category_error_messages = "" # reset the error messages
|
259
|
+
|
260
|
+
validated = True
|
261
|
+
for _, cat_vector in self._cat_vectors.items():
|
262
|
+
cat_vector.validate()
|
263
|
+
validated &= cat_vector.is_validated
|
264
|
+
self._is_validated = validated
|
265
|
+
self._non_validated = {} # so it's no longer None
|
266
|
+
|
267
|
+
if self._index is not None:
|
268
|
+
# cat_vector.validate() populates validated labels
|
269
|
+
# the index should become part of the feature set corresponding to the dataframe
|
270
|
+
self._cat_vectors["columns"].labels.insert(0, self._index) # type: ignore
|
271
|
+
|
272
|
+
return self._is_validated
|
273
|
+
|
274
|
+
def standardize(self, key: str) -> None:
|
275
|
+
"""Replace synonyms with standardized values.
|
276
|
+
|
277
|
+
Modifies the input dataset inplace.
|
278
|
+
|
279
|
+
Args:
|
280
|
+
key: The key referencing the column in the DataFrame to standardize.
|
281
|
+
"""
|
282
|
+
if self._artifact is not None:
|
283
|
+
raise RuntimeError("can't mutate the dataset when an artifact is passed!")
|
284
|
+
|
285
|
+
if key == "all":
|
286
|
+
logger.warning(
|
287
|
+
"'all' is deprecated, please pass a single key from `.non_validated.keys()` instead!"
|
288
|
+
)
|
289
|
+
for k in self.non_validated.keys():
|
290
|
+
self._cat_vectors[k].standardize()
|
291
|
+
else:
|
292
|
+
self._cat_vectors[key].standardize()
|
293
|
+
|
294
|
+
def add_new_from(self, key: str, **kwargs):
|
295
|
+
"""Add validated & new categories.
|
296
|
+
|
297
|
+
Args:
|
298
|
+
key: The key referencing the slot in the DataFrame from which to draw terms.
|
299
|
+
**kwargs: Additional keyword arguments to pass to create new records
|
300
|
+
"""
|
301
|
+
if len(kwargs) > 0 and key == "all":
|
302
|
+
raise ValueError("Cannot pass additional arguments to 'all' key!")
|
303
|
+
if key == "all":
|
304
|
+
logger.warning(
|
305
|
+
"'all' is deprecated, please pass a single key from `.non_validated.keys()` instead!"
|
306
|
+
)
|
307
|
+
for k in self.non_validated.keys():
|
308
|
+
self._cat_vectors[k].add_new(**kwargs)
|
309
|
+
else:
|
310
|
+
self._cat_vectors[key].add_new(**kwargs)
|
311
|
+
|
312
|
+
@deprecated(
|
313
|
+
new_name="Run.filter(transform=context.run.transform, output_artifacts=None)"
|
314
|
+
)
|
315
|
+
def clean_up_failed_runs(self):
|
316
|
+
"""Clean up previous failed runs that don't save any outputs."""
|
317
|
+
from lamindb.core._context import context
|
318
|
+
|
319
|
+
if context.run is not None:
|
320
|
+
Run.filter(transform=context.run.transform, output_artifacts=None).exclude(
|
321
|
+
uid=context.run.uid
|
322
|
+
).delete()
|
323
|
+
|
324
|
+
|
325
|
+
class AnnDataCatManager(CatManager):
|
326
|
+
"""Categorical manager for `AnnData`."""
|
327
|
+
|
328
|
+
def __init__(
|
329
|
+
self,
|
330
|
+
data: ad.AnnData | Artifact,
|
331
|
+
var_index: FieldAttr | None = None,
|
332
|
+
categoricals: dict[str, FieldAttr] | None = None,
|
333
|
+
obs_columns: FieldAttr = Feature.name,
|
334
|
+
sources: dict[str, Record] | None = None,
|
335
|
+
) -> None:
|
336
|
+
if isinstance(var_index, str):
|
337
|
+
raise TypeError(
|
338
|
+
"var_index parameter has to be a field, e.g. Gene.ensembl_gene_id"
|
339
|
+
)
|
340
|
+
|
341
|
+
if not data_is_anndata(data):
|
342
|
+
raise TypeError("data has to be an AnnData object")
|
343
|
+
|
344
|
+
if "symbol" in str(var_index):
|
345
|
+
logger.warning(
|
346
|
+
"indexing datasets with gene symbols can be problematic: https://docs.lamin.ai/faq/symbol-mapping"
|
347
|
+
)
|
348
|
+
|
349
|
+
self._obs_fields = categoricals or {}
|
350
|
+
self._var_field = var_index
|
351
|
+
self._sources = sources or {}
|
352
|
+
super().__init__(
|
353
|
+
dataset=data,
|
354
|
+
categoricals=categoricals,
|
355
|
+
sources=self._sources,
|
356
|
+
columns_field=var_index,
|
357
|
+
)
|
358
|
+
self._adata = self._dataset
|
359
|
+
self._obs_df_curator = DataFrameCatManager(
|
360
|
+
df=self._adata.obs,
|
361
|
+
categoricals=self.categoricals,
|
362
|
+
columns_field=obs_columns,
|
363
|
+
sources=self._sources,
|
364
|
+
)
|
365
|
+
self._cat_vectors = self._obs_df_curator._cat_vectors.copy()
|
366
|
+
if var_index is not None:
|
367
|
+
self._cat_vectors["var_index"] = CatVector(
|
368
|
+
values_getter=lambda: self._adata.var.index,
|
369
|
+
values_setter=lambda new_values: setattr(
|
370
|
+
self._adata.var, "index", pd.Index(new_values)
|
371
|
+
),
|
372
|
+
field=self._var_field,
|
373
|
+
key="var_index",
|
374
|
+
source=self._sources.get("var_index"),
|
375
|
+
)
|
376
|
+
|
377
|
+
@property
|
378
|
+
def var_index(self) -> FieldAttr:
|
379
|
+
"""Return the registry field to validate variables index against."""
|
380
|
+
return self._var_field
|
381
|
+
|
382
|
+
@property
|
383
|
+
def categoricals(self) -> dict:
|
384
|
+
"""Return the obs fields to validate against."""
|
385
|
+
return self._obs_fields
|
386
|
+
|
387
|
+
def lookup(self, public: bool = False) -> CatLookup:
|
388
|
+
"""Lookup categories.
|
389
|
+
|
390
|
+
Args:
|
391
|
+
public: If "public", the lookup is performed on the public reference.
|
392
|
+
"""
|
393
|
+
return CatLookup(
|
394
|
+
categoricals=self._obs_fields,
|
395
|
+
slots={"columns": self._columns_field, "var_index": self._var_field},
|
396
|
+
public=public,
|
397
|
+
sources=self._sources,
|
398
|
+
)
|
399
|
+
|
400
|
+
def add_new_from(self, key: str, **kwargs):
|
401
|
+
"""Add validated & new categories.
|
402
|
+
|
403
|
+
Args:
|
404
|
+
key: The key referencing the slot in the DataFrame from which to draw terms.
|
405
|
+
**kwargs: Additional keyword arguments to pass to create new records
|
406
|
+
"""
|
407
|
+
if key == "all":
|
408
|
+
logger.warning(
|
409
|
+
"'all' is deprecated, please pass a single key from `.non_validated.keys()` instead!"
|
410
|
+
)
|
411
|
+
for k in self.non_validated.keys():
|
412
|
+
self._cat_vectors[k].add_new(**kwargs)
|
413
|
+
else:
|
414
|
+
self._cat_vectors[key].add_new(**kwargs)
|
415
|
+
|
416
|
+
@deprecated(new_name="add_new_from('var_index')")
|
417
|
+
def add_new_from_var_index(self, **kwargs):
|
418
|
+
"""Update variable records.
|
419
|
+
|
420
|
+
Args:
|
421
|
+
**kwargs: Additional keyword arguments to pass to create new records.
|
422
|
+
"""
|
423
|
+
self.add_new_from(key="var_index", **kwargs)
|
424
|
+
|
425
|
+
def validate(self) -> bool:
|
426
|
+
"""Validate categories.
|
427
|
+
|
428
|
+
This method also registers the validated records in the current instance.
|
429
|
+
|
430
|
+
Returns:
|
431
|
+
Whether the AnnData object is validated.
|
432
|
+
"""
|
433
|
+
self._validate_category_error_messages = "" # reset the error messages
|
434
|
+
|
435
|
+
validated = True
|
436
|
+
for _, cat_vector in self._cat_vectors.items():
|
437
|
+
cat_vector.validate()
|
438
|
+
validated &= cat_vector.is_validated
|
439
|
+
|
440
|
+
self._non_validated = {} # so it's no longer None
|
441
|
+
self._is_validated = validated
|
442
|
+
return self._is_validated
|
443
|
+
|
444
|
+
def standardize(self, key: str):
|
445
|
+
"""Replace synonyms with standardized values.
|
446
|
+
|
447
|
+
Args:
|
448
|
+
key: The key referencing the slot in `adata.obs` from which to draw terms. Same as the key in `categoricals`.
|
449
|
+
|
450
|
+
- If "var_index", standardize the var.index.
|
451
|
+
- If "all", standardize all obs columns and var.index.
|
452
|
+
|
453
|
+
Inplace modification of the dataset.
|
454
|
+
"""
|
455
|
+
if self._artifact is not None:
|
456
|
+
raise RuntimeError("can't mutate the dataset when an artifact is passed!")
|
457
|
+
if key == "all":
|
458
|
+
logger.warning(
|
459
|
+
"'all' is deprecated, please pass a single key from `.non_validated.keys()` instead!"
|
460
|
+
)
|
461
|
+
for k in self.non_validated.keys():
|
462
|
+
self._cat_vectors[k].standardize()
|
463
|
+
else:
|
464
|
+
self._cat_vectors[key].standardize()
|
465
|
+
|
466
|
+
|
467
|
+
@deprecated(new_name="MuDataCurator")
|
468
|
+
class MuDataCatManager(CatManager):
|
469
|
+
"""Categorical manager for `MuData`."""
|
470
|
+
|
471
|
+
def __init__(
|
472
|
+
self,
|
473
|
+
mdata: MuData | Artifact,
|
474
|
+
var_index: dict[str, FieldAttr] | None = None,
|
475
|
+
categoricals: dict[str, FieldAttr] | None = None,
|
476
|
+
sources: dict[str, Record] | None = None,
|
477
|
+
) -> None:
|
478
|
+
super().__init__(
|
479
|
+
dataset=mdata,
|
480
|
+
categoricals={},
|
481
|
+
sources=sources,
|
482
|
+
)
|
483
|
+
self._columns_field = (
|
484
|
+
var_index or {}
|
485
|
+
) # this is for consistency with BaseCatManager
|
486
|
+
self._var_fields = var_index or {}
|
487
|
+
self._verify_modality(self._var_fields.keys())
|
488
|
+
self._obs_fields = self._parse_categoricals(categoricals or {})
|
489
|
+
self._modalities = set(self._var_fields.keys()) | set(self._obs_fields.keys())
|
490
|
+
self._obs_df_curator = None
|
491
|
+
if "obs" in self._modalities:
|
492
|
+
self._obs_df_curator = DataFrameCatManager(
|
493
|
+
df=self._dataset.obs,
|
494
|
+
columns_field=Feature.name,
|
495
|
+
categoricals=self._obs_fields.get("obs", {}),
|
496
|
+
sources=self._sources.get("obs"),
|
497
|
+
)
|
498
|
+
self._mod_adata_curators = {
|
499
|
+
modality: AnnDataCatManager(
|
500
|
+
data=self._dataset[modality],
|
501
|
+
var_index=var_index.get(modality),
|
502
|
+
categoricals=self._obs_fields.get(modality),
|
503
|
+
sources=self._sources.get(modality),
|
504
|
+
)
|
505
|
+
for modality in self._modalities
|
506
|
+
if modality != "obs"
|
507
|
+
}
|
508
|
+
self._non_validated = None
|
509
|
+
|
510
|
+
@property
|
511
|
+
def var_index(self) -> FieldAttr:
|
512
|
+
"""Return the registry field to validate variables index against."""
|
513
|
+
return self._var_fields
|
514
|
+
|
515
|
+
@property
|
516
|
+
def categoricals(self) -> dict:
|
517
|
+
"""Return the obs fields to validate against."""
|
518
|
+
return self._obs_fields
|
519
|
+
|
520
|
+
@property
|
521
|
+
def non_validated(self) -> dict[str, dict[str, list[str]]]: # type: ignore
|
522
|
+
"""Return the non-validated features and labels."""
|
523
|
+
if self._non_validated is None:
|
524
|
+
raise ValidationError("Please run validate() first!")
|
525
|
+
non_validated = {}
|
526
|
+
if (
|
527
|
+
self._obs_df_curator is not None
|
528
|
+
and len(self._obs_df_curator.non_validated) > 0
|
529
|
+
):
|
530
|
+
non_validated["obs"] = self._obs_df_curator.non_validated
|
531
|
+
for modality, adata_curator in self._mod_adata_curators.items():
|
532
|
+
if len(adata_curator.non_validated) > 0:
|
533
|
+
non_validated[modality] = adata_curator.non_validated
|
534
|
+
self._non_validated = non_validated
|
535
|
+
return self._non_validated
|
536
|
+
|
537
|
+
def _verify_modality(self, modalities: Iterable[str]):
|
538
|
+
"""Verify the modality exists."""
|
539
|
+
for modality in modalities:
|
540
|
+
if modality not in self._dataset.mod.keys():
|
541
|
+
raise ValidationError(f"modality '{modality}' does not exist!")
|
542
|
+
|
543
|
+
def _parse_categoricals(self, categoricals: dict[str, FieldAttr]) -> dict:
|
544
|
+
"""Parse the categorical fields."""
|
545
|
+
prefixes = {f"{k}:" for k in self._dataset.mod.keys()}
|
546
|
+
obs_fields: dict[str, dict[str, FieldAttr]] = {}
|
547
|
+
for k, v in categoricals.items():
|
548
|
+
if k not in self._dataset.obs.columns:
|
549
|
+
raise ValidationError(f"column '{k}' does not exist in mdata.obs!")
|
550
|
+
if any(k.startswith(prefix) for prefix in prefixes):
|
551
|
+
modality, col = k.split(":")[0], k.split(":")[1]
|
552
|
+
if modality not in obs_fields.keys():
|
553
|
+
obs_fields[modality] = {}
|
554
|
+
obs_fields[modality][col] = v
|
555
|
+
else:
|
556
|
+
if "obs" not in obs_fields.keys():
|
557
|
+
obs_fields["obs"] = {}
|
558
|
+
obs_fields["obs"][k] = v
|
559
|
+
return obs_fields
|
560
|
+
|
561
|
+
def lookup(self, public: bool = False) -> CatLookup:
|
562
|
+
"""Lookup categories.
|
563
|
+
|
564
|
+
Args:
|
565
|
+
public: Perform lookup on public source ontologies.
|
566
|
+
"""
|
567
|
+
obs_fields = {}
|
568
|
+
for mod, fields in self._obs_fields.items():
|
569
|
+
for k, v in fields.items():
|
570
|
+
if k == "obs":
|
571
|
+
obs_fields[k] = v
|
572
|
+
else:
|
573
|
+
obs_fields[f"{mod}:{k}"] = v
|
574
|
+
return CatLookup(
|
575
|
+
categoricals=obs_fields,
|
576
|
+
slots={
|
577
|
+
**{f"{k}_var_index": v for k, v in self._var_fields.items()},
|
578
|
+
},
|
579
|
+
public=public,
|
580
|
+
sources=self._sources,
|
581
|
+
)
|
582
|
+
|
583
|
+
@deprecated(new_name="add_new_from('var_index')")
|
584
|
+
def add_new_from_var_index(self, modality: str, **kwargs):
|
585
|
+
"""Update variable records.
|
586
|
+
|
587
|
+
Args:
|
588
|
+
modality: The modality name.
|
589
|
+
**kwargs: Additional keyword arguments to pass to create new records.
|
590
|
+
"""
|
591
|
+
self._mod_adata_curators[modality].add_new_from(key="var_index", **kwargs)
|
592
|
+
|
593
|
+
def add_new_from(
|
594
|
+
self,
|
595
|
+
key: str,
|
596
|
+
modality: str | None = None,
|
597
|
+
**kwargs,
|
598
|
+
):
|
599
|
+
"""Add validated & new categories.
|
600
|
+
|
601
|
+
Args:
|
602
|
+
key: The key referencing the slot in the DataFrame.
|
603
|
+
modality: The modality name.
|
604
|
+
**kwargs: Additional keyword arguments to pass to create new records.
|
605
|
+
"""
|
606
|
+
modality = modality or "obs"
|
607
|
+
if modality in self._mod_adata_curators:
|
608
|
+
adata_curator = self._mod_adata_curators[modality]
|
609
|
+
adata_curator.add_new_from(key=key, **kwargs)
|
610
|
+
if modality == "obs":
|
611
|
+
self._obs_df_curator.add_new_from(key=key, **kwargs)
|
612
|
+
if key == "var_index":
|
613
|
+
self._mod_adata_curators[modality].add_new_from(key=key, **kwargs)
|
614
|
+
|
615
|
+
def validate(self) -> bool:
|
616
|
+
"""Validate categories."""
|
617
|
+
obs_validated = True
|
618
|
+
if "obs" in self._modalities:
|
619
|
+
logger.info('validating categoricals in "obs"...')
|
620
|
+
obs_validated &= self._obs_df_curator.validate()
|
621
|
+
|
622
|
+
mods_validated = True
|
623
|
+
for modality, adata_curator in self._mod_adata_curators.items():
|
624
|
+
logger.info(f'validating categoricals in modality "{modality}"...')
|
625
|
+
mods_validated &= adata_curator.validate()
|
626
|
+
|
627
|
+
self._non_validated = {} # so it's no longer None
|
628
|
+
self._is_validated = obs_validated & mods_validated
|
629
|
+
return self._is_validated
|
630
|
+
|
631
|
+
def standardize(self, key: str, modality: str | None = None):
|
632
|
+
"""Replace synonyms with standardized values.
|
633
|
+
|
634
|
+
Args:
|
635
|
+
key: The key referencing the slot in the `MuData`.
|
636
|
+
modality: The modality name.
|
637
|
+
|
638
|
+
Inplace modification of the dataset.
|
639
|
+
"""
|
640
|
+
if self._artifact is not None:
|
641
|
+
raise RuntimeError("can't mutate the dataset when an artifact is passed!")
|
642
|
+
modality = modality or "obs"
|
643
|
+
if modality in self._mod_adata_curators:
|
644
|
+
adata_curator = self._mod_adata_curators[modality]
|
645
|
+
adata_curator.standardize(key=key)
|
646
|
+
if modality == "obs":
|
647
|
+
self._obs_df_curator.standardize(key=key)
|
648
|
+
|
649
|
+
|
650
|
+
def _maybe_curation_keys_not_present(nonval_keys: list[str], name: str):
|
651
|
+
if (n := len(nonval_keys)) > 0:
|
652
|
+
s = "s" if n > 1 else ""
|
653
|
+
are = "are" if n > 1 else "is"
|
654
|
+
raise ValidationError(
|
655
|
+
f"key{s} passed to {name} {are} not present: {colors.yellow(_format_values(nonval_keys))}"
|
656
|
+
)
|
657
|
+
|
658
|
+
|
659
|
+
@deprecated(new_name="SpatialDataCurator")
|
660
|
+
class SpatialDataCatManager(CatManager):
|
661
|
+
"""Categorical manager for `SpatialData`."""
|
662
|
+
|
663
|
+
def __init__(
|
664
|
+
self,
|
665
|
+
sdata: Any,
|
666
|
+
var_index: dict[str, FieldAttr],
|
667
|
+
categoricals: dict[str, dict[str, FieldAttr]] | None = None,
|
668
|
+
sources: dict[str, dict[str, Record]] | None = None,
|
669
|
+
*,
|
670
|
+
sample_metadata_key: str | None = "sample",
|
671
|
+
) -> None:
|
672
|
+
super().__init__(
|
673
|
+
dataset=sdata,
|
674
|
+
categoricals={},
|
675
|
+
sources=sources,
|
676
|
+
)
|
677
|
+
if isinstance(sdata, Artifact):
|
678
|
+
self._sdata = sdata.load()
|
679
|
+
else:
|
680
|
+
self._sdata = self._dataset
|
681
|
+
self._sample_metadata_key = sample_metadata_key
|
682
|
+
self._write_path = None
|
683
|
+
self._var_fields = var_index
|
684
|
+
self._verify_accessor_exists(self._var_fields.keys())
|
685
|
+
self._categoricals = categoricals
|
686
|
+
self._table_keys = set(self._var_fields.keys()) | set(
|
687
|
+
self._categoricals.keys() - {self._sample_metadata_key}
|
688
|
+
)
|
689
|
+
self._sample_df_curator = None
|
690
|
+
if self._sample_metadata_key is not None:
|
691
|
+
self._sample_metadata = self._sdata.get_attrs(
|
692
|
+
key=self._sample_metadata_key, return_as="df", flatten=True
|
693
|
+
)
|
694
|
+
self._is_validated = False
|
695
|
+
|
696
|
+
# Check validity of keys in categoricals
|
697
|
+
nonval_keys = []
|
698
|
+
for accessor, accessor_categoricals in self._categoricals.items():
|
699
|
+
if (
|
700
|
+
accessor == self._sample_metadata_key
|
701
|
+
and self._sample_metadata is not None
|
702
|
+
):
|
703
|
+
for key in accessor_categoricals.keys():
|
704
|
+
if key not in self._sample_metadata.columns:
|
705
|
+
nonval_keys.append(key)
|
706
|
+
else:
|
707
|
+
for key in accessor_categoricals.keys():
|
708
|
+
if key not in self._sdata[accessor].obs.columns:
|
709
|
+
nonval_keys.append(key)
|
710
|
+
|
711
|
+
_maybe_curation_keys_not_present(nonval_keys, "categoricals")
|
712
|
+
|
713
|
+
# check validity of keys in sources
|
714
|
+
nonval_keys = []
|
715
|
+
for accessor, accessor_sources in self._sources.items():
|
716
|
+
if (
|
717
|
+
accessor == self._sample_metadata_key
|
718
|
+
and self._sample_metadata is not None
|
719
|
+
):
|
720
|
+
columns = self._sample_metadata.columns
|
721
|
+
elif accessor != self._sample_metadata_key:
|
722
|
+
columns = self._sdata[accessor].obs.columns
|
723
|
+
else:
|
724
|
+
continue
|
725
|
+
for key in accessor_sources:
|
726
|
+
if key not in columns:
|
727
|
+
nonval_keys.append(key)
|
728
|
+
_maybe_curation_keys_not_present(nonval_keys, "sources")
|
729
|
+
|
730
|
+
# Set up sample level metadata and table Curator objects
|
731
|
+
if (
|
732
|
+
self._sample_metadata_key is not None
|
733
|
+
and self._sample_metadata_key in self._categoricals
|
734
|
+
):
|
735
|
+
self._sample_df_curator = DataFrameCatManager(
|
736
|
+
df=self._sample_metadata,
|
737
|
+
columns_field=Feature.name,
|
738
|
+
categoricals=self._categoricals.get(self._sample_metadata_key, {}),
|
739
|
+
sources=self._sources.get(self._sample_metadata_key),
|
740
|
+
)
|
741
|
+
self._table_adata_curators = {
|
742
|
+
table: AnnDataCatManager(
|
743
|
+
data=self._sdata[table],
|
744
|
+
var_index=var_index.get(table),
|
745
|
+
categoricals=self._categoricals.get(table),
|
746
|
+
sources=self._sources.get(table),
|
747
|
+
)
|
748
|
+
for table in self._table_keys
|
749
|
+
}
|
750
|
+
|
751
|
+
self._non_validated = None
|
752
|
+
|
753
|
+
@property
|
754
|
+
def var_index(self) -> FieldAttr:
|
755
|
+
"""Return the registry fields to validate variables indices against."""
|
756
|
+
return self._var_fields
|
757
|
+
|
758
|
+
@property
|
759
|
+
def categoricals(self) -> dict[str, dict[str, FieldAttr]]:
|
760
|
+
"""Return the categorical keys and fields to validate against."""
|
761
|
+
return self._categoricals
|
762
|
+
|
763
|
+
@property
|
764
|
+
def non_validated(self) -> dict[str, dict[str, list[str]]]: # type: ignore
|
765
|
+
"""Return the non-validated features and labels."""
|
766
|
+
if self._non_validated is None:
|
767
|
+
raise ValidationError("Please run validate() first!")
|
768
|
+
non_curated = {}
|
769
|
+
if len(self._sample_df_curator.non_validated) > 0:
|
770
|
+
non_curated[self._sample_metadata_key] = (
|
771
|
+
self._sample_df_curator.non_validated
|
772
|
+
)
|
773
|
+
for table, adata_curator in self._table_adata_curators.items():
|
774
|
+
if len(adata_curator.non_validated) > 0:
|
775
|
+
non_curated[table] = adata_curator.non_validated
|
776
|
+
return non_curated
|
777
|
+
|
778
|
+
def _verify_accessor_exists(self, accessors: Iterable[str]) -> None:
|
779
|
+
"""Verify that the accessors exist (either a valid table or in attrs)."""
|
780
|
+
for acc in accessors:
|
781
|
+
is_present = False
|
782
|
+
try:
|
783
|
+
self._sdata.get_attrs(key=acc)
|
784
|
+
is_present = True
|
785
|
+
except KeyError:
|
786
|
+
if acc in self._sdata.tables.keys():
|
787
|
+
is_present = True
|
788
|
+
if not is_present:
|
789
|
+
raise ValidationError(f"Accessor '{acc}' does not exist!")
|
790
|
+
|
791
|
+
def lookup(self, public: bool = False) -> CatLookup:
|
792
|
+
"""Look up categories.
|
793
|
+
|
794
|
+
Args:
|
795
|
+
public: Whether the lookup is performed on the public reference.
|
796
|
+
"""
|
797
|
+
cat_values_dict = list(self.categoricals.values())[0]
|
798
|
+
return CatLookup(
|
799
|
+
categoricals=cat_values_dict,
|
800
|
+
slots={"accessors": cat_values_dict.keys()},
|
801
|
+
public=public,
|
802
|
+
sources=self._sources,
|
803
|
+
)
|
804
|
+
|
805
|
+
@deprecated(new_name="add_new_from('var_index')")
|
806
|
+
def add_new_from_var_index(self, table: str, **kwargs) -> None:
|
807
|
+
"""Save new values from ``.var.index`` of table.
|
808
|
+
|
809
|
+
Args:
|
810
|
+
table: The table key.
|
811
|
+
**kwargs: Additional keyword arguments to pass to create new records.
|
812
|
+
"""
|
813
|
+
if table in self.non_validated.keys():
|
814
|
+
self._table_adata_curators[table].add_new_from(key="var_index", **kwargs)
|
815
|
+
|
816
|
+
def add_new_from(
|
817
|
+
self,
|
818
|
+
key: str,
|
819
|
+
accessor: str | None = None,
|
820
|
+
**kwargs,
|
821
|
+
) -> None:
|
822
|
+
"""Save new values of categorical from sample level metadata or table.
|
823
|
+
|
824
|
+
Args:
|
825
|
+
key: The key referencing the slot in the DataFrame.
|
826
|
+
accessor: The accessor key such as 'sample' or 'table x'.
|
827
|
+
**kwargs: Additional keyword arguments to pass to create new records.
|
828
|
+
"""
|
829
|
+
if accessor in self.non_validated.keys():
|
830
|
+
if accessor in self._table_adata_curators:
|
831
|
+
adata_curator = self._table_adata_curators[accessor]
|
832
|
+
adata_curator.add_new_from(key=key, **kwargs)
|
833
|
+
if accessor == self._sample_metadata_key:
|
834
|
+
self._sample_df_curator.add_new_from(key=key, **kwargs)
|
835
|
+
|
836
|
+
if key == "var_index":
|
837
|
+
self._table_adata_curators[accessor].add_new_from(key=key, **kwargs)
|
838
|
+
|
839
|
+
def standardize(self, key: str, accessor: str | None = None) -> None:
|
840
|
+
"""Replace synonyms with canonical values.
|
841
|
+
|
842
|
+
Modifies the dataset inplace.
|
843
|
+
|
844
|
+
Args:
|
845
|
+
key: The key referencing the slot in the table or sample metadata.
|
846
|
+
accessor: The accessor key such as 'sample_key' or 'table_key'.
|
847
|
+
"""
|
848
|
+
if len(self.non_validated) == 0:
|
849
|
+
logger.warning("values are already standardized")
|
850
|
+
return
|
851
|
+
if self._artifact is not None:
|
852
|
+
raise RuntimeError("can't mutate the dataset when an artifact is passed!")
|
853
|
+
|
854
|
+
if accessor == self._sample_metadata_key:
|
855
|
+
if key not in self._sample_metadata.columns:
|
856
|
+
raise ValueError(f"key '{key}' not present in '{accessor}'!")
|
857
|
+
else:
|
858
|
+
if (
|
859
|
+
key == "var_index" and self._sdata.tables[accessor].var.index is None
|
860
|
+
) or (
|
861
|
+
key != "var_index"
|
862
|
+
and key not in self._sdata.tables[accessor].obs.columns
|
863
|
+
):
|
864
|
+
raise ValueError(f"key '{key}' not present in '{accessor}'!")
|
865
|
+
|
866
|
+
if accessor in self._table_adata_curators.keys():
|
867
|
+
adata_curator = self._table_adata_curators[accessor]
|
868
|
+
adata_curator.standardize(key)
|
869
|
+
if accessor == self._sample_metadata_key:
|
870
|
+
self._sample_df_curator.standardize(key)
|
871
|
+
|
872
|
+
def validate(self) -> bool:
|
873
|
+
"""Validate variables and categorical observations.
|
874
|
+
|
875
|
+
This method also registers the validated records in the current instance:
|
876
|
+
- from public sources
|
877
|
+
|
878
|
+
Returns:
|
879
|
+
Whether the SpatialData object is validated.
|
880
|
+
"""
|
881
|
+
# add all validated records to the current instance
|
882
|
+
sample_validated = True
|
883
|
+
if self._sample_df_curator:
|
884
|
+
logger.info(f"validating categoricals of '{self._sample_metadata_key}' ...")
|
885
|
+
sample_validated &= self._sample_df_curator.validate()
|
886
|
+
|
887
|
+
mods_validated = True
|
888
|
+
for table, adata_curator in self._table_adata_curators.items():
|
889
|
+
logger.info(f"validating categoricals of table '{table}' ...")
|
890
|
+
mods_validated &= adata_curator.validate()
|
891
|
+
|
892
|
+
self._non_validated = {} # so it's no longer None
|
893
|
+
self._is_validated = sample_validated & mods_validated
|
894
|
+
return self._is_validated
|
895
|
+
|
896
|
+
def save_artifact(
|
897
|
+
self,
|
898
|
+
*,
|
899
|
+
key: str | None = None,
|
900
|
+
description: str | None = None,
|
901
|
+
revises: Artifact | None = None,
|
902
|
+
run: Run | None = None,
|
903
|
+
) -> Artifact:
|
904
|
+
"""Save the validated SpatialData store and metadata.
|
905
|
+
|
906
|
+
Args:
|
907
|
+
description: A description of the dataset.
|
908
|
+
key: A path-like key to reference artifact in default storage,
|
909
|
+
e.g., `"myartifact.zarr"`. Artifacts with the same key form a version family.
|
910
|
+
revises: Previous version of the artifact. Triggers a revision.
|
911
|
+
run: The run that creates the artifact.
|
912
|
+
|
913
|
+
Returns:
|
914
|
+
A saved artifact record.
|
915
|
+
"""
|
916
|
+
if not self._is_validated:
|
917
|
+
self.validate()
|
918
|
+
if not self._is_validated:
|
919
|
+
raise ValidationError("Dataset does not validate. Please curate.")
|
920
|
+
|
921
|
+
self._artifact = Artifact.from_spatialdata(
|
922
|
+
self._dataset, key=key, description=description, revises=revises, run=run
|
923
|
+
).save()
|
924
|
+
return legacy_annotate_artifact(
|
925
|
+
self._artifact,
|
926
|
+
index_field=self.var_index,
|
927
|
+
sample_metadata_key=self._sample_metadata_key,
|
928
|
+
)
|
929
|
+
|
930
|
+
|
931
|
+
class TiledbsomaCatManager(CatManager):
|
932
|
+
"""Categorical manager for `tiledbsoma.Experiment`."""
|
933
|
+
|
934
|
+
def __init__(
|
935
|
+
self,
|
936
|
+
experiment_uri: UPathStr | Artifact,
|
937
|
+
var_index: dict[str, tuple[str, FieldAttr]],
|
938
|
+
categoricals: dict[str, FieldAttr] | None = None,
|
939
|
+
obs_columns: FieldAttr = Feature.name,
|
940
|
+
sources: dict[str, Record] | None = None,
|
941
|
+
):
|
942
|
+
self._obs_fields = categoricals or {}
|
943
|
+
self._var_fields = var_index
|
944
|
+
self._columns_field = obs_columns
|
945
|
+
if isinstance(experiment_uri, Artifact):
|
946
|
+
self._dataset = experiment_uri.path
|
947
|
+
self._artifact = experiment_uri
|
948
|
+
else:
|
949
|
+
self._dataset = UPath(experiment_uri)
|
950
|
+
self._artifact = None
|
951
|
+
self._sources = sources or {}
|
952
|
+
|
953
|
+
self._is_validated: bool | None = False
|
954
|
+
self._non_validated_values: dict[str, list] | None = None
|
955
|
+
self._validated_values: dict[str, list] = {}
|
956
|
+
# filled by _check_save_keys
|
957
|
+
self._n_obs: int | None = None
|
958
|
+
self._valid_obs_keys: list[str] | None = None
|
959
|
+
self._obs_pa_schema: pa.lib.Schema | None = (
|
960
|
+
None # this is needed to create the obs feature set
|
961
|
+
)
|
962
|
+
self._valid_var_keys: list[str] | None = None
|
963
|
+
self._var_fields_flat: dict[str, FieldAttr] | None = None
|
964
|
+
self._check_save_keys()
|
965
|
+
|
966
|
+
# check that the provided keys in var_index and categoricals are available in the store
|
967
|
+
# and save features
|
968
|
+
def _check_save_keys(self):
|
969
|
+
from lamindb.core.storage._tiledbsoma import _open_tiledbsoma
|
970
|
+
|
971
|
+
with _open_tiledbsoma(self._dataset, mode="r") as experiment:
|
972
|
+
experiment_obs = experiment.obs
|
973
|
+
self._n_obs = len(experiment_obs)
|
974
|
+
self._obs_pa_schema = experiment_obs.schema
|
975
|
+
valid_obs_keys = [
|
976
|
+
k for k in self._obs_pa_schema.names if k != "soma_joinid"
|
977
|
+
]
|
978
|
+
self._valid_obs_keys = valid_obs_keys
|
979
|
+
|
980
|
+
valid_var_keys = []
|
981
|
+
ms_list = []
|
982
|
+
for ms in experiment.ms.keys():
|
983
|
+
ms_list.append(ms)
|
984
|
+
var_ms = experiment.ms[ms].var
|
985
|
+
valid_var_keys += [
|
986
|
+
f"{ms}__{k}" for k in var_ms.keys() if k != "soma_joinid"
|
987
|
+
]
|
988
|
+
self._valid_var_keys = valid_var_keys
|
989
|
+
|
990
|
+
# check validity of keys in categoricals
|
991
|
+
nonval_keys = []
|
992
|
+
for obs_key in self._obs_fields.keys():
|
993
|
+
if obs_key not in valid_obs_keys:
|
994
|
+
nonval_keys.append(obs_key)
|
995
|
+
_maybe_curation_keys_not_present(nonval_keys, "categoricals")
|
996
|
+
|
997
|
+
# check validity of keys in var_index
|
998
|
+
self._var_fields_flat = {}
|
999
|
+
nonval_keys = []
|
1000
|
+
for ms_key in self._var_fields.keys():
|
1001
|
+
var_key, var_field = self._var_fields[ms_key]
|
1002
|
+
var_key_flat = f"{ms_key}__{var_key}"
|
1003
|
+
if var_key_flat not in valid_var_keys:
|
1004
|
+
nonval_keys.append(f"({ms_key}, {var_key})")
|
1005
|
+
else:
|
1006
|
+
self._var_fields_flat[var_key_flat] = var_field
|
1007
|
+
_maybe_curation_keys_not_present(nonval_keys, "var_index")
|
1008
|
+
|
1009
|
+
# check validity of keys in sources
|
1010
|
+
valid_arg_keys = valid_obs_keys + valid_var_keys + ["columns"]
|
1011
|
+
nonval_keys = []
|
1012
|
+
for arg_key in self._sources.keys():
|
1013
|
+
if arg_key not in valid_arg_keys:
|
1014
|
+
nonval_keys.append(arg_key)
|
1015
|
+
_maybe_curation_keys_not_present(nonval_keys, "sources")
|
1016
|
+
|
1017
|
+
# register obs columns' names
|
1018
|
+
register_columns = list(self._obs_fields.keys())
|
1019
|
+
# register categorical keys as features
|
1020
|
+
cat_vector = CatVector(
|
1021
|
+
values_getter=register_columns,
|
1022
|
+
field=self._columns_field,
|
1023
|
+
key="columns",
|
1024
|
+
source=self._sources.get("columns"),
|
1025
|
+
)
|
1026
|
+
cat_vector.add_new()
|
1027
|
+
|
1028
|
+
def validate(self):
|
1029
|
+
"""Validate categories."""
|
1030
|
+
from lamindb.core.storage._tiledbsoma import _open_tiledbsoma
|
1031
|
+
|
1032
|
+
validated = True
|
1033
|
+
self._non_validated_values = {}
|
1034
|
+
with _open_tiledbsoma(self._dataset, mode="r") as experiment:
|
1035
|
+
for ms, (key, field) in self._var_fields.items():
|
1036
|
+
var_ms = experiment.ms[ms].var
|
1037
|
+
var_ms_key = f"{ms}__{key}"
|
1038
|
+
# it was already validated and cached
|
1039
|
+
if var_ms_key in self._validated_values:
|
1040
|
+
continue
|
1041
|
+
var_ms_values = (
|
1042
|
+
var_ms.read(column_names=[key]).concat()[key].to_pylist()
|
1043
|
+
)
|
1044
|
+
cat_vector = CatVector(
|
1045
|
+
values_getter=var_ms_values,
|
1046
|
+
field=field,
|
1047
|
+
key=var_ms_key,
|
1048
|
+
source=self._sources.get(var_ms_key),
|
1049
|
+
)
|
1050
|
+
cat_vector.validate()
|
1051
|
+
non_val = cat_vector._non_validated
|
1052
|
+
if len(non_val) > 0:
|
1053
|
+
validated = False
|
1054
|
+
self._non_validated_values[var_ms_key] = non_val
|
1055
|
+
else:
|
1056
|
+
self._validated_values[var_ms_key] = var_ms_values
|
1057
|
+
|
1058
|
+
obs = experiment.obs
|
1059
|
+
for key, field in self._obs_fields.items():
|
1060
|
+
# already validated and cached
|
1061
|
+
if key in self._validated_values:
|
1062
|
+
continue
|
1063
|
+
values = pa.compute.unique(
|
1064
|
+
obs.read(column_names=[key]).concat()[key]
|
1065
|
+
).to_pylist()
|
1066
|
+
cat_vector = CatVector(
|
1067
|
+
values_getter=values,
|
1068
|
+
field=field,
|
1069
|
+
key=key,
|
1070
|
+
source=self._sources.get(key),
|
1071
|
+
)
|
1072
|
+
cat_vector.validate()
|
1073
|
+
non_val = cat_vector._non_validated
|
1074
|
+
if len(non_val) > 0:
|
1075
|
+
validated = False
|
1076
|
+
self._non_validated_values[key] = non_val
|
1077
|
+
else:
|
1078
|
+
self._validated_values[key] = values
|
1079
|
+
self._is_validated = validated
|
1080
|
+
return self._is_validated
|
1081
|
+
|
1082
|
+
def _non_validated_values_field(self, key: str) -> tuple[list, FieldAttr]:
|
1083
|
+
assert self._non_validated_values is not None # noqa: S101
|
1084
|
+
|
1085
|
+
if key in self._valid_obs_keys:
|
1086
|
+
field = self._obs_fields[key]
|
1087
|
+
elif key in self._valid_var_keys:
|
1088
|
+
ms = key.partition("__")[0]
|
1089
|
+
field = self._var_fields[ms][1]
|
1090
|
+
else:
|
1091
|
+
raise KeyError(f"key {key} is invalid!")
|
1092
|
+
values = self._non_validated_values.get(key, [])
|
1093
|
+
return values, field
|
1094
|
+
|
1095
|
+
def add_new_from(self, key: str, **kwargs) -> None:
|
1096
|
+
"""Add validated & new categories.
|
1097
|
+
|
1098
|
+
Args:
|
1099
|
+
key: The key referencing the slot in the `tiledbsoma` store.
|
1100
|
+
It should be `'{measurement name}__{column name in .var}'` for columns in `.var`
|
1101
|
+
or a column name in `.obs`.
|
1102
|
+
"""
|
1103
|
+
if self._non_validated_values is None:
|
1104
|
+
raise ValidationError("Run .validate() first.")
|
1105
|
+
if key == "all":
|
1106
|
+
keys = list(self._non_validated_values.keys())
|
1107
|
+
else:
|
1108
|
+
avail_keys = list(
|
1109
|
+
chain(self._non_validated_values.keys(), self._validated_values.keys())
|
1110
|
+
)
|
1111
|
+
if key not in avail_keys:
|
1112
|
+
raise KeyError(
|
1113
|
+
f"'{key!r}' is not a valid key, available keys are: {_format_values(avail_keys + ['all'])}!"
|
1114
|
+
)
|
1115
|
+
keys = [key]
|
1116
|
+
for k in keys:
|
1117
|
+
values, field = self._non_validated_values_field(k)
|
1118
|
+
if len(values) == 0:
|
1119
|
+
continue
|
1120
|
+
cat_vector = CatVector(
|
1121
|
+
values_getter=values,
|
1122
|
+
field=field,
|
1123
|
+
key=k,
|
1124
|
+
source=self._sources.get(k),
|
1125
|
+
)
|
1126
|
+
cat_vector.add_new()
|
1127
|
+
# update non-validated values list but keep the key there
|
1128
|
+
# it will be removed by .validate()
|
1129
|
+
if k in self._non_validated_values:
|
1130
|
+
self._non_validated_values[k] = []
|
1131
|
+
|
1132
|
+
@property
|
1133
|
+
def non_validated(self) -> dict[str, list]:
|
1134
|
+
"""Return the non-validated features and labels."""
|
1135
|
+
non_val = {k: v for k, v in self._non_validated_values.items() if v != []}
|
1136
|
+
return non_val
|
1137
|
+
|
1138
|
+
@property
|
1139
|
+
def var_index(self) -> dict[str, FieldAttr]:
|
1140
|
+
"""Return the registry fields with flattened keys to validate variables indices against."""
|
1141
|
+
return self._var_fields_flat
|
1142
|
+
|
1143
|
+
@property
|
1144
|
+
def categoricals(self) -> dict[str, FieldAttr]:
|
1145
|
+
"""Return the obs fields to validate against."""
|
1146
|
+
return self._obs_fields
|
1147
|
+
|
1148
|
+
def lookup(self, public: bool = False) -> CatLookup:
|
1149
|
+
"""Lookup categories.
|
1150
|
+
|
1151
|
+
Args:
|
1152
|
+
public: If "public", the lookup is performed on the public reference.
|
1153
|
+
"""
|
1154
|
+
return CatLookup(
|
1155
|
+
categoricals=self._obs_fields,
|
1156
|
+
slots={"columns": self._columns_field, **self._var_fields_flat},
|
1157
|
+
public=public,
|
1158
|
+
sources=self._sources,
|
1159
|
+
)
|
1160
|
+
|
1161
|
+
def standardize(self, key: str):
|
1162
|
+
"""Replace synonyms with standardized values.
|
1163
|
+
|
1164
|
+
Modifies the dataset inplace.
|
1165
|
+
|
1166
|
+
Args:
|
1167
|
+
key: The key referencing the slot in the `tiledbsoma` store.
|
1168
|
+
It should be `'{measurement name}__{column name in .var}'` for columns in `.var`
|
1169
|
+
or a column name in `.obs`.
|
1170
|
+
"""
|
1171
|
+
if len(self.non_validated) == 0:
|
1172
|
+
logger.warning("values are already standardized")
|
1173
|
+
return
|
1174
|
+
avail_keys = list(self._non_validated_values.keys())
|
1175
|
+
if key == "all":
|
1176
|
+
keys = avail_keys
|
1177
|
+
else:
|
1178
|
+
if key not in avail_keys:
|
1179
|
+
raise KeyError(
|
1180
|
+
f"'{key!r}' is not a valid key, available keys are: {_format_values(avail_keys + ['all'])}!"
|
1181
|
+
)
|
1182
|
+
keys = [key]
|
1183
|
+
|
1184
|
+
for k in keys:
|
1185
|
+
values, field = self._non_validated_values_field(k)
|
1186
|
+
if len(values) == 0:
|
1187
|
+
continue
|
1188
|
+
if k in self._valid_var_keys:
|
1189
|
+
ms, _, slot_key = k.partition("__")
|
1190
|
+
slot = lambda experiment: experiment.ms[ms].var # noqa: B023
|
1191
|
+
else:
|
1192
|
+
slot = lambda experiment: experiment.obs
|
1193
|
+
slot_key = k
|
1194
|
+
cat_vector = CatVector(
|
1195
|
+
values_getter=values,
|
1196
|
+
field=field,
|
1197
|
+
key=k,
|
1198
|
+
source=self._sources.get(k),
|
1199
|
+
)
|
1200
|
+
cat_vector.validate()
|
1201
|
+
syn_mapper = cat_vector._synonyms
|
1202
|
+
if (n_syn_mapper := len(syn_mapper)) == 0:
|
1203
|
+
continue
|
1204
|
+
|
1205
|
+
from lamindb.core.storage._tiledbsoma import _open_tiledbsoma
|
1206
|
+
|
1207
|
+
with _open_tiledbsoma(self._dataset, mode="r") as experiment:
|
1208
|
+
value_filter = f"{slot_key} in {list(syn_mapper.keys())}"
|
1209
|
+
table = slot(experiment).read(value_filter=value_filter).concat()
|
1210
|
+
|
1211
|
+
if len(table) == 0:
|
1212
|
+
continue
|
1213
|
+
|
1214
|
+
df = table.to_pandas()
|
1215
|
+
# map values
|
1216
|
+
df[slot_key] = df[slot_key].map(
|
1217
|
+
lambda val: syn_mapper.get(val, val) # noqa
|
1218
|
+
)
|
1219
|
+
# write the mapped values
|
1220
|
+
with _open_tiledbsoma(self._dataset, mode="w") as experiment:
|
1221
|
+
slot(experiment).write(pa.Table.from_pandas(df, schema=table.schema))
|
1222
|
+
# update non_validated dict
|
1223
|
+
non_val_k = [
|
1224
|
+
nv for nv in self._non_validated_values[k] if nv not in syn_mapper
|
1225
|
+
]
|
1226
|
+
self._non_validated_values[k] = non_val_k
|
1227
|
+
|
1228
|
+
syn_mapper_print = _format_values(
|
1229
|
+
[f'"{m_k}" → "{m_v}"' for m_k, m_v in syn_mapper.items()], sep=""
|
1230
|
+
)
|
1231
|
+
s = "s" if n_syn_mapper > 1 else ""
|
1232
|
+
logger.success(
|
1233
|
+
f'standardized {n_syn_mapper} synonym{s} in "{k}": {colors.green(syn_mapper_print)}'
|
1234
|
+
)
|
1235
|
+
|
1236
|
+
def save_artifact(
|
1237
|
+
self,
|
1238
|
+
*,
|
1239
|
+
key: str | None = None,
|
1240
|
+
description: str | None = None,
|
1241
|
+
revises: Artifact | None = None,
|
1242
|
+
run: Run | None = None,
|
1243
|
+
) -> Artifact:
|
1244
|
+
"""Save the validated `tiledbsoma` store and metadata.
|
1245
|
+
|
1246
|
+
Args:
|
1247
|
+
description: A description of the ``tiledbsoma`` store.
|
1248
|
+
key: A path-like key to reference artifact in default storage,
|
1249
|
+
e.g., `"myfolder/mystore.tiledbsoma"`. Artifacts with the same key form a version family.
|
1250
|
+
revises: Previous version of the artifact. Triggers a revision.
|
1251
|
+
run: The run that creates the artifact.
|
1252
|
+
|
1253
|
+
Returns:
|
1254
|
+
A saved artifact record.
|
1255
|
+
"""
|
1256
|
+
if not self._is_validated:
|
1257
|
+
self.validate()
|
1258
|
+
if not self._is_validated:
|
1259
|
+
raise ValidationError("Dataset does not validate. Please curate.")
|
1260
|
+
|
1261
|
+
if self._artifact is None:
|
1262
|
+
artifact = Artifact(
|
1263
|
+
self._dataset,
|
1264
|
+
description=description,
|
1265
|
+
key=key,
|
1266
|
+
revises=revises,
|
1267
|
+
run=run,
|
1268
|
+
)
|
1269
|
+
artifact.n_observations = self._n_obs
|
1270
|
+
artifact.otype = "tiledbsoma"
|
1271
|
+
artifact.save()
|
1272
|
+
else:
|
1273
|
+
artifact = self._artifact
|
1274
|
+
|
1275
|
+
feature_sets = {}
|
1276
|
+
if len(self._obs_fields) > 0:
|
1277
|
+
empty_dict = {field.name: [] for field in self._obs_pa_schema} # type: ignore
|
1278
|
+
mock_df = pa.Table.from_pydict(
|
1279
|
+
empty_dict, schema=self._obs_pa_schema
|
1280
|
+
).to_pandas()
|
1281
|
+
# in parallel to https://github.com/laminlabs/lamindb/blob/2a1709990b5736b480c6de49c0ada47fafc8b18d/lamindb/core/_feature_manager.py#L549-L554
|
1282
|
+
feature_sets["obs"] = Schema.from_df(
|
1283
|
+
df=mock_df,
|
1284
|
+
field=self._columns_field,
|
1285
|
+
mute=True,
|
1286
|
+
)
|
1287
|
+
for ms in self._var_fields:
|
1288
|
+
var_key, var_field = self._var_fields[ms]
|
1289
|
+
feature_sets[f"{ms}__var"] = Schema.from_values(
|
1290
|
+
values=self._validated_values[f"{ms}__{var_key}"],
|
1291
|
+
field=var_field,
|
1292
|
+
raise_validation_error=False,
|
1293
|
+
)
|
1294
|
+
artifact._staged_feature_sets = feature_sets
|
1295
|
+
|
1296
|
+
feature_ref_is_name = _ref_is_name(self._columns_field)
|
1297
|
+
features = Feature.lookup().dict()
|
1298
|
+
for key, field in self._obs_fields.items():
|
1299
|
+
feature = features.get(key)
|
1300
|
+
registry = field.field.model
|
1301
|
+
labels = registry.from_values(
|
1302
|
+
values=self._validated_values[key],
|
1303
|
+
field=field,
|
1304
|
+
)
|
1305
|
+
if len(labels) == 0:
|
1306
|
+
continue
|
1307
|
+
if hasattr(registry, "_name_field"):
|
1308
|
+
label_ref_is_name = field.field.name == registry._name_field
|
1309
|
+
add_labels(
|
1310
|
+
artifact,
|
1311
|
+
records=labels,
|
1312
|
+
feature=feature,
|
1313
|
+
feature_ref_is_name=feature_ref_is_name,
|
1314
|
+
label_ref_is_name=label_ref_is_name,
|
1315
|
+
from_curator=True,
|
1316
|
+
)
|
1317
|
+
|
1318
|
+
return artifact.save()
|
1319
|
+
|
1320
|
+
|
1321
|
+
class CellxGeneAnnDataCatManager(AnnDataCatManager):
|
1322
|
+
"""Categorical manager for `AnnData` respecting the CELLxGENE schema.
|
1323
|
+
|
1324
|
+
This will be superceded by a schema-based curation flow.
|
1325
|
+
"""
|
1326
|
+
|
1327
|
+
cxg_categoricals_defaults = {
|
1328
|
+
"cell_type": "unknown",
|
1329
|
+
"development_stage": "unknown",
|
1330
|
+
"disease": "normal",
|
1331
|
+
"donor_id": "unknown",
|
1332
|
+
"self_reported_ethnicity": "unknown",
|
1333
|
+
"sex": "unknown",
|
1334
|
+
"suspension_type": "cell",
|
1335
|
+
"tissue_type": "tissue",
|
1336
|
+
}
|
1337
|
+
|
1338
|
+
def __init__(
|
1339
|
+
self,
|
1340
|
+
adata: ad.AnnData,
|
1341
|
+
categoricals: dict[str, FieldAttr] | None = None,
|
1342
|
+
*,
|
1343
|
+
schema_version: Literal["4.0.0", "5.0.0", "5.1.0", "5.2.0"] = "5.2.0",
|
1344
|
+
defaults: dict[str, str] = None,
|
1345
|
+
extra_sources: dict[str, Record] = None,
|
1346
|
+
) -> None:
|
1347
|
+
"""CELLxGENE schema curator.
|
1348
|
+
|
1349
|
+
Args:
|
1350
|
+
adata: Path to or AnnData object to curate against the CELLxGENE schema.
|
1351
|
+
categoricals: A dictionary mapping ``.obs.columns`` to a registry field.
|
1352
|
+
The CELLxGENE Curator maps against the required CELLxGENE fields by default.
|
1353
|
+
schema_version: The CELLxGENE schema version to curate against.
|
1354
|
+
defaults: Default values that are set if columns or column values are missing.
|
1355
|
+
extra_sources: A dictionary mapping ``.obs.columns`` to Source records.
|
1356
|
+
These extra sources are joined with the CELLxGENE fixed sources.
|
1357
|
+
Use this parameter when subclassing.
|
1358
|
+
"""
|
1359
|
+
import bionty as bt
|
1360
|
+
|
1361
|
+
from ._cellxgene_schemas import (
|
1362
|
+
_add_defaults_to_obs,
|
1363
|
+
_create_sources,
|
1364
|
+
_init_categoricals_additional_values,
|
1365
|
+
_restrict_obs_fields,
|
1366
|
+
)
|
1367
|
+
|
1368
|
+
# Add defaults first to ensure that we fetch valid sources
|
1369
|
+
if defaults:
|
1370
|
+
_add_defaults_to_obs(adata.obs, defaults)
|
1371
|
+
|
1372
|
+
# Filter categoricals based on what's present in adata
|
1373
|
+
if categoricals is None:
|
1374
|
+
categoricals = self._get_cxg_categoricals()
|
1375
|
+
categoricals = _restrict_obs_fields(adata.obs, categoricals)
|
1376
|
+
|
1377
|
+
# Configure sources
|
1378
|
+
organism: Literal["human", "mouse"] = "human"
|
1379
|
+
sources = _create_sources(categoricals, schema_version, organism)
|
1380
|
+
self.schema_version = schema_version
|
1381
|
+
self.schema_reference = f"https://github.com/chanzuckerberg/single-cell-curation/blob/main/schema/{schema_version}/schema.md"
|
1382
|
+
# These sources are not a part of the cellxgene schema but rather passed through.
|
1383
|
+
# This is useful when other Curators extend the CELLxGENE curator
|
1384
|
+
if extra_sources:
|
1385
|
+
sources = sources | extra_sources
|
1386
|
+
|
1387
|
+
_init_categoricals_additional_values()
|
1388
|
+
|
1389
|
+
super().__init__(
|
1390
|
+
data=adata,
|
1391
|
+
var_index=bt.Gene.ensembl_gene_id,
|
1392
|
+
categoricals=categoricals,
|
1393
|
+
sources=sources,
|
1394
|
+
)
|
1395
|
+
|
1396
|
+
@classmethod
|
1397
|
+
def _get_cxg_categoricals(cls) -> dict[str, FieldAttr]:
|
1398
|
+
"""Returns the CELLxGENE schema mapped fields."""
|
1399
|
+
from ._cellxgene_schemas import _get_cxg_categoricals
|
1400
|
+
|
1401
|
+
return _get_cxg_categoricals()
|
1402
|
+
|
1403
|
+
def validate(self) -> bool:
|
1404
|
+
"""Validates the AnnData object against most cellxgene requirements."""
|
1405
|
+
from ._cellxgene_schemas import RESERVED_NAMES
|
1406
|
+
|
1407
|
+
# Verify that all required obs columns are present
|
1408
|
+
required_columns = list(self.cxg_categoricals_defaults.keys()) + ["donor_id"]
|
1409
|
+
missing_obs_fields = [
|
1410
|
+
name
|
1411
|
+
for name in required_columns
|
1412
|
+
if name not in self._adata.obs.columns
|
1413
|
+
and f"{name}_ontology_term_id" not in self._adata.obs.columns
|
1414
|
+
]
|
1415
|
+
if len(missing_obs_fields) > 0:
|
1416
|
+
logger.error(
|
1417
|
+
f"missing required obs columns {_format_values(missing_obs_fields)}\n"
|
1418
|
+
" → consider initializing a Curate object with `defaults=cxg.CellxGeneAnnDataCatManager.cxg_categoricals_defaults` to automatically add these columns with default values"
|
1419
|
+
)
|
1420
|
+
return False
|
1421
|
+
|
1422
|
+
# Verify that no cellxgene reserved names are present
|
1423
|
+
matched_columns = [
|
1424
|
+
column for column in self._adata.obs.columns if column in RESERVED_NAMES
|
1425
|
+
]
|
1426
|
+
if len(matched_columns) > 0:
|
1427
|
+
raise ValueError(
|
1428
|
+
f"AnnData object must not contain obs columns {matched_columns} which are"
|
1429
|
+
" reserved from previous schema versions."
|
1430
|
+
)
|
1431
|
+
|
1432
|
+
return super().validate()
|
1433
|
+
|
1434
|
+
def to_cellxgene_anndata(
|
1435
|
+
self, is_primary_data: bool, title: str | None = None
|
1436
|
+
) -> ad.AnnData:
|
1437
|
+
"""Converts the AnnData object to the cellxgene-schema input format.
|
1438
|
+
|
1439
|
+
cellxgene expects the obs fields to be {entity}_ontology_id fields and has many further requirements which are
|
1440
|
+
documented here: https://github.com/chanzuckerberg/single-cell-curation/tree/main/schema.
|
1441
|
+
This function checks for most but not all requirements of the CELLxGENE schema.
|
1442
|
+
If you want to ensure that it fully adheres to the CELLxGENE schema, run `cellxgene-schema` on the AnnData object.
|
1443
|
+
|
1444
|
+
Args:
|
1445
|
+
is_primary_data: Whether the measured data is primary data or not.
|
1446
|
+
title: Title of the AnnData object. Commonly the name of the publication.
|
1447
|
+
|
1448
|
+
Returns:
|
1449
|
+
An AnnData object which adheres to the cellxgene-schema.
|
1450
|
+
"""
|
1451
|
+
|
1452
|
+
def _convert_name_to_ontology_id(values: pd.Series, field: FieldAttr):
|
1453
|
+
"""Converts a column that stores a name into a column that stores the ontology id.
|
1454
|
+
|
1455
|
+
cellxgene expects the obs columns to be {entity}_ontology_id columns and disallows {entity} columns.
|
1456
|
+
"""
|
1457
|
+
field_name = field.field.name
|
1458
|
+
assert field_name == "name" # noqa: S101
|
1459
|
+
cols = ["name", "ontology_id"]
|
1460
|
+
registry = field.field.model
|
1461
|
+
|
1462
|
+
if hasattr(registry, "ontology_id"):
|
1463
|
+
validated_records = registry.filter(**{f"{field_name}__in": values})
|
1464
|
+
mapper = (
|
1465
|
+
pd.DataFrame(validated_records.values_list(*cols))
|
1466
|
+
.set_index(0)
|
1467
|
+
.to_dict()[1]
|
1468
|
+
)
|
1469
|
+
return values.map(mapper)
|
1470
|
+
|
1471
|
+
# Create a copy since we modify the AnnData object extensively
|
1472
|
+
adata_cxg = self._adata.copy()
|
1473
|
+
|
1474
|
+
# cellxgene requires an embedding
|
1475
|
+
embedding_pattern = r"^[a-zA-Z][a-zA-Z0-9_.-]*$"
|
1476
|
+
exclude_key = "spatial"
|
1477
|
+
matching_keys = [
|
1478
|
+
key
|
1479
|
+
for key in adata_cxg.obsm.keys()
|
1480
|
+
if re.match(embedding_pattern, key) and key != exclude_key
|
1481
|
+
]
|
1482
|
+
if len(matching_keys) == 0:
|
1483
|
+
raise ValueError(
|
1484
|
+
"Unable to find an embedding key. Please calculate an embedding."
|
1485
|
+
)
|
1486
|
+
|
1487
|
+
# convert name column to ontology_term_id column
|
1488
|
+
for column in adata_cxg.obs.columns:
|
1489
|
+
if column in self.categoricals and not column.endswith("_ontology_term_id"):
|
1490
|
+
mapped_column = _convert_name_to_ontology_id(
|
1491
|
+
adata_cxg.obs[column], field=self.categoricals.get(column)
|
1492
|
+
)
|
1493
|
+
if mapped_column is not None:
|
1494
|
+
adata_cxg.obs[f"{column}_ontology_term_id"] = mapped_column
|
1495
|
+
|
1496
|
+
# drop the name columns for ontologies. cellxgene does not allow them.
|
1497
|
+
drop_columns = [
|
1498
|
+
i
|
1499
|
+
for i in adata_cxg.obs.columns
|
1500
|
+
if f"{i}_ontology_term_id" in adata_cxg.obs.columns
|
1501
|
+
]
|
1502
|
+
adata_cxg.obs.drop(columns=drop_columns, inplace=True)
|
1503
|
+
|
1504
|
+
# Add cellxgene metadata to AnnData object
|
1505
|
+
if "is_primary_data" not in adata_cxg.obs.columns:
|
1506
|
+
adata_cxg.obs["is_primary_data"] = is_primary_data
|
1507
|
+
if "feature_is_filtered" not in adata_cxg.var.columns:
|
1508
|
+
logger.warn(
|
1509
|
+
"column 'feature_is_filtered' not present in var. Setting to default"
|
1510
|
+
" value of False."
|
1511
|
+
)
|
1512
|
+
adata_cxg.var["feature_is_filtered"] = False
|
1513
|
+
if title is None:
|
1514
|
+
raise ValueError("please pass a title!")
|
1515
|
+
else:
|
1516
|
+
adata_cxg.uns["title"] = title
|
1517
|
+
adata_cxg.uns["cxg_lamin_schema_reference"] = self.schema_reference
|
1518
|
+
adata_cxg.uns["cxg_lamin_schema_version"] = self.schema_version
|
1519
|
+
|
1520
|
+
return adata_cxg
|
1521
|
+
|
1522
|
+
|
1523
|
+
class ValueUnit:
|
1524
|
+
"""Base class for handling value-unit combinations."""
|
1525
|
+
|
1526
|
+
@staticmethod
|
1527
|
+
def parse_value_unit(value: str, is_dose: bool = True) -> tuple[str, str] | None:
|
1528
|
+
"""Parse a string containing a value and unit into a tuple."""
|
1529
|
+
if not isinstance(value, str) or not value.strip():
|
1530
|
+
return None
|
1531
|
+
|
1532
|
+
value = str(value).strip()
|
1533
|
+
match = re.match(r"^(\d*\.?\d{0,1})\s*([a-zA-ZμµΜ]+)$", value)
|
1534
|
+
|
1535
|
+
if not match:
|
1536
|
+
raise ValueError(
|
1537
|
+
f"Invalid format: {value}. Expected format: number with max 1 decimal place + unit"
|
1538
|
+
)
|
1539
|
+
|
1540
|
+
number, unit = match.groups()
|
1541
|
+
formatted_number = f"{float(number):.1f}"
|
1542
|
+
|
1543
|
+
if is_dose:
|
1544
|
+
standardized_unit = DoseHandler.standardize_unit(unit)
|
1545
|
+
if not DoseHandler.validate_unit(standardized_unit):
|
1546
|
+
raise ValueError(
|
1547
|
+
f"Invalid dose unit: {unit}. Must be convertible to one of: nM, μM, mM, M"
|
1548
|
+
)
|
1549
|
+
else:
|
1550
|
+
standardized_unit = TimeHandler.standardize_unit(unit)
|
1551
|
+
if not TimeHandler.validate_unit(standardized_unit):
|
1552
|
+
raise ValueError(
|
1553
|
+
f"Invalid time unit: {unit}. Must be convertible to one of: h, m, s, d, y"
|
1554
|
+
)
|
1555
|
+
|
1556
|
+
return formatted_number, standardized_unit
|
1557
|
+
|
1558
|
+
|
1559
|
+
class DoseHandler:
|
1560
|
+
"""Handler for dose-related operations."""
|
1561
|
+
|
1562
|
+
VALID_UNITS = {"nM", "μM", "µM", "mM", "M"}
|
1563
|
+
UNIT_MAP = {
|
1564
|
+
"nm": "nM",
|
1565
|
+
"NM": "nM",
|
1566
|
+
"um": "μM",
|
1567
|
+
"UM": "μM",
|
1568
|
+
"μm": "μM",
|
1569
|
+
"μM": "μM",
|
1570
|
+
"µm": "μM",
|
1571
|
+
"µM": "μM",
|
1572
|
+
"mm": "mM",
|
1573
|
+
"MM": "mM",
|
1574
|
+
"m": "M",
|
1575
|
+
"M": "M",
|
1576
|
+
}
|
1577
|
+
|
1578
|
+
@classmethod
|
1579
|
+
def validate_unit(cls, unit: str) -> bool:
|
1580
|
+
"""Validate if the dose unit is acceptable."""
|
1581
|
+
return unit in cls.VALID_UNITS
|
1582
|
+
|
1583
|
+
@classmethod
|
1584
|
+
def standardize_unit(cls, unit: str) -> str:
|
1585
|
+
"""Standardize dose unit to standard formats."""
|
1586
|
+
return cls.UNIT_MAP.get(unit, unit)
|
1587
|
+
|
1588
|
+
@classmethod
|
1589
|
+
def validate_values(cls, values: pd.Series) -> list[str]:
|
1590
|
+
"""Validate pert_dose values with strict case checking."""
|
1591
|
+
errors = []
|
1592
|
+
|
1593
|
+
for idx, value in values.items():
|
1594
|
+
if pd.isna(value):
|
1595
|
+
continue
|
1596
|
+
|
1597
|
+
if isinstance(value, (int, float)):
|
1598
|
+
errors.append(
|
1599
|
+
f"Row {idx} - Missing unit for dose: {value}. Must include a unit (nM, μM, mM, M)"
|
1600
|
+
)
|
1601
|
+
continue
|
1602
|
+
|
1603
|
+
try:
|
1604
|
+
ValueUnit.parse_value_unit(value, is_dose=True)
|
1605
|
+
except ValueError as e:
|
1606
|
+
errors.append(f"Row {idx} - {str(e)}")
|
1607
|
+
|
1608
|
+
return errors
|
1609
|
+
|
1610
|
+
|
1611
|
+
class TimeHandler:
|
1612
|
+
"""Handler for time-related operations."""
|
1613
|
+
|
1614
|
+
VALID_UNITS = {"h", "m", "s", "d", "y"}
|
1615
|
+
|
1616
|
+
@classmethod
|
1617
|
+
def validate_unit(cls, unit: str) -> bool:
|
1618
|
+
"""Validate if the time unit is acceptable."""
|
1619
|
+
return unit == unit.lower() and unit in cls.VALID_UNITS
|
1620
|
+
|
1621
|
+
@classmethod
|
1622
|
+
def standardize_unit(cls, unit: str) -> str:
|
1623
|
+
"""Standardize time unit to standard formats."""
|
1624
|
+
if unit.startswith("hr"):
|
1625
|
+
return "h"
|
1626
|
+
elif unit.startswith("min"):
|
1627
|
+
return "m"
|
1628
|
+
elif unit.startswith("sec"):
|
1629
|
+
return "s"
|
1630
|
+
return unit[0].lower()
|
1631
|
+
|
1632
|
+
@classmethod
|
1633
|
+
def validate_values(cls, values: pd.Series) -> list[str]:
|
1634
|
+
"""Validate pert_time values."""
|
1635
|
+
errors = []
|
1636
|
+
|
1637
|
+
for idx, value in values.items():
|
1638
|
+
if pd.isna(value):
|
1639
|
+
continue
|
1640
|
+
|
1641
|
+
if isinstance(value, (int, float)):
|
1642
|
+
errors.append(
|
1643
|
+
f"Row {idx} - Missing unit for time: {value}. Must include a unit (h, m, s, d, y)"
|
1644
|
+
)
|
1645
|
+
continue
|
1646
|
+
|
1647
|
+
try:
|
1648
|
+
ValueUnit.parse_value_unit(value, is_dose=False)
|
1649
|
+
except ValueError as e:
|
1650
|
+
errors.append(f"Row {idx} - {str(e)}")
|
1651
|
+
|
1652
|
+
return errors
|
1653
|
+
|
1654
|
+
|
1655
|
+
class PertAnnDataCatManager(CellxGeneAnnDataCatManager):
|
1656
|
+
"""Categorical manager for `AnnData` to manage perturbations."""
|
1657
|
+
|
1658
|
+
PERT_COLUMNS = {"compound", "genetic", "biologic", "physical"}
|
1659
|
+
|
1660
|
+
def __init__(
|
1661
|
+
self,
|
1662
|
+
adata: ad.AnnData,
|
1663
|
+
organism: Literal["human", "mouse"] = "human",
|
1664
|
+
pert_dose: bool = True,
|
1665
|
+
pert_time: bool = True,
|
1666
|
+
*,
|
1667
|
+
cxg_schema_version: Literal["5.0.0", "5.1.0", "5.2.0"] = "5.2.0",
|
1668
|
+
):
|
1669
|
+
"""Initialize the curator with configuration and validation settings."""
|
1670
|
+
self._pert_time = pert_time
|
1671
|
+
self._pert_dose = pert_dose
|
1672
|
+
|
1673
|
+
self._validate_initial_data(adata)
|
1674
|
+
categoricals, categoricals_defaults = self._configure_categoricals(adata)
|
1675
|
+
|
1676
|
+
super().__init__(
|
1677
|
+
adata=adata,
|
1678
|
+
categoricals=categoricals,
|
1679
|
+
defaults=categoricals_defaults,
|
1680
|
+
extra_sources=self._configure_sources(adata),
|
1681
|
+
schema_version=cxg_schema_version,
|
1682
|
+
)
|
1683
|
+
|
1684
|
+
def _configure_categoricals(self, adata: ad.AnnData):
|
1685
|
+
"""Set up default configuration values."""
|
1686
|
+
import bionty as bt
|
1687
|
+
import wetlab as wl
|
1688
|
+
|
1689
|
+
categoricals = CellxGeneAnnDataCatManager._get_cxg_categoricals() | {
|
1690
|
+
k: v
|
1691
|
+
for k, v in {
|
1692
|
+
"cell_line": bt.CellLine.name,
|
1693
|
+
"pert_target": wl.PerturbationTarget.name,
|
1694
|
+
"pert_genetic": wl.GeneticPerturbation.name,
|
1695
|
+
"pert_compound": wl.Compound.name,
|
1696
|
+
"pert_biologic": wl.Biologic.name,
|
1697
|
+
"pert_physical": wl.EnvironmentalPerturbation.name,
|
1698
|
+
}.items()
|
1699
|
+
if k in adata.obs.columns
|
1700
|
+
}
|
1701
|
+
# if "donor_id" in categoricals:
|
1702
|
+
# categoricals["donor_id"] = Donor.name
|
1703
|
+
|
1704
|
+
categoricals_defaults = CellxGeneAnnDataCatManager.cxg_categoricals_defaults | {
|
1705
|
+
"cell_line": "unknown",
|
1706
|
+
"pert_target": "unknown",
|
1707
|
+
}
|
1708
|
+
|
1709
|
+
return categoricals, categoricals_defaults
|
1710
|
+
|
1711
|
+
def _configure_sources(self, adata: ad.AnnData):
|
1712
|
+
"""Set up data sources."""
|
1713
|
+
import bionty as bt
|
1714
|
+
import wetlab as wl
|
1715
|
+
|
1716
|
+
sources = {}
|
1717
|
+
# # do not yet specify cell_line source
|
1718
|
+
# if "cell_line" in adata.obs.columns:
|
1719
|
+
# sources["cell_line"] = bt.Source.filter(
|
1720
|
+
# entity="bionty.CellLine", name="depmap"
|
1721
|
+
# ).first()
|
1722
|
+
if "pert_compound" in adata.obs.columns:
|
1723
|
+
with logger.mute():
|
1724
|
+
chebi_source = bt.Source.filter(
|
1725
|
+
entity="wetlab.Compound", name="chebi"
|
1726
|
+
).first()
|
1727
|
+
if not chebi_source:
|
1728
|
+
wl.Compound.add_source(
|
1729
|
+
bt.Source.filter(entity="Drug", name="chebi").first()
|
1730
|
+
)
|
1731
|
+
|
1732
|
+
sources["pert_compound"] = bt.Source.filter(
|
1733
|
+
entity="wetlab.Compound", name="chebi"
|
1734
|
+
).first()
|
1735
|
+
return sources
|
1736
|
+
|
1737
|
+
def _validate_initial_data(self, adata: ad.AnnData):
|
1738
|
+
"""Validate the initial data structure."""
|
1739
|
+
self._validate_required_columns(adata)
|
1740
|
+
self._validate_perturbation_types(adata)
|
1741
|
+
|
1742
|
+
def _validate_required_columns(self, adata: ad.AnnData):
|
1743
|
+
"""Validate required columns are present."""
|
1744
|
+
if "pert_target" not in adata.obs.columns:
|
1745
|
+
if (
|
1746
|
+
"pert_name" not in adata.obs.columns
|
1747
|
+
or "pert_type" not in adata.obs.columns
|
1748
|
+
):
|
1749
|
+
raise ValidationError(
|
1750
|
+
"either 'pert_target' or both 'pert_name' and 'pert_type' must be present"
|
1751
|
+
)
|
1752
|
+
else:
|
1753
|
+
if "pert_name" not in adata.obs.columns:
|
1754
|
+
logger.warning(
|
1755
|
+
"no 'pert' column found in adata.obs, will only curate 'pert_target'"
|
1756
|
+
)
|
1757
|
+
elif "pert_type" not in adata.obs.columns:
|
1758
|
+
raise ValidationError("both 'pert' and 'pert_type' must be present")
|
1759
|
+
|
1760
|
+
def _validate_perturbation_types(self, adata: ad.AnnData):
|
1761
|
+
"""Validate perturbation types."""
|
1762
|
+
if "pert_type" in adata.obs.columns:
|
1763
|
+
data_pert_types = set(adata.obs["pert_type"].unique())
|
1764
|
+
invalid_pert_types = data_pert_types - self.PERT_COLUMNS
|
1765
|
+
if invalid_pert_types:
|
1766
|
+
raise ValidationError(
|
1767
|
+
f"invalid pert_type found: {invalid_pert_types}!\n"
|
1768
|
+
f" → allowed values: {self.PERT_COLUMNS}"
|
1769
|
+
)
|
1770
|
+
self._process_perturbation_types(adata, data_pert_types)
|
1771
|
+
|
1772
|
+
def _process_perturbation_types(self, adata: ad.AnnData, pert_types: set):
|
1773
|
+
"""Process and map perturbation types."""
|
1774
|
+
for pert_type in pert_types:
|
1775
|
+
col_name = "pert_" + pert_type
|
1776
|
+
adata.obs[col_name] = adata.obs["pert_name"].where(
|
1777
|
+
adata.obs["pert_type"] == pert_type, None
|
1778
|
+
)
|
1779
|
+
if adata.obs[col_name].dtype.name == "category":
|
1780
|
+
adata.obs[col_name].cat.remove_unused_categories()
|
1781
|
+
logger.important(f"mapped 'pert_name' to '{col_name}'")
|
1782
|
+
|
1783
|
+
def validate(self) -> bool: # type: ignore
|
1784
|
+
"""Validate the AnnData object."""
|
1785
|
+
validated = super().validate()
|
1786
|
+
|
1787
|
+
if self._pert_dose:
|
1788
|
+
validated &= self._validate_dose_column()
|
1789
|
+
if self._pert_time:
|
1790
|
+
validated &= self._validate_time_column()
|
1791
|
+
|
1792
|
+
self._is_validated = validated
|
1793
|
+
|
1794
|
+
# sort columns
|
1795
|
+
first_columns = [
|
1796
|
+
"pert_target",
|
1797
|
+
"pert_genetic",
|
1798
|
+
"pert_compound",
|
1799
|
+
"pert_biologic",
|
1800
|
+
"pert_physical",
|
1801
|
+
"pert_dose",
|
1802
|
+
"pert_time",
|
1803
|
+
"organism",
|
1804
|
+
"cell_line",
|
1805
|
+
"cell_type",
|
1806
|
+
"disease",
|
1807
|
+
"tissue_type",
|
1808
|
+
"tissue",
|
1809
|
+
"assay",
|
1810
|
+
"suspension_type",
|
1811
|
+
"donor_id",
|
1812
|
+
"sex",
|
1813
|
+
"self_reported_ethnicity",
|
1814
|
+
"development_stage",
|
1815
|
+
"pert_name",
|
1816
|
+
"pert_type",
|
1817
|
+
]
|
1818
|
+
sorted_columns = [
|
1819
|
+
col for col in first_columns if col in self._adata.obs.columns
|
1820
|
+
] + [col for col in self._adata.obs.columns if col not in first_columns]
|
1821
|
+
# must assign to self._df to ensure .standardize works correctly
|
1822
|
+
self._obs_df = self._adata.obs[sorted_columns]
|
1823
|
+
self._adata.obs = self._obs_df
|
1824
|
+
return validated
|
1825
|
+
|
1826
|
+
def standardize(self, key: str) -> pd.DataFrame:
|
1827
|
+
"""Standardize the AnnData object."""
|
1828
|
+
super().standardize(key)
|
1829
|
+
self._adata.obs = self._obs_df
|
1830
|
+
|
1831
|
+
def _validate_dose_column(self) -> bool:
|
1832
|
+
"""Validate the dose column."""
|
1833
|
+
if not Feature.filter(name="pert_dose").exists():
|
1834
|
+
Feature(name="pert_dose", dtype="str").save() # type: ignore
|
1835
|
+
|
1836
|
+
dose_errors = DoseHandler.validate_values(self._adata.obs["pert_dose"])
|
1837
|
+
if dose_errors:
|
1838
|
+
self._log_validation_errors("pert_dose", dose_errors)
|
1839
|
+
return False
|
1840
|
+
return True
|
1841
|
+
|
1842
|
+
def _validate_time_column(self) -> bool:
|
1843
|
+
"""Validate the time column."""
|
1844
|
+
if not Feature.filter(name="pert_time").exists():
|
1845
|
+
Feature(name="pert_time", dtype="str").save() # type: ignore
|
1846
|
+
|
1847
|
+
time_errors = TimeHandler.validate_values(self._adata.obs["pert_time"])
|
1848
|
+
if time_errors:
|
1849
|
+
self._log_validation_errors("pert_time", time_errors)
|
1850
|
+
return False
|
1851
|
+
return True
|
1852
|
+
|
1853
|
+
def _log_validation_errors(self, column: str, errors: list):
|
1854
|
+
"""Log validation errors with formatting."""
|
1855
|
+
errors_print = "\n ".join(errors)
|
1856
|
+
logger.warning(
|
1857
|
+
f"invalid {column} values found!\n {errors_print}\n"
|
1858
|
+
f" → run {colors.cyan('standardize_dose_time()')}"
|
1859
|
+
)
|
1860
|
+
|
1861
|
+
def standardize_dose_time(self) -> pd.DataFrame:
|
1862
|
+
"""Standardize dose and time values."""
|
1863
|
+
standardized_df = self._adata.obs.copy()
|
1864
|
+
|
1865
|
+
if "pert_dose" in self._adata.obs.columns:
|
1866
|
+
standardized_df = self._standardize_column(
|
1867
|
+
standardized_df, "pert_dose", is_dose=True
|
1868
|
+
)
|
1869
|
+
|
1870
|
+
if "pert_time" in self._adata.obs.columns:
|
1871
|
+
standardized_df = self._standardize_column(
|
1872
|
+
standardized_df, "pert_time", is_dose=False
|
1873
|
+
)
|
1874
|
+
|
1875
|
+
self._adata.obs = standardized_df
|
1876
|
+
return standardized_df
|
1877
|
+
|
1878
|
+
def _standardize_column(
|
1879
|
+
self, df: pd.DataFrame, column: str, is_dose: bool
|
1880
|
+
) -> pd.DataFrame:
|
1881
|
+
"""Standardize values in a specific column."""
|
1882
|
+
for idx, value in self._adata.obs[column].items():
|
1883
|
+
if pd.isna(value) or (
|
1884
|
+
isinstance(value, str) and (not value.strip() or value.lower() == "nan")
|
1885
|
+
):
|
1886
|
+
df.at[idx, column] = None
|
1887
|
+
continue
|
1888
|
+
|
1889
|
+
try:
|
1890
|
+
num, unit = ValueUnit.parse_value_unit(value, is_dose=is_dose)
|
1891
|
+
df.at[idx, column] = f"{num}{unit}"
|
1892
|
+
except ValueError:
|
1893
|
+
continue
|
1894
|
+
|
1895
|
+
return df
|
1896
|
+
|
1897
|
+
|
1898
|
+
def legacy_annotate_artifact(
|
1899
|
+
artifact: Artifact,
|
1900
|
+
*,
|
1901
|
+
cat_vectors: dict[str, CatVector] | None = None,
|
1902
|
+
index_field: FieldAttr | dict[str, FieldAttr] | None = None,
|
1903
|
+
**kwargs,
|
1904
|
+
) -> Artifact:
|
1905
|
+
from ..models.artifact import add_labels
|
1906
|
+
|
1907
|
+
if cat_vectors is None:
|
1908
|
+
cat_vectors = {}
|
1909
|
+
|
1910
|
+
# annotate with labels
|
1911
|
+
for key, cat_vector in cat_vectors.items():
|
1912
|
+
if (
|
1913
|
+
cat_vector._field.field.model == Feature
|
1914
|
+
or key == "columns"
|
1915
|
+
or key == "var_index"
|
1916
|
+
):
|
1917
|
+
continue
|
1918
|
+
add_labels(
|
1919
|
+
artifact,
|
1920
|
+
records=cat_vector.records,
|
1921
|
+
feature=cat_vector.feature,
|
1922
|
+
feature_ref_is_name=None, # do not need anymore
|
1923
|
+
label_ref_is_name=cat_vector.label_ref_is_name,
|
1924
|
+
from_curator=True,
|
1925
|
+
)
|
1926
|
+
|
1927
|
+
match artifact.otype:
|
1928
|
+
case "DataFrame":
|
1929
|
+
artifact.features._add_set_from_df(field=index_field) # type: ignore
|
1930
|
+
case "AnnData":
|
1931
|
+
artifact.features._add_set_from_anndata( # type: ignore
|
1932
|
+
var_field=index_field,
|
1933
|
+
)
|
1934
|
+
case "MuData":
|
1935
|
+
artifact.features._add_set_from_mudata(var_fields=index_field) # type: ignore
|
1936
|
+
case "SpatialData":
|
1937
|
+
artifact.features._add_set_from_spatialdata( # type: ignore
|
1938
|
+
sample_metadata_key=kwargs.get("sample_metadata_key", "sample"),
|
1939
|
+
var_fields=index_field,
|
1940
|
+
)
|
1941
|
+
case _:
|
1942
|
+
raise NotImplementedError # pragma: no cover
|
1943
|
+
|
1944
|
+
return artifact
|
1945
|
+
|
1946
|
+
|
1947
|
+
# backward compat constructors ------------------
|
1948
|
+
|
1949
|
+
|
1950
|
+
@classmethod # type: ignore
|
1951
|
+
def from_df(
|
1952
|
+
cls,
|
1953
|
+
df: pd.DataFrame,
|
1954
|
+
categoricals: dict[str, FieldAttr] | None = None,
|
1955
|
+
columns: FieldAttr = Feature.name,
|
1956
|
+
organism: str | None = None,
|
1957
|
+
) -> DataFrameCatManager:
|
1958
|
+
if organism is not None:
|
1959
|
+
logger.warning("organism is ignored, define it on the dtype level")
|
1960
|
+
return DataFrameCatManager(
|
1961
|
+
df=df,
|
1962
|
+
categoricals=categoricals,
|
1963
|
+
columns_field=columns,
|
1964
|
+
)
|
1965
|
+
|
1966
|
+
|
1967
|
+
@classmethod # type: ignore
|
1968
|
+
def from_anndata(
|
1969
|
+
cls,
|
1970
|
+
data: ad.AnnData | UPathStr,
|
1971
|
+
var_index: FieldAttr,
|
1972
|
+
categoricals: dict[str, FieldAttr] | None = None,
|
1973
|
+
obs_columns: FieldAttr = Feature.name,
|
1974
|
+
organism: str | None = None,
|
1975
|
+
sources: dict[str, Record] | None = None,
|
1976
|
+
) -> AnnDataCatManager:
|
1977
|
+
if organism is not None:
|
1978
|
+
logger.warning("organism is ignored, define it on the dtype level")
|
1979
|
+
return AnnDataCatManager(
|
1980
|
+
data=data,
|
1981
|
+
var_index=var_index,
|
1982
|
+
categoricals=categoricals,
|
1983
|
+
obs_columns=obs_columns,
|
1984
|
+
sources=sources,
|
1985
|
+
)
|
1986
|
+
|
1987
|
+
|
1988
|
+
@classmethod # type: ignore
|
1989
|
+
def from_mudata(
|
1990
|
+
cls,
|
1991
|
+
mdata: MuData | UPathStr,
|
1992
|
+
var_index: dict[str, dict[str, FieldAttr]],
|
1993
|
+
categoricals: dict[str, FieldAttr] | None = None,
|
1994
|
+
organism: str | None = None,
|
1995
|
+
) -> MuDataCatManager:
|
1996
|
+
if not is_package_installed("mudata"):
|
1997
|
+
raise ImportError("Please install mudata: pip install mudata")
|
1998
|
+
if organism is not None:
|
1999
|
+
logger.warning("organism is ignored, define it on the dtype level")
|
2000
|
+
return MuDataCatManager(
|
2001
|
+
mdata=mdata,
|
2002
|
+
var_index=var_index,
|
2003
|
+
categoricals=categoricals,
|
2004
|
+
)
|
2005
|
+
|
2006
|
+
|
2007
|
+
@classmethod # type: ignore
|
2008
|
+
def from_tiledbsoma(
|
2009
|
+
cls,
|
2010
|
+
experiment_uri: UPathStr,
|
2011
|
+
var_index: dict[str, tuple[str, FieldAttr]],
|
2012
|
+
categoricals: dict[str, FieldAttr] | None = None,
|
2013
|
+
obs_columns: FieldAttr = Feature.name,
|
2014
|
+
organism: str | None = None,
|
2015
|
+
sources: dict[str, Record] | None = None,
|
2016
|
+
) -> TiledbsomaCatManager:
|
2017
|
+
if organism is not None:
|
2018
|
+
logger.warning("organism is ignored, define it on the dtype level")
|
2019
|
+
return TiledbsomaCatManager(
|
2020
|
+
experiment_uri=experiment_uri,
|
2021
|
+
var_index=var_index,
|
2022
|
+
categoricals=categoricals,
|
2023
|
+
obs_columns=obs_columns,
|
2024
|
+
sources=sources,
|
2025
|
+
)
|
2026
|
+
|
2027
|
+
|
2028
|
+
@classmethod # type: ignore
|
2029
|
+
def from_spatialdata(
|
2030
|
+
cls,
|
2031
|
+
sdata: SpatialData | UPathStr,
|
2032
|
+
var_index: dict[str, FieldAttr],
|
2033
|
+
categoricals: dict[str, dict[str, FieldAttr]] | None = None,
|
2034
|
+
organism: str | None = None,
|
2035
|
+
sources: dict[str, dict[str, Record]] | None = None,
|
2036
|
+
*,
|
2037
|
+
sample_metadata_key: str = "sample",
|
2038
|
+
):
|
2039
|
+
if not is_package_installed("spatialdata"):
|
2040
|
+
raise ImportError("Please install spatialdata: pip install spatialdata")
|
2041
|
+
if organism is not None:
|
2042
|
+
logger.warning("organism is ignored, define it on the dtype level")
|
2043
|
+
return SpatialDataCatManager(
|
2044
|
+
sdata=sdata,
|
2045
|
+
var_index=var_index,
|
2046
|
+
categoricals=categoricals,
|
2047
|
+
sources=sources,
|
2048
|
+
sample_metadata_key=sample_metadata_key,
|
2049
|
+
)
|
2050
|
+
|
2051
|
+
|
2052
|
+
CatManager.from_df = from_df # type: ignore
|
2053
|
+
CatManager.from_anndata = from_anndata # type: ignore
|
2054
|
+
CatManager.from_mudata = from_mudata # type: ignore
|
2055
|
+
CatManager.from_spatialdata = from_spatialdata # type: ignore
|
2056
|
+
CatManager.from_tiledbsoma = from_tiledbsoma # type: ignore
|