keras-hub-nightly 0.21.0.dev202505050407__py3-none-any.whl → 0.21.0.dev202505070407__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. keras_hub/models/__init__.py +21 -0
  2. keras_hub/src/models/backbone.py +5 -2
  3. keras_hub/src/models/cspnet/cspnet_backbone.py +51 -26
  4. keras_hub/src/models/cspnet/cspnet_presets.py +38 -3
  5. keras_hub/src/models/mixtral/mixtral_attention.py +263 -0
  6. keras_hub/src/models/mixtral/mixtral_backbone.py +207 -0
  7. keras_hub/src/models/mixtral/mixtral_causal_lm.py +281 -0
  8. keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +76 -0
  9. keras_hub/src/models/mixtral/mixtral_decoder.py +494 -0
  10. keras_hub/src/models/mixtral/mixtral_layer_norm.py +34 -0
  11. keras_hub/src/models/mixtral/mixtral_tokenizer.py +21 -0
  12. keras_hub/src/models/qwen/qwen_attention.py +3 -1
  13. keras_hub/src/models/qwen/qwen_presets.py +61 -0
  14. keras_hub/src/models/qwen_moe/__init__.py +0 -0
  15. keras_hub/src/models/qwen_moe/qwen_moe_attention.py +377 -0
  16. keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +373 -0
  17. keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +350 -0
  18. keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +17 -0
  19. keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +625 -0
  20. keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +32 -0
  21. keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +46 -0
  22. keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -13
  23. keras_hub/src/models/retinanet/retinanet_presets.py +2 -2
  24. keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -18
  25. keras_hub/src/models/segformer/segformer_presets.py +12 -12
  26. keras_hub/src/models/task.py +5 -2
  27. keras_hub/src/utils/keras_utils.py +11 -0
  28. keras_hub/src/utils/preset_utils.py +69 -9
  29. keras_hub/src/utils/tensor_utils.py +27 -1
  30. keras_hub/src/utils/timm/convert_cspnet.py +94 -23
  31. keras_hub/src/utils/timm/preset_loader.py +6 -6
  32. keras_hub/src/utils/transformers/convert_mixtral.py +139 -0
  33. keras_hub/src/utils/transformers/convert_qwen_moe.py +253 -0
  34. keras_hub/src/utils/transformers/preset_loader.py +6 -0
  35. keras_hub/src/version.py +1 -1
  36. keras_hub/tokenizers/__init__.py +6 -0
  37. {keras_hub_nightly-0.21.0.dev202505050407.dist-info → keras_hub_nightly-0.21.0.dev202505070407.dist-info}/METADATA +1 -1
  38. {keras_hub_nightly-0.21.0.dev202505050407.dist-info → keras_hub_nightly-0.21.0.dev202505070407.dist-info}/RECORD +40 -22
  39. {keras_hub_nightly-0.21.0.dev202505050407.dist-info → keras_hub_nightly-0.21.0.dev202505070407.dist-info}/WHEEL +0 -0
  40. {keras_hub_nightly-0.21.0.dev202505050407.dist-info → keras_hub_nightly-0.21.0.dev202505070407.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,139 @@
1
+ import numpy as np
2
+
3
+ from keras_hub.src.models.mixtral.mixtral_backbone import MixtralBackbone
4
+ from keras_hub.src.utils.preset_utils import get_file
5
+
6
+ backbone_cls = MixtralBackbone
7
+
8
+
9
+ def convert_backbone_config(transformers_config):
10
+ return {
11
+ "vocabulary_size": transformers_config["vocab_size"],
12
+ "num_layers": transformers_config["num_hidden_layers"],
13
+ "num_query_heads": transformers_config["num_attention_heads"],
14
+ "hidden_dim": transformers_config["hidden_size"],
15
+ "intermediate_dim": transformers_config["intermediate_size"],
16
+ "num_key_value_heads": transformers_config["num_key_value_heads"],
17
+ "num_experts": transformers_config["num_local_experts"],
18
+ "top_k": transformers_config["num_experts_per_tok"],
19
+ "rope_max_wavelength": transformers_config["rope_theta"],
20
+ "layer_norm_epsilon": transformers_config["rms_norm_eps"],
21
+ "sliding_window": transformers_config["sliding_window"],
22
+ "output_router_logits": transformers_config["output_router_logits"],
23
+ }
24
+
25
+
26
+ def convert_weights(backbone, loader, transformers_config):
27
+ # Embeddings
28
+ loader.port_weight(
29
+ keras_variable=backbone.get_layer("token_embedding").embeddings,
30
+ hf_weight_key="model.embed_tokens.weight",
31
+ )
32
+ loader.port_weight(
33
+ keras_variable=backbone.get_layer("token_embedding").reverse_embeddings,
34
+ hf_weight_key="lm_head.weight",
35
+ hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
36
+ )
37
+
38
+ def transpose_and_reshape(x, shape):
39
+ return np.reshape(np.transpose(x), shape)
40
+
41
+ for i in range(backbone.num_layers):
42
+ decoder_layer = backbone.get_layer(f"transformer_layer_{i}")
43
+
44
+ # Input layernorm
45
+ loader.port_weight(
46
+ keras_variable=decoder_layer._self_attention_layernorm.scale,
47
+ hf_weight_key=f"model.layers.{i}.input_layernorm.weight",
48
+ )
49
+
50
+ # Attention layers
51
+ ## Query
52
+ loader.port_weight(
53
+ keras_variable=decoder_layer._self_attention_layer.query_dense.kernel,
54
+ hf_weight_key=f"model.layers.{i}.self_attn.q_proj.weight",
55
+ hook_fn=transpose_and_reshape,
56
+ )
57
+ ## Key
58
+ loader.port_weight(
59
+ keras_variable=decoder_layer._self_attention_layer.key_dense.kernel,
60
+ hf_weight_key=f"model.layers.{i}.self_attn.k_proj.weight",
61
+ hook_fn=transpose_and_reshape,
62
+ )
63
+ ## Value
64
+ loader.port_weight(
65
+ keras_variable=decoder_layer._self_attention_layer.value_dense.kernel,
66
+ hf_weight_key=f"model.layers.{i}.self_attn.v_proj.weight",
67
+ hook_fn=transpose_and_reshape,
68
+ )
69
+ ## Output
70
+ loader.port_weight(
71
+ keras_variable=decoder_layer._self_attention_layer._output_dense.kernel,
72
+ hf_weight_key=f"model.layers.{i}.self_attn.o_proj.weight",
73
+ hook_fn=transpose_and_reshape,
74
+ )
75
+
76
+ # MoE layers
77
+ # Router gate
78
+ loader.port_weight(
79
+ keras_variable=decoder_layer._sparse_moe_block._sparse_feedforward_gate_dense.kernel,
80
+ hf_weight_key=f"model.layers.{i}.block_sparse_moe.gate.weight",
81
+ hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
82
+ )
83
+
84
+ # Batched experts: w1 (gate), w3 (intermediate), and w2 (output) weights
85
+ gate_weights_list = []
86
+ intermediate_weights_list = []
87
+ output_weights_list = []
88
+ for expert_idx in range(backbone.num_experts):
89
+ # Load w1 (gate dense) for each expert
90
+ w1 = loader.get_tensor(
91
+ f"model.layers.{i}.block_sparse_moe.experts.{expert_idx}.w1.weight"
92
+ )
93
+ w1_transposed = np.transpose(w1, axes=(1, 0))
94
+ gate_weights_list.append(w1_transposed)
95
+
96
+ w3 = loader.get_tensor(
97
+ f"model.layers.{i}.block_sparse_moe.experts.{expert_idx}.w3.weight"
98
+ )
99
+ w3_transposed = np.transpose(w3, axes=(1, 0))
100
+ intermediate_weights_list.append(w3_transposed)
101
+
102
+ w2 = loader.get_tensor(
103
+ f"model.layers.{i}.block_sparse_moe.experts.{expert_idx}.w2.weight"
104
+ )
105
+ w2_transposed = np.transpose(w2, axes=(1, 0))
106
+ output_weights_list.append(w2_transposed)
107
+
108
+ gate_batched = np.stack(gate_weights_list, axis=0)
109
+ intermediate_batched = np.stack(intermediate_weights_list, axis=0)
110
+ output_batched = np.stack(output_weights_list, axis=0)
111
+
112
+ # Assign batched weights to expert_bank
113
+ decoder_layer._sparse_moe_block.expert_bank._expert_feedforward_gate_dense.assign(
114
+ gate_batched
115
+ )
116
+ decoder_layer._sparse_moe_block.expert_bank._expert_feedforward_intermediate_dense.assign(
117
+ intermediate_batched
118
+ )
119
+ decoder_layer._sparse_moe_block.expert_bank._expert_feedforward_output_dense.assign(
120
+ output_batched
121
+ )
122
+
123
+ # Feedforward layernorm
124
+ loader.port_weight(
125
+ keras_variable=decoder_layer._feedforward_layernorm.scale,
126
+ hf_weight_key=f"model.layers.{i}.post_attention_layernorm.weight",
127
+ )
128
+
129
+ # Final normalization layer
130
+ loader.port_weight(
131
+ keras_variable=backbone.get_layer("sequence_output_layernorm").scale,
132
+ hf_weight_key="model.norm.weight",
133
+ )
134
+
135
+ return backbone
136
+
137
+
138
+ def convert_tokenizer(cls, preset, **kwargs):
139
+ return cls(get_file(preset, "tokenizer.model"), **kwargs)
@@ -0,0 +1,253 @@
1
+ import numpy as np
2
+
3
+ from keras_hub.src.models.qwen_moe.qwen_moe_backbone import QwenMoeBackbone
4
+ from keras_hub.src.utils.preset_utils import load_json
5
+
6
+ backbone_cls = QwenMoeBackbone
7
+
8
+
9
+ def convert_backbone_config(transformers_config):
10
+ return {
11
+ "vocabulary_size": transformers_config["vocab_size"],
12
+ "hidden_dim": transformers_config["hidden_size"],
13
+ "num_layers": transformers_config["num_hidden_layers"],
14
+ "num_query_heads": transformers_config["num_attention_heads"],
15
+ "num_key_value_heads": transformers_config["num_key_value_heads"],
16
+ "intermediate_dim": transformers_config["intermediate_size"],
17
+ "moe_intermediate_dim": transformers_config["moe_intermediate_size"],
18
+ "shared_expert_intermediate_dim": transformers_config[
19
+ "shared_expert_intermediate_size"
20
+ ],
21
+ "num_experts": transformers_config["num_experts"],
22
+ "top_k": transformers_config["num_experts_per_tok"],
23
+ "norm_top_k_prob": transformers_config["norm_topk_prob"],
24
+ "decoder_sparse_step": transformers_config["decoder_sparse_step"],
25
+ "layer_norm_epsilon": transformers_config["rms_norm_eps"],
26
+ "rope_max_wavelength": transformers_config["rope_theta"],
27
+ "use_sliding_window": transformers_config["use_sliding_window"],
28
+ "sliding_window_size": transformers_config["sliding_window"],
29
+ "output_router_logits": transformers_config["output_router_logits"],
30
+ "router_aux_loss_coefficient": transformers_config[
31
+ "router_aux_loss_coef"
32
+ ],
33
+ }
34
+
35
+
36
+ def convert_weights(backbone, loader, transformers_config):
37
+ loader.port_weight(
38
+ keras_variable=backbone.get_layer("token_embedding").embeddings,
39
+ hf_weight_key="model.embed_tokens.weight",
40
+ )
41
+ if not backbone.tie_word_embeddings:
42
+ loader.port_weight(
43
+ keras_variable=backbone.get_layer(
44
+ "token_embedding"
45
+ ).reverse_embeddings,
46
+ hf_weight_key="lm_head.weight",
47
+ # rearrange_pattern="b a -> a b",
48
+ hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
49
+ )
50
+
51
+ def transpose_and_reshape(x, shape):
52
+ return np.reshape(np.transpose(x), shape)
53
+
54
+ for i in range(backbone.num_layers):
55
+ decoder_layer = backbone.get_layer(f"transformer_layer_{i}")
56
+
57
+ # Input layernorm
58
+ loader.port_weight(
59
+ keras_variable=decoder_layer._self_attention_layernorm.scale,
60
+ hf_weight_key=f"model.layers.{i}.input_layernorm.weight",
61
+ )
62
+
63
+ # Attention layers
64
+
65
+ ## Query
66
+ loader.port_weight(
67
+ keras_variable=decoder_layer._self_attention_layer.query_dense.kernel,
68
+ hf_weight_key=f"model.layers.{i}.self_attn.q_proj.weight",
69
+ hook_fn=transpose_and_reshape,
70
+ )
71
+ loader.port_weight(
72
+ keras_variable=decoder_layer._self_attention_layer.query_dense.bias,
73
+ hf_weight_key=f"model.layers.{i}.self_attn.q_proj.bias",
74
+ hook_fn=transpose_and_reshape,
75
+ )
76
+ ## Key
77
+ loader.port_weight(
78
+ keras_variable=decoder_layer._self_attention_layer.key_dense.kernel,
79
+ hf_weight_key=f"model.layers.{i}.self_attn.k_proj.weight",
80
+ hook_fn=transpose_and_reshape,
81
+ )
82
+ loader.port_weight(
83
+ keras_variable=decoder_layer._self_attention_layer.key_dense.bias,
84
+ hf_weight_key=f"model.layers.{i}.self_attn.k_proj.bias",
85
+ hook_fn=transpose_and_reshape,
86
+ )
87
+ ## Value
88
+ loader.port_weight(
89
+ keras_variable=decoder_layer._self_attention_layer.value_dense.kernel,
90
+ hf_weight_key=f"model.layers.{i}.self_attn.v_proj.weight",
91
+ hook_fn=transpose_and_reshape,
92
+ )
93
+ loader.port_weight(
94
+ keras_variable=decoder_layer._self_attention_layer.value_dense.bias,
95
+ hf_weight_key=f"model.layers.{i}.self_attn.v_proj.bias",
96
+ hook_fn=transpose_and_reshape,
97
+ )
98
+ ## Output
99
+ loader.port_weight(
100
+ keras_variable=decoder_layer._self_attention_layer._output_dense.kernel,
101
+ hf_weight_key=f"model.layers.{i}.self_attn.o_proj.weight",
102
+ # rearrange_patterns="c (a b) -> a b c",
103
+ # rearrange_dims={"a": backbone.num_query_heads},
104
+ hook_fn=transpose_and_reshape,
105
+ )
106
+
107
+ # MLP layers
108
+ if (
109
+ (i not in backbone.mlp_only_layers)
110
+ and backbone.num_experts > 0
111
+ and ((i + 1) % backbone.decoder_sparse_step == 0)
112
+ ):
113
+ # MoE layers
114
+ loader.port_weight(
115
+ keras_variable=decoder_layer.mlp._sparse_feedforward_gate_dense.kernel,
116
+ hf_weight_key=f"model.layers.{i}.mlp.gate.weight",
117
+ # rearrange_patterns="b a -> a b",
118
+ hook_fn=lambda hf_tensor, _: np.transpose(
119
+ hf_tensor, axes=(1, 0)
120
+ ),
121
+ )
122
+ # Batched experts: gate_up_proj and down_proj
123
+ gate_up_proj_list = []
124
+ down_proj_list = []
125
+ for expert_idx in range(backbone.num_experts):
126
+ # Load gate_proj and up_proj for each expert
127
+ gate_proj = loader.get_tensor(
128
+ f"model.layers.{i}.mlp.experts.{expert_idx}.gate_proj.weight"
129
+ )
130
+ up_proj = loader.get_tensor(
131
+ f"model.layers.{i}.mlp.experts.{expert_idx}.up_proj.weight"
132
+ )
133
+ # Transpose to (hidden_dim, intermediate_dim)
134
+ gate_proj = np.transpose(gate_proj, axes=(1, 0))
135
+ up_proj = np.transpose(up_proj, axes=(1, 0))
136
+ # Concatenate gate_proj and up_proj along the last dimension
137
+ gate_up_proj = np.concatenate([gate_proj, up_proj], axis=-1)
138
+ gate_up_proj_list.append(gate_up_proj)
139
+
140
+ # Load down_proj for each expert
141
+ down_proj = loader.get_tensor(
142
+ f"model.layers.{i}.mlp.experts.{expert_idx}.down_proj.weight"
143
+ )
144
+ down_proj = np.transpose(
145
+ down_proj, axes=(1, 0)
146
+ ) # (intermediate_dim, hidden_dim)
147
+ down_proj_list.append(down_proj)
148
+
149
+ # Stack the lists to create batched weights
150
+ gate_up_proj_batched = np.stack(
151
+ gate_up_proj_list, axis=0
152
+ ) # (num_experts, hidden_dim, 2 * intermediate_dim)
153
+ down_proj_batched = np.stack(
154
+ down_proj_list, axis=0
155
+ ) # (num_experts, intermediate_dim, hidden_dim)
156
+
157
+ # Assign batched weights to expert_bank
158
+ decoder_layer.mlp.expert_bank._expert_feedforward_gate_dense.assign(
159
+ gate_up_proj_batched
160
+ )
161
+ decoder_layer.mlp.expert_bank._expert_feedforward_output_dense.assign(
162
+ down_proj_batched
163
+ )
164
+
165
+ loader.port_weight(
166
+ keras_variable=decoder_layer.mlp.shared_expert_dense._feedforward_intermediate_dense.kernel,
167
+ hf_weight_key=f"model.layers.{i}.mlp.shared_expert.up_proj.weight",
168
+ hook_fn=lambda hf_tensor, _: np.transpose(
169
+ hf_tensor, axes=(1, 0)
170
+ ),
171
+ )
172
+ loader.port_weight(
173
+ keras_variable=decoder_layer.mlp.shared_expert_dense._feedforward_output_dense.kernel,
174
+ hf_weight_key=f"model.layers.{i}.mlp.shared_expert.down_proj.weight",
175
+ hook_fn=lambda hf_tensor, _: np.transpose(
176
+ hf_tensor, axes=(1, 0)
177
+ ),
178
+ )
179
+ loader.port_weight(
180
+ keras_variable=decoder_layer.mlp.shared_expert_dense._feedforward_gate_dense.kernel,
181
+ hf_weight_key=f"model.layers.{i}.mlp.shared_expert.gate_proj.weight",
182
+ hook_fn=lambda hf_tensor, _: np.transpose(
183
+ hf_tensor, axes=(1, 0)
184
+ ),
185
+ )
186
+
187
+ loader.port_weight(
188
+ keras_variable=decoder_layer.mlp.shared_expert_gate_dense.kernel,
189
+ hf_weight_key=f"model.layers.{i}.mlp.shared_expert_gate.weight",
190
+ hook_fn=lambda hf_tensor, _: np.transpose(
191
+ hf_tensor, axes=(1, 0)
192
+ ),
193
+ )
194
+ else:
195
+ loader.port_weight(
196
+ keras_variable=decoder_layer._feedforward_intermediate_dense.kernel,
197
+ hf_weight_key=f"model.layers.{i}.mlp.up_proj.weight",
198
+ # rearrange_patterns="b a -> a b",
199
+ hook_fn=lambda hf_tensor, _: np.transpose(
200
+ hf_tensor, axes=(1, 0)
201
+ ),
202
+ )
203
+ loader.port_weight(
204
+ keras_variable=decoder_layer._feedforward_output_dense.kernel,
205
+ hf_weight_key=f"model.layers.{i}.mlp.down_proj.weight",
206
+ # rearrange_patterns="b a -> a b",
207
+ hook_fn=lambda hf_tensor, _: np.transpose(
208
+ hf_tensor, axes=(1, 0)
209
+ ),
210
+ )
211
+ loader.port_weight(
212
+ keras_variable=decoder_layer._feedforward_gate_dense.kernel,
213
+ hf_weight_key=f"model.layers.{i}.mlp.gate_proj.weight",
214
+ # rearrange_patterns="b a -> a b",
215
+ hook_fn=lambda hf_tensor, _: np.transpose(
216
+ hf_tensor, axes=(1, 0)
217
+ ),
218
+ )
219
+
220
+ # Feedforward layernorm
221
+ loader.port_weight(
222
+ keras_variable=decoder_layer._feedforward_layernorm.scale,
223
+ hf_weight_key=f"model.layers.{i}.post_attention_layernorm.weight",
224
+ )
225
+
226
+ # Final normalization layer
227
+ loader.port_weight(
228
+ keras_variable=backbone.get_layer("sequence_output_layernorm").scale,
229
+ hf_weight_key="model.norm.weight",
230
+ )
231
+
232
+ return backbone
233
+
234
+
235
+ def convert_tokenizer(cls, preset, **kwargs):
236
+ tokenizer_config = load_json(preset, "tokenizer.json")
237
+ vocab = tokenizer_config["model"]["vocab"]
238
+ merges = tokenizer_config["model"]["merges"]
239
+
240
+ # Load all special tokens with the exception of "reserved" ones.
241
+ special_tokens = set()
242
+ for token in tokenizer_config["added_tokens"]:
243
+ if not token["content"].startswith("<|reserved_special_token_"):
244
+ vocab[token["content"]] = token["id"]
245
+ special_tokens.add(token["content"])
246
+
247
+ kwargs.update(
248
+ {
249
+ "unsplittable_tokens": list(special_tokens),
250
+ }
251
+ )
252
+
253
+ return cls(vocabulary=vocab, merges=merges, **kwargs)
@@ -11,8 +11,10 @@ from keras_hub.src.utils.transformers import convert_gemma
11
11
  from keras_hub.src.utils.transformers import convert_gpt2
12
12
  from keras_hub.src.utils.transformers import convert_llama3
13
13
  from keras_hub.src.utils.transformers import convert_mistral
14
+ from keras_hub.src.utils.transformers import convert_mixtral
14
15
  from keras_hub.src.utils.transformers import convert_pali_gemma
15
16
  from keras_hub.src.utils.transformers import convert_qwen
17
+ from keras_hub.src.utils.transformers import convert_qwen_moe
16
18
  from keras_hub.src.utils.transformers import convert_vit
17
19
  from keras_hub.src.utils.transformers.safetensor_utils import SafetensorLoader
18
20
 
@@ -44,6 +46,10 @@ class TransformersPresetLoader(PresetLoader):
44
46
  self.converter = convert_vit
45
47
  elif model_type == "qwen2":
46
48
  self.converter = convert_qwen
49
+ elif model_type == "mixtral":
50
+ self.converter = convert_mixtral
51
+ elif model_type == "qwen2_moe":
52
+ self.converter = convert_qwen_moe
47
53
  else:
48
54
  raise ValueError(
49
55
  "KerasHub has no converter for huggingface/transformers models "
keras_hub/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.21.0.dev202505050407"
4
+ __version__ = "0.21.0.dev202505070407"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -55,6 +55,9 @@ from keras_hub.src.models.llama3.llama3_tokenizer import (
55
55
  from keras_hub.src.models.mistral.mistral_tokenizer import (
56
56
  MistralTokenizer as MistralTokenizer,
57
57
  )
58
+ from keras_hub.src.models.mixtral.mixtral_tokenizer import (
59
+ MixtralTokenizer as MixtralTokenizer,
60
+ )
58
61
  from keras_hub.src.models.opt.opt_tokenizer import OPTTokenizer as OPTTokenizer
59
62
  from keras_hub.src.models.pali_gemma.pali_gemma_tokenizer import (
60
63
  PaliGemmaTokenizer as PaliGemmaTokenizer,
@@ -68,6 +71,9 @@ from keras_hub.src.models.qwen.qwen_tokenizer import (
68
71
  from keras_hub.src.models.qwen.qwen_tokenizer import (
69
72
  QwenTokenizer as QwenTokenizer,
70
73
  )
74
+ from keras_hub.src.models.qwen_moe.qwen_moe_tokenizer import (
75
+ QwenMoeTokenizer as QwenMoeTokenizer,
76
+ )
71
77
  from keras_hub.src.models.roberta.roberta_tokenizer import (
72
78
  RobertaTokenizer as RobertaTokenizer,
73
79
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.21.0.dev202505050407
3
+ Version: 0.21.0.dev202505070407
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -1,11 +1,11 @@
1
1
  keras_hub/__init__.py,sha256=bJbUZkqwhZvTb1Tqx1fbkq6mzBYiEyq-Hin3oQIkhdE,558
2
2
  keras_hub/layers/__init__.py,sha256=LhMUEcl3xJwqr0XphTgRZ5Ayz5SsBAKV19c0XwSzj1I,4952
3
3
  keras_hub/metrics/__init__.py,sha256=KYalsMPBnfwim9BdGHFfJ5WxUKFXOQ1QoKIMT_0lwlM,439
4
- keras_hub/models/__init__.py,sha256=Np-V3YdZcIa0xwqhjmgm5NWnsCj647aClYW0Uhi3eSI,25108
4
+ keras_hub/models/__init__.py,sha256=kFWNpjemQ8FLzDlFfMdAOOXJKtxuVHFxyZm7-1mH4Gc,25909
5
5
  keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
6
6
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
8
- keras_hub/src/version.py,sha256=GU1P_7eS7irSsw27d_6GiQJtuMQe1eApQnOwemKRH6E,222
8
+ keras_hub/src/version.py,sha256=aaWmSzLN-AkMZRmAoGmZ2N0SrrxAlh7bwjgP-M3xnCs,222
9
9
  keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
@@ -41,7 +41,7 @@ keras_hub/src/metrics/rouge_base.py,sha256=Pt2DUznhTTeR-fX1nQ_wSbPtmuTgxQTvrGpu8
41
41
  keras_hub/src/metrics/rouge_l.py,sha256=JlZhMBV6wS_6zMd57pkTc6yxHkEJT9fVQMlPZKekQzQ,2729
42
42
  keras_hub/src/metrics/rouge_n.py,sha256=JoFtmgjF4Ic263ny6bfD6vMHKreH9le3HnOOxemupRc,3620
43
43
  keras_hub/src/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
44
- keras_hub/src/models/backbone.py,sha256=TwfJOO7lk50BNO36gg8m_DvgPiBxAhHK0XSbab2qpSA,11309
44
+ keras_hub/src/models/backbone.py,sha256=KS2x3HFWKhEYhroUFT3uZgSkeW_48zPGqUNvxCDDIQQ,11534
45
45
  keras_hub/src/models/causal_lm.py,sha256=ReaF-i3SHsCkHh4c28jM72QjMQ8x7yiCwG39FRb-7KE,16786
46
46
  keras_hub/src/models/causal_lm_preprocessor.py,sha256=YY7VJZicdmnjDSWi9g4_pEpd5bdJK166GlWcapvokF0,6663
47
47
  keras_hub/src/models/feature_pyramid_backbone.py,sha256=clEW-TTQSVJ_5qFNdDF0iABkin1p_xlBUFjJrC7T0IA,2247
@@ -58,7 +58,7 @@ keras_hub/src/models/object_detector_preprocessor.py,sha256=kOSVRNFAg-UjtrCEVBdH
58
58
  keras_hub/src/models/preprocessor.py,sha256=kBlahgVST3L6vKeWDM4fXuDoXa6pwaJW2A5__L85wFU,8487
59
59
  keras_hub/src/models/seq_2_seq_lm.py,sha256=w0gX-5YZjatfvAJmFAgSHyqS_BLqc8FF8DPLGK8mrgI,1864
60
60
  keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=DJmm4VTt8AdLtq1k9YKl_VR31cKUHaYjfSbrk7-fJqA,9667
61
- keras_hub/src/models/task.py,sha256=a7eW8ylmsSY4opI5bEo_AQQOXBgsGU5CihQWm1DWfnw,14592
61
+ keras_hub/src/models/task.py,sha256=e9zK2zHgeOkjNACcCmAf-lGuEGF_eRoP_lKlirdIXuk,14817
62
62
  keras_hub/src/models/text_classifier.py,sha256=B6cTYDbDZW8vRvenXrLwgMMVIYMb7Pr14GvX8C_wclQ,4159
63
63
  keras_hub/src/models/text_classifier_preprocessor.py,sha256=EoWp-GHnaLnAKTdAzDmC-soAV92ATF3QozdubdV2WXI,4722
64
64
  keras_hub/src/models/text_to_image.py,sha256=NIy4S6Fh8MsbNiskAFhjmFXgRiiFqn_rOvpGOO6LlF0,13390
@@ -110,11 +110,11 @@ keras_hub/src/models/clip/clip_tokenizer.py,sha256=6gIm_LWRbCeBQUI9M2gA8-OXb4tXG
110
110
  keras_hub/src/models/clip/clip_vision_embedding.py,sha256=6_qC7T1dqKd-39EreGmHZj-YfjOLEDDKjWnEKcKIyuY,3667
111
111
  keras_hub/src/models/clip/clip_vision_encoder.py,sha256=q62MXySZN38uCsjqq8cttfBxD7P5abaKQV2i8_u4N6E,6385
112
112
  keras_hub/src/models/cspnet/__init__.py,sha256=TOpvk2cfOVv1bPA1BOGZj0mhmhc6E98zZmW9e0PIvhk,257
113
- keras_hub/src/models/cspnet/cspnet_backbone.py,sha256=xCeu8BpQSpf-EgCrQehQDg4jNKRAWm0h8paWBfN2DGE,41381
113
+ keras_hub/src/models/cspnet/cspnet_backbone.py,sha256=meHzxubG_9vHQHSelDfrROaQERkDiWkjTtk_gKaWsDc,42457
114
114
  keras_hub/src/models/cspnet/cspnet_image_classifier.py,sha256=JqfBHIBTFxaLOyAWx6TdXs0aAOMbcCx1oo47RoQnytc,510
115
115
  keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py,sha256=ACRnOhjslk2ZZhpPfJioW4um4RLYa-Suk59z9wa5vfo,543
116
116
  keras_hub/src/models/cspnet/cspnet_image_converter.py,sha256=f-ICTY2T-RlCykU6qOHDxg0fY7ECfZ_xpSJzIVmbvpc,342
117
- keras_hub/src/models/cspnet/cspnet_presets.py,sha256=fWzPz3eZuhFNxxPn9MJHabcXiyJA2PRRVlzNmoFBwWg,533
117
+ keras_hub/src/models/cspnet/cspnet_presets.py,sha256=n01_7DTvbmaA_qs2GWiNLkBXNrrEvigPXSGc2NDTot8,1870
118
118
  keras_hub/src/models/deberta_v3/__init__.py,sha256=6E-QtAD1uvTBobrn5bUoyB1qtaCJU-t73TtbAEH6i9g,288
119
119
  keras_hub/src/models/deberta_v3/deberta_v3_backbone.py,sha256=oXdV7naTiMowuU3GsXEUo5K0GXiKbPKxdo27o5fXWjc,7258
120
120
  keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py,sha256=ADBktf1DdiP9T6LCaMhdFiZ_mUbBRKMekY5mGwAeJIo,4186
@@ -250,6 +250,13 @@ keras_hub/src/models/mit/mit_image_classifier_preprocessor.py,sha256=oNYs-pUK8Vn
250
250
  keras_hub/src/models/mit/mit_image_converter.py,sha256=Mw7nV-OzyBveGuZUNFsPPKyq9jXJVW2_cVH024CNkXM,311
251
251
  keras_hub/src/models/mit/mit_layers.py,sha256=HUJO5uhJ6jgwANpwbQdPlEVwLRVb3BZQ-Ftjg3B9XvY,9734
252
252
  keras_hub/src/models/mit/mit_presets.py,sha256=ooLrh2OoGZKxnCGnhB6BynYJtVCXH7nDDFhgQRWt36U,4528
253
+ keras_hub/src/models/mixtral/mixtral_attention.py,sha256=rdUBjIFQZKBpyCXlXMDgmB8gLCk0ngnhdhNs_twFE_c,9089
254
+ keras_hub/src/models/mixtral/mixtral_backbone.py,sha256=vUAFXvqwVBgKxYbOsqIHzPN59bhaDrGWwOnBCzeUtt0,8034
255
+ keras_hub/src/models/mixtral/mixtral_causal_lm.py,sha256=JA1t6xTeaYX_fNo9ftRyvzdRDG3vndC-Rlwn5fnsbQo,12001
256
+ keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py,sha256=q2qXa9QAUWBvOWv9DeNvwsBNXSORJAbQFoQsWQ7e8V8,3079
257
+ keras_hub/src/models/mixtral/mixtral_decoder.py,sha256=CvOjhTxPnGQ_HNknZXRI6Cx1kpuHG99_TiOh-mNcsDw,18190
258
+ keras_hub/src/models/mixtral/mixtral_layer_norm.py,sha256=zfbDKZEb45FTwP0zQd7WPPp8tuiGoSNfS-DRYWkZyWw,1031
259
+ keras_hub/src/models/mixtral/mixtral_tokenizer.py,sha256=Kc233k879QMyX164X_CzWbqpnqEkKWNqa648guTGkBk,661
253
260
  keras_hub/src/models/mobilenet/__init__.py,sha256=hxkNGGj_iAMu62iooUDEPA818sNOIgjG7pXMLEMOsAE,275
254
261
  keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=aZBSFeLUObYYoi3od9DI1KfgPCqh5GHTcAI8Y2ZHShA,29536
255
262
  keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=rgPVJeSRqyp3-Fgf5ERbg_97c4cSawRmAtoJpdBN8WA,2437
@@ -283,13 +290,22 @@ keras_hub/src/models/phi3/phi3_presets.py,sha256=sb2ce7Gq1OikFEf2KIYG69rFKHYKj8q
283
290
  keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=wqiRn8nETNcLc5Vsm_d_8s11Ro6ibWZbWvODdLqIOo4,5013
284
291
  keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=bOPH14wTVVHJHq8mgzXLjsgvKMNhfO8eayevAPpjYVA,1992
285
292
  keras_hub/src/models/qwen/__init__.py,sha256=hskG3tZUY_AYZPp0WVzbCtw37AIYENyp3DOnqHmdRBw,65
286
- keras_hub/src/models/qwen/qwen_attention.py,sha256=FL_09-eCFugktDNzFPm6beZLD04pNg9TFKgfXdhWUwk,12953
293
+ keras_hub/src/models/qwen/qwen_attention.py,sha256=SrUYESCg27ksuDKZHKJ5Wmnkbr6WZdF7nHv0AHFfWR8,13014
287
294
  keras_hub/src/models/qwen/qwen_backbone.py,sha256=i39_LoKu6hcYWV6KFh2OzUDaXjV7g1WLNGF2-JD_tqI,13015
288
295
  keras_hub/src/models/qwen/qwen_causal_lm.py,sha256=_f-UHaKHp0ncxknpkpEJiW3jlng3E4CmddjQfz2QzJo,12249
289
296
  keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py,sha256=Va-4TLJD3ycEnkS41rF3dVj4_6K0j-gxLTrREFRcyr0,609
290
297
  keras_hub/src/models/qwen/qwen_decoder.py,sha256=utmAvZlU7_nP-6pjGPDinK4JaMzsQSwOARG0ote-jAg,11771
291
298
  keras_hub/src/models/qwen/qwen_layernorm.py,sha256=DS35r3qd6g5ocL7Nhf_vNzLLMo1aI9VCSmL64dgNOYI,924
299
+ keras_hub/src/models/qwen/qwen_presets.py,sha256=_jRG7bB4yBGWteBLbK2elc1e9doRl8zdzQRZgxFvnfc,1988
292
300
  keras_hub/src/models/qwen/qwen_tokenizer.py,sha256=LCv3IyiDDHqVnM9N3lf5-BE3iwicIh0nKS1hjoPw9lE,1532
301
+ keras_hub/src/models/qwen_moe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
302
+ keras_hub/src/models/qwen_moe/qwen_moe_attention.py,sha256=mXc4uGkUSK3FHdJ5_77xiX7Gm0eO1GWTF40ei_68pvU,13472
303
+ keras_hub/src/models/qwen_moe/qwen_moe_backbone.py,sha256=nrfELvIvRLmrgKrUNXci2CrecmeI6bWzJj7HH-RcWJA,15341
304
+ keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py,sha256=MeP60v7GcN_SmH5_ULRpqgmFVgaYAosSecZiSQVlJvU,13256
305
+ keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py,sha256=uKaXRrJs02vkVudjdehzJPp0B84tPMkxNHlp166kceE,589
306
+ keras_hub/src/models/qwen_moe/qwen_moe_decoder.py,sha256=kmUjLpYTbJQ3J_31qWhLOd0Dg2_9cl_JX_zM8ZMH1Qo,23130
307
+ keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py,sha256=DbkWJo7U0-cwdZwHPeAnFznYwtao6o0fjpoDJ9UWnpc,927
308
+ keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py,sha256=2c3X8jNGO0q0UL5NtUqSgHWLqhyJGi2ohNcTeOGhd84,1407
293
309
  keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
294
310
  keras_hub/src/models/resnet/resnet_backbone.py,sha256=Q7nlqcTXZzjqd0e-DsjHC4ok58yOX7qxseotym3uZpM,31276
295
311
  keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=nf35EKDzvBkfhHsK-s6Ks0nbhvKO7HEOYZm94YckyWE,510
@@ -300,11 +316,11 @@ keras_hub/src/models/retinanet/__init__.py,sha256=veWIFvMN6151M69l7FvTcI-IIEe_8d
300
316
  keras_hub/src/models/retinanet/feature_pyramid.py,sha256=hbdrj6X-D2SlwOp2h1WcBlTdSAlLmFK43X7OrkJRoMA,17614
301
317
  keras_hub/src/models/retinanet/prediction_head.py,sha256=xWHt21-SS2t7vCmTONlR1lSbJXhml5jx68V8MGbGybg,7863
302
318
  keras_hub/src/models/retinanet/retinanet_backbone.py,sha256=BJBPJLxpOCOU0Br7b4JsgCZBHQHLAhxLqo9BHNIsl1g,5659
303
- keras_hub/src/models/retinanet/retinanet_image_converter.py,sha256=Yr1ACzrPXzX1equjDqkrzRQv5nL5TARICc55Gnhwx7o,785
319
+ keras_hub/src/models/retinanet/retinanet_image_converter.py,sha256=jnVAqQ3zem0JNk5iaIdrMGKyGv_ulAcePpM5t1lulWI,360
304
320
  keras_hub/src/models/retinanet/retinanet_label_encoder.py,sha256=Vowhs4uOZAevmVg1a19efIPfvjxkckXwsJDTX3VPDxs,10967
305
321
  keras_hub/src/models/retinanet/retinanet_object_detector.py,sha256=WJ3YLnnC4mcCLLoE7uUFA0cOSVuFgnx9Cr47If50Aig,15595
306
322
  keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py,sha256=RnJkdqv4zYVcGx50sHoA7j9G1AKwEN-RNtyMQg-MMbo,568
307
- keras_hub/src/models/retinanet/retinanet_presets.py,sha256=qzs568Me0bSoXwgoG8wQrGbY_WuS2t1qgGU2wL8R5Hs,950
323
+ keras_hub/src/models/retinanet/retinanet_presets.py,sha256=75_Gnxt84MBjTDd4xQVSsIa2sDQ-KnQ4_Hw9nZ90ljE,950
308
324
  keras_hub/src/models/roberta/__init__.py,sha256=3ouSnKdLlMwoDDLVKD9cNtxam6f8XWgCyc0pwWJ0Zjo,263
309
325
  keras_hub/src/models/roberta/roberta_backbone.py,sha256=q16dylXbgWshT-elCA08lS_b_IZNphsBrrXiv3eJksM,6339
310
326
  keras_hub/src/models/roberta/roberta_masked_lm.py,sha256=j2dFANRFHd1MNFP_REchljGWOcpOjCpdSya-WGdRzPA,4176
@@ -337,8 +353,8 @@ keras_hub/src/models/segformer/__init__.py,sha256=ERgxA8tyeG2l4G6ywHisn6Oo0Iu7_9
337
353
  keras_hub/src/models/segformer/segformer_backbone.py,sha256=T61WQ50T6IwSeiK1NfUKJu3eqbj_m5gz9cpUPtqMfcc,5666
338
354
  keras_hub/src/models/segformer/segformer_image_converter.py,sha256=zePZ1cYZl-2TaEF82lj3y7kXjDao5Hgw8c7qfKI2Jd8,360
339
355
  keras_hub/src/models/segformer/segformer_image_segmenter.py,sha256=JzX8oJASWdkw8wbm8cohjPnumIvBvj7GGEpbK7ex-6w,5926
340
- keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py,sha256=4xj6_E-JlYpXv064VtEewxaQuD8aXw5egoUKlr_fLPg,1125
341
- keras_hub/src/models/segformer/segformer_presets.py,sha256=ET39ospixkTaCsjoMLdJrr3wlGvTAQu5prleVC5lMZI,4793
356
+ keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py,sha256=Jlsy41n7IymjvU3ENKQJtsQ4xkJEGRtxEm-defz2Nbc,568
357
+ keras_hub/src/models/segformer/segformer_presets.py,sha256=4fPkGTP_jjd3Qcd1KbWYZ7-ze0wdJskMwKG4GZ-UwEg,4793
342
358
  keras_hub/src/models/siglip/__init__.py,sha256=uImQYl06pioLwla6c_tiF2PSJKHtq0aSxDPsynQbXcA,257
343
359
  keras_hub/src/models/siglip/siglip_backbone.py,sha256=dXp7BU7mqKWthl70KFZ2AMILjNIu5A6itQFu6XD22Qs,8372
344
360
  keras_hub/src/models/siglip/siglip_image_converter.py,sha256=yjYc0XOyL37WLlr-X6V4QXI1FCyiKngbHXrZK0hNB1U,342
@@ -435,23 +451,23 @@ keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=hRv_XxoPIPDpHfO0Z
435
451
  keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=vP6AZgbzsRiuPCt3W_n94nsF7XiERnagWcH_rqJHtVU,19943
436
452
  keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=cylrs02ZrYQ1TuZr9oyS3NrVbDwGctA3VXbIh1pFJMQ,6743
437
453
  keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
438
- keras_hub/src/utils/keras_utils.py,sha256=mtj5Kr9EROso10SafmQ-C9uCLbIId4cXAuJSNDRqHb8,4290
454
+ keras_hub/src/utils/keras_utils.py,sha256=2qrh4F-rqceVFSx0-cbsFBfWae5hBXFb_sEtPPcImf4,4628
439
455
  keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
440
- keras_hub/src/utils/preset_utils.py,sha256=Zhc2xIHUagBajmdvuz-91gRnKqJA0CGPr_yIHI_UXEY,32006
456
+ keras_hub/src/utils/preset_utils.py,sha256=fx0gNqOTdvW-ZdP0Y3ZaCGE7frYBhwi3lG_GO0swG4w,34602
441
457
  keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
442
- keras_hub/src/utils/tensor_utils.py,sha256=1Y9E2psWzN5hJqWz_r2kOoFU7kIp7mPBTX5xZbTsE_A,15144
458
+ keras_hub/src/utils/tensor_utils.py,sha256=vRbvvnFwA6FutJ7InC1w60HDTVNi87CniDGOLQ3hKPA,15855
443
459
  keras_hub/src/utils/coco/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
444
460
  keras_hub/src/utils/coco/coco_utils.py,sha256=x_QnUUvZ92zoFzMJugiInHORc4NrMdWVBkpp8BAYF6s,2586
445
461
  keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
446
462
  keras_hub/src/utils/imagenet/imagenet_utils.py,sha256=07ilM5feeD7Ut6YSbVj99RXAZOQONSC1IeKa3I9U6UQ,40161
447
463
  keras_hub/src/utils/timm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
448
- keras_hub/src/utils/timm/convert_cspnet.py,sha256=O5HCdeKcSFWOoFr8_wIUQb4Noc0tBEo5Aogk2d6SEes,5676
464
+ keras_hub/src/utils/timm/convert_cspnet.py,sha256=9p1IF0B4UPbDTruQQXR6mJEUdhvQvHx9E0SKNn_Lbw4,8047
449
465
  keras_hub/src/utils/timm/convert_densenet.py,sha256=fu8HBIQis5o3ib2tyI2qnmYScVrVIQySok8vTfa1qJ8,3393
450
466
  keras_hub/src/utils/timm/convert_efficientnet.py,sha256=SgEIlyyinS04qoQpEgh3WazHq544zNUCCpfmWh3EjSs,17100
451
467
  keras_hub/src/utils/timm/convert_mobilenet.py,sha256=XTqHOK4nJwigKefsw7ktWJtOgRpEVMO9MtRhuP5qP_k,9219
452
468
  keras_hub/src/utils/timm/convert_resnet.py,sha256=8JFkVtdpy5z9h83LJ97rD-a8FRejXPZvMNksNuStqjM,5834
453
469
  keras_hub/src/utils/timm/convert_vgg.py,sha256=MT5jGnLrzenPpe66Af_Lp1IdR9KGtsSrcmn6_UPqHvQ,2419
454
- keras_hub/src/utils/timm/preset_loader.py,sha256=j2HYi61Zbt0CGd33evFJ8j2fraXl0Zardf4qqAb82K0,3841
470
+ keras_hub/src/utils/timm/preset_loader.py,sha256=4hULdq2K2hgPYTZR71PGV4YNDHLG1zcoxF9TXpg6fGE,3905
455
471
  keras_hub/src/utils/transformers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
456
472
  keras_hub/src/utils/transformers/convert_albert.py,sha256=VdKclZpCxtDWq3UbUUQZf4fR9DJK_JYZ73B4O_G9skg,7695
457
473
  keras_hub/src/utils/transformers/convert_bart.py,sha256=Tk4h9Md9rwN5wjQbGIVrC7qzDpF8kI8qm-FKL8HlUok,14411
@@ -461,14 +477,16 @@ keras_hub/src/utils/transformers/convert_gemma.py,sha256=ElCgwBpSN5Q7rV5PJawTsoy
461
477
  keras_hub/src/utils/transformers/convert_gpt2.py,sha256=HCeHN_-GiQJRxLCM9OCJJ1watPVpIBF8ujS8pGbBOWc,5703
462
478
  keras_hub/src/utils/transformers/convert_llama3.py,sha256=c5phNl-QayQ_BS0s-lenbu6oHxqfwDShKJoh9DluxUU,6146
463
479
  keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS7eANJUXIsNy1RxWXy20Gqw,4760
480
+ keras_hub/src/utils/transformers/convert_mixtral.py,sha256=_esUzVRYABR5pHHSALqUieSuAeBg4te1JnlGQENqECU,5509
464
481
  keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
465
482
  keras_hub/src/utils/transformers/convert_qwen.py,sha256=WUxMAEFVqRs7TRw7QU5TH3_ev4yf02R1xFVliMvTQqg,5886
483
+ keras_hub/src/utils/transformers/convert_qwen_moe.py,sha256=a7R28aln-PdAcNuKAXdrtzvslho2Co6GypChxLMKPpc,10618
466
484
  keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
467
- keras_hub/src/utils/transformers/preset_loader.py,sha256=0Hi7R8HnATcwFVLsJwMMIMWTCXHNfep4IPiRpQXqM-w,3933
485
+ keras_hub/src/utils/transformers/preset_loader.py,sha256=1nfS5xVsl-JROGXJXltTqV1fQdcUlZbGGcbf-n79pXM,4225
468
486
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
469
- keras_hub/tokenizers/__init__.py,sha256=1X8s88lzi6zM9XaMHbpACa4kpwjDILgmUV0tl1jXeeo,3839
487
+ keras_hub/tokenizers/__init__.py,sha256=4etC--bzhczJrRcvCmxZmOC9hJJcIVOUCgmqMLB3bp0,4051
470
488
  keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
471
- keras_hub_nightly-0.21.0.dev202505050407.dist-info/METADATA,sha256=5tCCNXZ3oRWimz5briR2ot1Erf4kZczTmg_nhYya0P4,7393
472
- keras_hub_nightly-0.21.0.dev202505050407.dist-info/WHEEL,sha256=0CuiUZ_p9E4cD6NyLD6UG80LBXYyiSYZOKDm5lp32xk,91
473
- keras_hub_nightly-0.21.0.dev202505050407.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
474
- keras_hub_nightly-0.21.0.dev202505050407.dist-info/RECORD,,
489
+ keras_hub_nightly-0.21.0.dev202505070407.dist-info/METADATA,sha256=qZV9GqHYenWgLpKBXdil_rhFnetmHPFV-OgVFjxPKTs,7393
490
+ keras_hub_nightly-0.21.0.dev202505070407.dist-info/WHEEL,sha256=0CuiUZ_p9E4cD6NyLD6UG80LBXYyiSYZOKDm5lp32xk,91
491
+ keras_hub_nightly-0.21.0.dev202505070407.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
492
+ keras_hub_nightly-0.21.0.dev202505070407.dist-info/RECORD,,