keras-hub-nightly 0.21.0.dev202505050407__py3-none-any.whl → 0.21.0.dev202505070407__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. keras_hub/models/__init__.py +21 -0
  2. keras_hub/src/models/backbone.py +5 -2
  3. keras_hub/src/models/cspnet/cspnet_backbone.py +51 -26
  4. keras_hub/src/models/cspnet/cspnet_presets.py +38 -3
  5. keras_hub/src/models/mixtral/mixtral_attention.py +263 -0
  6. keras_hub/src/models/mixtral/mixtral_backbone.py +207 -0
  7. keras_hub/src/models/mixtral/mixtral_causal_lm.py +281 -0
  8. keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +76 -0
  9. keras_hub/src/models/mixtral/mixtral_decoder.py +494 -0
  10. keras_hub/src/models/mixtral/mixtral_layer_norm.py +34 -0
  11. keras_hub/src/models/mixtral/mixtral_tokenizer.py +21 -0
  12. keras_hub/src/models/qwen/qwen_attention.py +3 -1
  13. keras_hub/src/models/qwen/qwen_presets.py +61 -0
  14. keras_hub/src/models/qwen_moe/__init__.py +0 -0
  15. keras_hub/src/models/qwen_moe/qwen_moe_attention.py +377 -0
  16. keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +373 -0
  17. keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +350 -0
  18. keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +17 -0
  19. keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +625 -0
  20. keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +32 -0
  21. keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +46 -0
  22. keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -13
  23. keras_hub/src/models/retinanet/retinanet_presets.py +2 -2
  24. keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -18
  25. keras_hub/src/models/segformer/segformer_presets.py +12 -12
  26. keras_hub/src/models/task.py +5 -2
  27. keras_hub/src/utils/keras_utils.py +11 -0
  28. keras_hub/src/utils/preset_utils.py +69 -9
  29. keras_hub/src/utils/tensor_utils.py +27 -1
  30. keras_hub/src/utils/timm/convert_cspnet.py +94 -23
  31. keras_hub/src/utils/timm/preset_loader.py +6 -6
  32. keras_hub/src/utils/transformers/convert_mixtral.py +139 -0
  33. keras_hub/src/utils/transformers/convert_qwen_moe.py +253 -0
  34. keras_hub/src/utils/transformers/preset_loader.py +6 -0
  35. keras_hub/src/version.py +1 -1
  36. keras_hub/tokenizers/__init__.py +6 -0
  37. {keras_hub_nightly-0.21.0.dev202505050407.dist-info → keras_hub_nightly-0.21.0.dev202505070407.dist-info}/METADATA +1 -1
  38. {keras_hub_nightly-0.21.0.dev202505050407.dist-info → keras_hub_nightly-0.21.0.dev202505070407.dist-info}/RECORD +40 -22
  39. {keras_hub_nightly-0.21.0.dev202505050407.dist-info → keras_hub_nightly-0.21.0.dev202505070407.dist-info}/WHEEL +0 -0
  40. {keras_hub_nightly-0.21.0.dev202505050407.dist-info → keras_hub_nightly-0.21.0.dev202505070407.dist-info}/top_level.txt +0 -0
@@ -348,6 +348,18 @@ from keras_hub.src.models.mit.mit_image_classifier import (
348
348
  from keras_hub.src.models.mit.mit_image_classifier_preprocessor import (
349
349
  MiTImageClassifierPreprocessor as MiTImageClassifierPreprocessor,
350
350
  )
351
+ from keras_hub.src.models.mixtral.mixtral_backbone import (
352
+ MixtralBackbone as MixtralBackbone,
353
+ )
354
+ from keras_hub.src.models.mixtral.mixtral_causal_lm import (
355
+ MixtralCausalLM as MixtralCausalLM,
356
+ )
357
+ from keras_hub.src.models.mixtral.mixtral_causal_lm_preprocessor import (
358
+ MixtralCausalLMPreprocessor as MixtralCausalLMPreprocessor,
359
+ )
360
+ from keras_hub.src.models.mixtral.mixtral_tokenizer import (
361
+ MixtralTokenizer as MixtralTokenizer,
362
+ )
351
363
  from keras_hub.src.models.mobilenet.mobilenet_backbone import (
352
364
  MobileNetBackbone as MobileNetBackbone,
353
365
  )
@@ -420,6 +432,15 @@ from keras_hub.src.models.qwen.qwen_tokenizer import (
420
432
  from keras_hub.src.models.qwen.qwen_tokenizer import (
421
433
  QwenTokenizer as QwenTokenizer,
422
434
  )
435
+ from keras_hub.src.models.qwen_moe.qwen_moe_backbone import (
436
+ QwenMoeBackbone as QwenMoeBackbone,
437
+ )
438
+ from keras_hub.src.models.qwen_moe.qwen_moe_causal_lm import (
439
+ QwenMoeCausalLM as QwenMoeCausalLM,
440
+ )
441
+ from keras_hub.src.models.qwen_moe.qwen_moe_causal_lm_preprocessor import (
442
+ QwenMoeCausalLMPreprocessor as QwenMoeCausalLMPreprocessor,
443
+ )
423
444
  from keras_hub.src.models.resnet.resnet_backbone import (
424
445
  ResNetBackbone as ResNetBackbone,
425
446
  )
@@ -177,14 +177,17 @@ class Backbone(keras.Model):
177
177
  )
178
178
  return loader.load_backbone(backbone_cls, load_weights, **kwargs)
179
179
 
180
- def save_to_preset(self, preset_dir):
180
+ def save_to_preset(self, preset_dir, max_shard_size=10):
181
181
  """Save backbone to a preset directory.
182
182
 
183
183
  Args:
184
184
  preset_dir: The path to the local model preset directory.
185
+ max_shard_size: `int` or `float`. Maximum size in GB for each
186
+ sharded file. If `None`, no sharding will be done. Defaults to
187
+ `10`.
185
188
  """
186
189
  saver = get_preset_saver(preset_dir)
187
- saver.save_backbone(self)
190
+ saver.save_backbone(self, max_shard_size=max_shard_size)
188
191
 
189
192
  def get_lora_target_names(self):
190
193
  """Returns list of layer names which are to be LoRA-fied.
@@ -81,7 +81,7 @@ class CSPNetBackbone(FeaturePyramidBackbone):
81
81
 
82
82
  # Pretrained backbone
83
83
  model = keras_hub.models.CSPNetBackbone.from_preset(
84
- "cspdarknet53_ra_imagenet"
84
+ "csp_darknet_53_ra_imagenet"
85
85
  )
86
86
  model(input_data)
87
87
 
@@ -357,18 +357,6 @@ def bottleneck_block(
357
357
  dtype=dtype,
358
358
  name=f"{name}_bottleneck_block_bn_3",
359
359
  )(x)
360
- if activation == "leaky_relu":
361
- x = layers.LeakyReLU(
362
- negative_slope=0.01,
363
- dtype=dtype,
364
- name=f"{name}_bottleneck_block_activation_3",
365
- )(x)
366
- else:
367
- x = layers.Activation(
368
- activation,
369
- dtype=dtype,
370
- name=f"{name}_bottleneck_block_activation_3",
371
- )(x)
372
360
 
373
361
  x = layers.add(
374
362
  [x, shortcut], dtype=dtype, name=f"{name}_bottleneck_block_add"
@@ -673,6 +661,13 @@ def cross_stage(
673
661
  name=f"{name}_csp_activation_1",
674
662
  )(x)
675
663
  else:
664
+ if strides > 1:
665
+ x = layers.ZeroPadding2D(
666
+ 1,
667
+ data_format=data_format,
668
+ dtype=dtype,
669
+ name=f"{name}_csp_conv_pad_1",
670
+ )(x)
676
671
  x = layers.Conv2D(
677
672
  filters=down_chs,
678
673
  kernel_size=3,
@@ -882,6 +877,13 @@ def cross_stage3(
882
877
  name=f"{name}_cs3_activation_1",
883
878
  )(x)
884
879
  else:
880
+ if strides > 1:
881
+ x = layers.ZeroPadding2D(
882
+ 1,
883
+ data_format=data_format,
884
+ dtype=dtype,
885
+ name=f"{name}_cs3_conv_pad_1",
886
+ )(x)
885
887
  x = layers.Conv2D(
886
888
  filters=down_chs,
887
889
  kernel_size=3,
@@ -1062,6 +1064,13 @@ def dark_stage(
1062
1064
  name=f"{name}_dark_activation_1",
1063
1065
  )(x)
1064
1066
  else:
1067
+ if strides > 1:
1068
+ x = layers.ZeroPadding2D(
1069
+ 1,
1070
+ data_format=data_format,
1071
+ dtype=dtype,
1072
+ name=f"{name}_dark_conv_pad_1",
1073
+ )(x)
1065
1074
  x = layers.Conv2D(
1066
1075
  filters=filters,
1067
1076
  kernel_size=3,
@@ -1091,18 +1100,18 @@ def dark_stage(
1091
1100
  dtype=dtype,
1092
1101
  name=f"{name}_dark_activation_1",
1093
1102
  )(x)
1094
- for i in range(depth):
1095
- x = block_fn(
1096
- filters=block_channels,
1097
- dilation=dilation,
1098
- bottle_ratio=bottle_ratio,
1099
- groups=groups,
1100
- activation=activation,
1101
- data_format=data_format,
1102
- channel_axis=channel_axis,
1103
- dtype=dtype,
1104
- name=f"{name}_block_{i}",
1105
- )(x)
1103
+ for i in range(depth):
1104
+ x = block_fn(
1105
+ filters=block_channels,
1106
+ dilation=dilation,
1107
+ bottle_ratio=bottle_ratio,
1108
+ groups=groups,
1109
+ activation=activation,
1110
+ data_format=data_format,
1111
+ channel_axis=channel_axis,
1112
+ dtype=dtype,
1113
+ name=f"{name}_block_{i}",
1114
+ )(x)
1106
1115
  return x
1107
1116
 
1108
1117
  return apply
@@ -1135,6 +1144,13 @@ def create_csp_stem(
1135
1144
  or (i == last_idx and strides > 2 and not pooling)
1136
1145
  else 1
1137
1146
  )
1147
+ if conv_strides > 1:
1148
+ x = layers.ZeroPadding2D(
1149
+ (kernel_size - 1) // 2,
1150
+ data_format=data_format,
1151
+ dtype=dtype,
1152
+ name=f"csp_stem_pad_{i}",
1153
+ )(x)
1138
1154
  x = layers.Conv2D(
1139
1155
  filters=chs,
1140
1156
  kernel_size=kernel_size,
@@ -1167,10 +1183,19 @@ def create_csp_stem(
1167
1183
 
1168
1184
  if pooling == "max":
1169
1185
  assert strides > 2
1186
+ # Use manual padding to handle edge case scenario to ignore zero's
1187
+ # as max value instead consider negative values from Leaky Relu type
1188
+ # of activations.
1189
+ pad_width = [[1, 1], [1, 1]]
1190
+ if data_format == "channels_last":
1191
+ pad_width += [[0, 0]]
1192
+ else:
1193
+ pad_width = [[0, 0]] + pad_width
1194
+ pad_width = [[0, 0]] + pad_width
1195
+ x = ops.pad(x, pad_width=pad_width, constant_values=float("-inf"))
1170
1196
  x = layers.MaxPooling2D(
1171
1197
  pool_size=3,
1172
1198
  strides=2,
1173
- padding="same",
1174
1199
  data_format=data_format,
1175
1200
  dtype=dtype,
1176
1201
  name="csp_stem_pool",
@@ -6,11 +6,46 @@ backbone_presets = {
6
6
  "description": (
7
7
  "A CSP-DarkNet (Cross-Stage-Partial) image classification model"
8
8
  " pre-trained on the Randomly Augmented ImageNet 1k dataset at "
9
- "a 224x224 resolution."
9
+ "a 256x256 resolution."
10
10
  ),
11
- "params": 26652512,
11
+ "params": 27642184,
12
12
  "path": "cspnet",
13
13
  },
14
- "kaggle_handle": "kaggle://keras/cspdarknet/keras/csp_darknet_53_ra_imagenet/1",
14
+ "kaggle_handle": "kaggle://keras/cspdarknet/keras/csp_darknet_53_ra_imagenet/2",
15
+ },
16
+ "csp_resnext_50_ra_imagenet": {
17
+ "metadata": {
18
+ "description": (
19
+ "A CSP-ResNeXt (Cross-Stage-Partial) image classification model"
20
+ " pre-trained on the Randomly Augmented ImageNet 1k dataset at "
21
+ "a 256x256 resolution."
22
+ ),
23
+ "params": 20569896,
24
+ "path": "cspnet",
25
+ },
26
+ "kaggle_handle": "kaggle://keras/cspdarknet/keras/csp_resnext_50_ra_imagenet/1",
27
+ },
28
+ "csp_resnet_50_ra_imagenet": {
29
+ "metadata": {
30
+ "description": (
31
+ "A CSP-ResNet (Cross-Stage-Partial) image classification model"
32
+ " pre-trained on the Randomly Augmented ImageNet 1k dataset at "
33
+ "a 256x256 resolution."
34
+ ),
35
+ "params": 21616168,
36
+ "path": "cspnet",
37
+ },
38
+ "kaggle_handle": "kaggle://keras/cspdarknet/keras/csp_resnet_50_ra_imagenet/1",
39
+ },
40
+ "darknet_53_imagenet": {
41
+ "metadata": {
42
+ "description": (
43
+ "A DarkNet image classification model pre-trained on the"
44
+ "ImageNet 1k dataset at a 256x256 resolution."
45
+ ),
46
+ "params": 41609928,
47
+ "path": "cspnet",
48
+ },
49
+ "kaggle_handle": "kaggle://keras/cspdarknet/keras/darknet_53_imagenet/1",
15
50
  },
16
51
  }
@@ -0,0 +1,263 @@
1
+ import inspect
2
+ import math
3
+
4
+ import keras
5
+ from keras import ops
6
+
7
+ from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
8
+ from keras_hub.src.utils.keras_utils import clone_initializer
9
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
10
+ from keras_hub.src.utils.keras_utils import gpu_supports_fused_attention_op
11
+ from keras_hub.src.utils.keras_utils import running_on_gpu
12
+ from keras_hub.src.utils.keras_utils import running_on_tpu
13
+
14
+
15
+ class CachedMixtralAttention(keras.layers.Layer):
16
+ """A cached grounded query attention layer with sliding window."""
17
+
18
+ def __init__(
19
+ self,
20
+ num_query_heads,
21
+ num_key_value_heads,
22
+ rope_max_wavelength=10000,
23
+ rope_scaling_factor=1.0,
24
+ kernel_initializer="glorot_uniform",
25
+ sliding_window=512,
26
+ dropout=0,
27
+ **kwargs,
28
+ ):
29
+ super().__init__(**kwargs)
30
+ self._num_query_heads = num_query_heads
31
+ self._num_key_value_heads = num_key_value_heads
32
+ self._sliding_window = sliding_window
33
+ self._dropout = dropout
34
+
35
+ self._num_key_value_groups = num_query_heads // num_key_value_heads
36
+ self._rope_max_wavelength = rope_max_wavelength
37
+
38
+ self._kernel_initializer = keras.initializers.get(
39
+ clone_initializer(kernel_initializer)
40
+ )
41
+
42
+ self._rope_scaling_factor = rope_scaling_factor
43
+
44
+ def build(self, inputs_shape):
45
+ # Einsum variables:
46
+ # b = batch size
47
+ # q = query length
48
+ # k = key/value length
49
+ # m = model dim
50
+ # u = num query heads
51
+ # v = num key/value heads
52
+ # h = head dim
53
+ self._hidden_dim = inputs_shape[-1]
54
+ self._head_dim = self._hidden_dim // self._num_query_heads
55
+ self._inv_norm_factor = 1.0 / math.sqrt(self._head_dim)
56
+
57
+ self.query_dense = keras.layers.EinsumDense(
58
+ equation="bqm,muh->bquh",
59
+ output_shape=(None, self._num_query_heads, self._head_dim),
60
+ kernel_initializer=self._kernel_initializer,
61
+ dtype=self.dtype_policy,
62
+ name="query",
63
+ )
64
+ self.query_dense.build(inputs_shape)
65
+
66
+ self.key_dense = keras.layers.EinsumDense(
67
+ equation="bkm,mvh->bkvh",
68
+ output_shape=(
69
+ None,
70
+ self._num_key_value_heads,
71
+ self._head_dim,
72
+ ),
73
+ kernel_initializer=self._kernel_initializer,
74
+ dtype=self.dtype_policy,
75
+ name="key",
76
+ )
77
+ self.key_dense.build(inputs_shape)
78
+
79
+ self.value_dense = keras.layers.EinsumDense(
80
+ equation="bkm,mvh->bkvh",
81
+ output_shape=(
82
+ None,
83
+ self._num_key_value_heads,
84
+ self._head_dim,
85
+ ),
86
+ kernel_initializer=self._kernel_initializer,
87
+ dtype=self.dtype_policy,
88
+ name="value",
89
+ )
90
+ self.value_dense.build(inputs_shape)
91
+
92
+ self._softmax = keras.layers.Softmax(
93
+ axis=-1,
94
+ dtype="float32",
95
+ name="attention_softmax",
96
+ )
97
+
98
+ self._dropout_layer = keras.layers.Dropout(
99
+ rate=self._dropout,
100
+ dtype=self.dtype_policy,
101
+ )
102
+
103
+ self._output_dense = keras.layers.EinsumDense(
104
+ equation="bquh,uhm->bqm",
105
+ output_shape=(None, self._hidden_dim),
106
+ kernel_initializer=self._kernel_initializer,
107
+ dtype=self.dtype_policy,
108
+ name="attention_output",
109
+ )
110
+ self._output_dense.build(
111
+ (None, None, self._num_query_heads, self._head_dim)
112
+ )
113
+
114
+ self.rotary_embedding_layer = RotaryEmbedding(
115
+ max_wavelength=self._rope_max_wavelength,
116
+ scaling_factor=self._rope_scaling_factor,
117
+ dtype=self.dtype_policy,
118
+ )
119
+
120
+ self._dot_product_equation = "bquh,bkuh->buqk"
121
+ self._combine_equation = "buqk,bkuh->bquh"
122
+
123
+ self.built = True
124
+
125
+ def call(
126
+ self,
127
+ hidden_states,
128
+ attention_mask=None,
129
+ cache=None,
130
+ cache_update_index=None,
131
+ training=None,
132
+ ):
133
+ start_index = (
134
+ cache_update_index if cache_update_index is not None else 0
135
+ )
136
+
137
+ query = self.query_dense(hidden_states)
138
+
139
+ # Compute RoPE for queries
140
+ query = self.rotary_embedding_layer(query, start_index=start_index)
141
+
142
+ def _compute_key_value(x):
143
+ key, value = self.key_dense(x), self.value_dense(x)
144
+ # Compute RoPE for keys
145
+ key = self.rotary_embedding_layer(key, start_index=start_index)
146
+ return key, value
147
+
148
+ if cache is not None:
149
+ key_cache = cache[:, 0, ...]
150
+ value_cache = cache[:, 1, ...]
151
+ if cache_update_index is None:
152
+ key = key_cache
153
+ value = value_cache
154
+ else:
155
+ key_update, value_update = _compute_key_value(hidden_states)
156
+ start = [0, cache_update_index, 0, 0]
157
+ key = ops.slice_update(key_cache, start, key_update)
158
+ value = ops.slice_update(value_cache, start, value_update)
159
+ cache = ops.stack((key, value), axis=1)
160
+ else:
161
+ if cache_update_index is not None:
162
+ raise ValueError(
163
+ "`cache_update_index` should not be set if `cache` is "
164
+ f"`None`. Received: cache={cache}, "
165
+ f"cache_update_index={cache_update_index}"
166
+ )
167
+ key, value = _compute_key_value(hidden_states)
168
+
169
+ # [batch_shape, seq_len, num_key_value_heads, head_dim]
170
+ # -> [batch_shape, seq_len, num_heads, head_dim]
171
+ key = ops.repeat(key, repeats=self._num_key_value_groups, axis=2)
172
+ value = ops.repeat(value, repeats=self._num_key_value_groups, axis=2)
173
+
174
+ attention_output = self._compute_attention(
175
+ query, key, value, attention_mask
176
+ )
177
+
178
+ attention_output = self._dropout_layer(
179
+ attention_output, training=training
180
+ )
181
+
182
+ attention_output = self._output_dense(attention_output)
183
+
184
+ if cache is not None:
185
+ return attention_output, cache
186
+ return attention_output
187
+
188
+ def _masked_softmax(self, attention_scores, attention_mask=None):
189
+ if attention_mask is not None:
190
+ return self._softmax(
191
+ attention_scores, attention_mask[:, None, :, :]
192
+ )
193
+ return self._softmax(attention_scores)
194
+
195
+ def _use_fused_attention_op(self):
196
+ if not fused_attention_op_available():
197
+ return False
198
+ if self.dropout > 0.0:
199
+ return False
200
+ if running_on_gpu():
201
+ # GPU never supports softcap in the fused op.
202
+ if self.logit_soft_cap is not None:
203
+ return False
204
+ return gpu_supports_fused_attention_op()
205
+ elif running_on_tpu():
206
+ # TPU supports softcap with on keras >= 3.10.
207
+ sig = inspect.signature(ops.dot_product_attention)
208
+ return "attn_logits_soft_cap" in sig.parameters
209
+ else:
210
+ return False
211
+
212
+ def _compute_attention(self, query, key, value, attention_mask=None):
213
+ if self._use_fused_attention_op():
214
+ if attention_mask is not None:
215
+ attention_mask = ops.expand_dims(attention_mask, axis=1)
216
+ attention_mask = ops.cast(attention_mask, dtype="bool")
217
+
218
+ if self.logit_soft_cap:
219
+ kwargs = {"attn_logits_soft_cap": self.logit_soft_cap}
220
+ else:
221
+ kwargs = {}
222
+
223
+ attention_output = ops.dot_product_attention(
224
+ query,
225
+ key,
226
+ value,
227
+ mask=attention_mask,
228
+ scale=self._inv_norm_factor,
229
+ **kwargs,
230
+ )
231
+ return attention_output
232
+
233
+ attention_scores = ops.einsum(self._dot_product_equation, query, key)
234
+ attention_scores = ops.multiply(
235
+ attention_scores,
236
+ ops.cast(self._inv_norm_factor, self.compute_dtype),
237
+ )
238
+ attention_scores = self._masked_softmax(
239
+ attention_scores, attention_mask
240
+ )
241
+ attention_scores = ops.cast(attention_scores, self.compute_dtype)
242
+ attention_output = ops.einsum(
243
+ self._combine_equation, attention_scores, value
244
+ )
245
+
246
+ return attention_output
247
+
248
+ def get_config(self):
249
+ config = super().get_config()
250
+ config.update(
251
+ {
252
+ "num_query_heads": self._num_query_heads,
253
+ "num_key_value_heads": self._num_key_value_heads,
254
+ "rope_max_wavelength": self._rope_max_wavelength,
255
+ "rope_scaling_factor": self._rope_scaling_factor,
256
+ "kernel_initializer": keras.initializers.serialize(
257
+ self._kernel_initializer
258
+ ),
259
+ "sliding_window": self._sliding_window,
260
+ "dropout": self._dropout,
261
+ }
262
+ )
263
+ return config