keras-hub-nightly 0.21.0.dev202505050407__py3-none-any.whl → 0.21.0.dev202505070407__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/models/__init__.py +21 -0
- keras_hub/src/models/backbone.py +5 -2
- keras_hub/src/models/cspnet/cspnet_backbone.py +51 -26
- keras_hub/src/models/cspnet/cspnet_presets.py +38 -3
- keras_hub/src/models/mixtral/mixtral_attention.py +263 -0
- keras_hub/src/models/mixtral/mixtral_backbone.py +207 -0
- keras_hub/src/models/mixtral/mixtral_causal_lm.py +281 -0
- keras_hub/src/models/mixtral/mixtral_causal_lm_preprocessor.py +76 -0
- keras_hub/src/models/mixtral/mixtral_decoder.py +494 -0
- keras_hub/src/models/mixtral/mixtral_layer_norm.py +34 -0
- keras_hub/src/models/mixtral/mixtral_tokenizer.py +21 -0
- keras_hub/src/models/qwen/qwen_attention.py +3 -1
- keras_hub/src/models/qwen/qwen_presets.py +61 -0
- keras_hub/src/models/qwen_moe/__init__.py +0 -0
- keras_hub/src/models/qwen_moe/qwen_moe_attention.py +377 -0
- keras_hub/src/models/qwen_moe/qwen_moe_backbone.py +373 -0
- keras_hub/src/models/qwen_moe/qwen_moe_causal_lm.py +350 -0
- keras_hub/src/models/qwen_moe/qwen_moe_causal_lm_preprocessor.py +17 -0
- keras_hub/src/models/qwen_moe/qwen_moe_decoder.py +625 -0
- keras_hub/src/models/qwen_moe/qwen_moe_layernorm.py +32 -0
- keras_hub/src/models/qwen_moe/qwen_moe_tokenizer.py +46 -0
- keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -13
- keras_hub/src/models/retinanet/retinanet_presets.py +2 -2
- keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -18
- keras_hub/src/models/segformer/segformer_presets.py +12 -12
- keras_hub/src/models/task.py +5 -2
- keras_hub/src/utils/keras_utils.py +11 -0
- keras_hub/src/utils/preset_utils.py +69 -9
- keras_hub/src/utils/tensor_utils.py +27 -1
- keras_hub/src/utils/timm/convert_cspnet.py +94 -23
- keras_hub/src/utils/timm/preset_loader.py +6 -6
- keras_hub/src/utils/transformers/convert_mixtral.py +139 -0
- keras_hub/src/utils/transformers/convert_qwen_moe.py +253 -0
- keras_hub/src/utils/transformers/preset_loader.py +6 -0
- keras_hub/src/version.py +1 -1
- keras_hub/tokenizers/__init__.py +6 -0
- {keras_hub_nightly-0.21.0.dev202505050407.dist-info → keras_hub_nightly-0.21.0.dev202505070407.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.21.0.dev202505050407.dist-info → keras_hub_nightly-0.21.0.dev202505070407.dist-info}/RECORD +40 -22
- {keras_hub_nightly-0.21.0.dev202505050407.dist-info → keras_hub_nightly-0.21.0.dev202505070407.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.21.0.dev202505050407.dist-info → keras_hub_nightly-0.21.0.dev202505070407.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,350 @@
|
|
1
|
+
import keras
|
2
|
+
from keras import ops
|
3
|
+
|
4
|
+
from keras_hub.src.api_export import keras_hub_export
|
5
|
+
from keras_hub.src.models.causal_lm import CausalLM
|
6
|
+
from keras_hub.src.models.qwen_moe.qwen_moe_backbone import QwenMoeBackbone
|
7
|
+
from keras_hub.src.models.qwen_moe.qwen_moe_causal_lm_preprocessor import (
|
8
|
+
QwenMoeCausalLMPreprocessor,
|
9
|
+
)
|
10
|
+
from keras_hub.src.utils.tensor_utils import any_equal
|
11
|
+
|
12
|
+
|
13
|
+
@keras_hub_export(
|
14
|
+
"keras_hub.models.QwenMoeCausalLM",
|
15
|
+
)
|
16
|
+
class QwenMoeCausalLM(CausalLM):
|
17
|
+
"""An end-to-end Qwen MoE model for causal language modeling.
|
18
|
+
|
19
|
+
A causal language model (LM) predicts the next token based on previous
|
20
|
+
tokens. This task setup can be used to train the model unsupervised on plain
|
21
|
+
text input, or to autoregressively generate plain text similar to the data
|
22
|
+
used for training. This task can be used for pre-training or fine-tuning a
|
23
|
+
Qwen MoE model, simply by calling `fit()`.
|
24
|
+
|
25
|
+
This model has a `generate()` method, which generates text based on a
|
26
|
+
prompt. The generation strategy used is controlled by an additional
|
27
|
+
`sampler` argument on `compile()`. You can recompile the model with
|
28
|
+
different `keras_hub.samplers` objects to control the generation.
|
29
|
+
By default, `"greedy"` sampling will be used.
|
30
|
+
|
31
|
+
This model can optionally be configured with a `preprocessor` layer, in
|
32
|
+
which case it will automatically apply preprocessing to string inputs during
|
33
|
+
`fit()`, `predict()`, `evaluate()`, and `generate()`. This is done by
|
34
|
+
default when creating the model with `from_preset()`.
|
35
|
+
|
36
|
+
The Qwen MoE architecture leverages a Mixture of Experts (MoE) design, where
|
37
|
+
each transformer layer uses a sparse set of experts to process tokens
|
38
|
+
efficiently, making it suitable for large-scale language tasks with
|
39
|
+
optimized computational resources.
|
40
|
+
|
41
|
+
Args:
|
42
|
+
backbone: A `keras_hub.models.QwenMoeBackbone` instance.
|
43
|
+
preprocessor: A `keras_hub.models.QwenMoeCausalLMPreprocessor` or
|
44
|
+
`None`. If `None`, this model will not apply preprocessing, and
|
45
|
+
inputs should be preprocessed before calling the model.
|
46
|
+
|
47
|
+
Examples:
|
48
|
+
|
49
|
+
Use `generate()` to do text generation.
|
50
|
+
```python
|
51
|
+
qwen_moe_lm = keras_hub.models.QwenMoeCausalLM.from_preset("qwen_moe_a2_7b")
|
52
|
+
qwen_moe_lm.generate("I want to say", max_length=30)
|
53
|
+
|
54
|
+
# Generate with batched prompts.
|
55
|
+
qwen_moe_lm.generate(["This is a", "Where are you"], max_length=30)
|
56
|
+
```
|
57
|
+
|
58
|
+
Compile the `generate()` function with a custom sampler.
|
59
|
+
```python
|
60
|
+
qwen_moe_lm = keras_hub.models.QwenMoeCausalLM.from_preset("qwen_moe_a2_7b")
|
61
|
+
qwen_moe_lm.compile(sampler="top_k")
|
62
|
+
qwen_moe_lm.generate("I want to say", max_length=30)
|
63
|
+
|
64
|
+
qwen_moe_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
|
65
|
+
qwen_moe_lm.generate("I want to say", max_length=30)
|
66
|
+
```
|
67
|
+
|
68
|
+
Use `generate()` without preprocessing.
|
69
|
+
```python
|
70
|
+
prompt = {
|
71
|
+
# Token ids for "<bos> Qwen is".
|
72
|
+
"token_ids": np.array([[2, 12345, 678, 0, 0, 0, 0]] * 2),
|
73
|
+
# Use `"padding_mask"` to indicate values that should not be overridden.
|
74
|
+
"padding_mask": np.array([[1, 1, 1, 0, 0, 0, 0]] * 2),
|
75
|
+
}
|
76
|
+
|
77
|
+
qwen_moe_lm = keras_hub.models.QwenMoeCausalLM.from_preset(
|
78
|
+
"qwen_moe_a2_7b",
|
79
|
+
preprocessor=None,
|
80
|
+
)
|
81
|
+
qwen_moe_lm.generate(prompt)
|
82
|
+
```
|
83
|
+
|
84
|
+
Call `fit()` on a single batch.
|
85
|
+
```python
|
86
|
+
features = ["The quick brown fox jumped.", "I forgot my homework."]
|
87
|
+
qwen_moe_lm = keras_hub.models.QwenMoeCausalLM.from_preset("qwen_moe_a2_7b")
|
88
|
+
qwen_moe_lm.fit(x=features, batch_size=2)
|
89
|
+
```
|
90
|
+
|
91
|
+
Call `fit()` with LoRA fine-tuning enabled.
|
92
|
+
```python
|
93
|
+
features = ["The quick brown fox jumped.", "I forgot my homework."]
|
94
|
+
qwen_moe_lm = keras_hub.models.QwenMoeCausalLM.from_preset("qwen_moe_a2_7b")
|
95
|
+
qwen_moe_lm.backbone.enable_lora(rank=4)
|
96
|
+
qwen_moe_lm.fit(x=features, batch_size=2)
|
97
|
+
```
|
98
|
+
|
99
|
+
Call `fit()` without preprocessing.
|
100
|
+
```python
|
101
|
+
x = {
|
102
|
+
# Token ids for "<bos> Qwen is a language model<eos>"
|
103
|
+
"token_ids": np.array([[2, 12345, 678, 543, 9876, 1, 0, 0]] * 2),
|
104
|
+
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 0, 0]] * 2),
|
105
|
+
}
|
106
|
+
y = np.array([[12345, 678, 543, 9876, 1, 0, 0, 0]] * 2)
|
107
|
+
sw = np.array([[1, 1, 1, 1, 1, 0, 0, 0]] * 2)
|
108
|
+
|
109
|
+
qwen_moe_lm = keras_hub.models.QwenMoeCausalLM.from_preset(
|
110
|
+
"qwen_moe_a2_7b",
|
111
|
+
preprocessor=None,
|
112
|
+
)
|
113
|
+
qwen_moe_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
|
114
|
+
```
|
115
|
+
|
116
|
+
Custom backbone and vocabulary.
|
117
|
+
```python
|
118
|
+
tokenizer = keras_hub.models.QwenMoeTokenizer(
|
119
|
+
proto="qwen_moe_vocab.spm",
|
120
|
+
)
|
121
|
+
preprocessor = keras_hub.models.QwenMoeCausalLMPreprocessor(
|
122
|
+
tokenizer=tokenizer,
|
123
|
+
sequence_length=128,
|
124
|
+
)
|
125
|
+
backbone = keras_hub.models.QwenMoeBackbone(
|
126
|
+
vocabulary_size=151936,
|
127
|
+
num_layers=28,
|
128
|
+
num_query_heads=16,
|
129
|
+
num_key_value_heads=8,
|
130
|
+
hidden_dim=2048,
|
131
|
+
intermediate_dim=4096,
|
132
|
+
moe_intermediate_dim=128,
|
133
|
+
shared_expert_intermediate_dim=4096,
|
134
|
+
num_experts=60,
|
135
|
+
top_k=4,
|
136
|
+
max_sequence_length=4096,
|
137
|
+
)
|
138
|
+
qwen_moe_lm = keras_hub.models.QwenMoeCausalLM(
|
139
|
+
backbone=backbone,
|
140
|
+
preprocessor=preprocessor,
|
141
|
+
)
|
142
|
+
qwen_moe_lm.fit(x=features, batch_size=2)
|
143
|
+
```
|
144
|
+
"""
|
145
|
+
|
146
|
+
backbone_cls = QwenMoeBackbone
|
147
|
+
preprocessor_cls = QwenMoeCausalLMPreprocessor
|
148
|
+
|
149
|
+
def __init__(self, backbone, preprocessor=None, **kwargs):
|
150
|
+
# === Layers ===
|
151
|
+
self.backbone = backbone
|
152
|
+
self.preprocessor = preprocessor
|
153
|
+
|
154
|
+
# === Functional Model ===
|
155
|
+
# This must be "backbone.input" i.e. the full input structure,
|
156
|
+
# rather than "backbone.inputs" which is the flattened list of inputs.
|
157
|
+
inputs = backbone.input
|
158
|
+
hidden_states = backbone(inputs)
|
159
|
+
outputs = backbone.token_embedding(hidden_states, reverse=True)
|
160
|
+
super().__init__(
|
161
|
+
inputs=inputs,
|
162
|
+
outputs=outputs,
|
163
|
+
**kwargs,
|
164
|
+
)
|
165
|
+
|
166
|
+
def call_with_cache(
|
167
|
+
self,
|
168
|
+
token_ids,
|
169
|
+
cache,
|
170
|
+
cache_update_index,
|
171
|
+
):
|
172
|
+
"""Forward pass of `QwenMoeCausalLM` with cache.
|
173
|
+
|
174
|
+
`call_with_cache` adds an additional forward pass for the model for
|
175
|
+
autoregressive inference. Unlike calling the model directly, this method
|
176
|
+
allows caching previous key/value Tensors in multi-head attention layer,
|
177
|
+
and avoids recomputing the outputs of seen tokens.
|
178
|
+
|
179
|
+
Args:
|
180
|
+
token_ids: a dense int Tensor with shape `(batch_size, max_length)`.
|
181
|
+
cache: a dense float Tensor, the cache of key and value.
|
182
|
+
cache_update_index: int, or int Tensor. The index of current inputs
|
183
|
+
in the whole sequence.
|
184
|
+
|
185
|
+
Returns:
|
186
|
+
A (logits, hidden_states, cache) tuple. Where `logits` is the
|
187
|
+
language model logits for the input token_ids, `hidden_states` is
|
188
|
+
the final hidden representation of the input tokens, and `cache` is
|
189
|
+
the decoding cache.
|
190
|
+
"""
|
191
|
+
x = self.backbone.token_embedding(token_ids)
|
192
|
+
# Each decoder layer has a cache; we update them separately.
|
193
|
+
updated_cache = []
|
194
|
+
for i in range(self.backbone.num_layers):
|
195
|
+
current_cache = cache[:, i, ...]
|
196
|
+
x, next_cache = self.backbone.transformer_layers[i](
|
197
|
+
x,
|
198
|
+
self_attention_cache=current_cache,
|
199
|
+
self_attention_cache_update_index=cache_update_index,
|
200
|
+
)
|
201
|
+
updated_cache.append(next_cache)
|
202
|
+
cache = ops.stack(updated_cache, axis=1)
|
203
|
+
hidden_states = x = self.backbone.layer_norm(x)
|
204
|
+
logits = self.backbone.token_embedding(x, reverse=True)
|
205
|
+
return logits, hidden_states, cache
|
206
|
+
|
207
|
+
def _build_cache(self, token_ids):
|
208
|
+
"""Build an empty cache for use with `call_with_cache()`."""
|
209
|
+
batch_size = ops.shape(token_ids)[0]
|
210
|
+
max_length = ops.shape(token_ids)[1]
|
211
|
+
num_layers = self.backbone.num_layers
|
212
|
+
num_key_value_heads = self.backbone.num_key_value_heads
|
213
|
+
head_dim = self.backbone.hidden_dim // self.backbone.num_query_heads
|
214
|
+
shape = [
|
215
|
+
batch_size,
|
216
|
+
num_layers,
|
217
|
+
2,
|
218
|
+
max_length,
|
219
|
+
num_key_value_heads,
|
220
|
+
head_dim,
|
221
|
+
]
|
222
|
+
cache = ops.zeros(shape, dtype=self.compute_dtype)
|
223
|
+
# Seed the cache.
|
224
|
+
_, hidden_states, cache = self.call_with_cache(token_ids, cache, 0)
|
225
|
+
return hidden_states, cache
|
226
|
+
|
227
|
+
def generate_step(
|
228
|
+
self,
|
229
|
+
inputs,
|
230
|
+
stop_token_ids=None,
|
231
|
+
):
|
232
|
+
"""A compilable generation function for a single batch of inputs.
|
233
|
+
|
234
|
+
This function represents the inner, XLA-compilable, generation function
|
235
|
+
for a single batch of inputs. Inputs should have the same structure as
|
236
|
+
model inputs, a dictionary with keys `"token_ids"` and `"padding_mask"`.
|
237
|
+
|
238
|
+
Args:
|
239
|
+
inputs: A dictionary with two keys `"token_ids"` and
|
240
|
+
`"padding_mask"` and batched tensor values.
|
241
|
+
stop_token_ids: Tuple of id's of the end token to stop on. If all
|
242
|
+
sequences have produced a new stop token, generation
|
243
|
+
will stop.
|
244
|
+
"""
|
245
|
+
token_ids, padding_mask = inputs["token_ids"], inputs["padding_mask"]
|
246
|
+
# Create and seed cache with a single forward pass.
|
247
|
+
hidden_states, cache = self._build_cache(token_ids)
|
248
|
+
# Compute the lengths of all user inputted tokens ids.
|
249
|
+
row_lengths = ops.sum(ops.cast(padding_mask, "int32"), axis=-1)
|
250
|
+
# Start at the first index that has no user inputted id.
|
251
|
+
index = ops.min(row_lengths)
|
252
|
+
|
253
|
+
def next(prompt, cache, index):
|
254
|
+
# The cache index is the index of our previous token.
|
255
|
+
cache_update_index = index - 1
|
256
|
+
batch_size = ops.shape(prompt)[0]
|
257
|
+
prompt = ops.slice(prompt, [0, cache_update_index], [batch_size, 1])
|
258
|
+
logits, hidden_states, cache = self.call_with_cache(
|
259
|
+
prompt,
|
260
|
+
cache,
|
261
|
+
cache_update_index,
|
262
|
+
)
|
263
|
+
return (
|
264
|
+
ops.squeeze(logits, axis=1),
|
265
|
+
ops.squeeze(hidden_states, axis=1),
|
266
|
+
cache,
|
267
|
+
)
|
268
|
+
|
269
|
+
token_ids = self.sampler(
|
270
|
+
next=next,
|
271
|
+
prompt=token_ids,
|
272
|
+
cache=cache,
|
273
|
+
index=index,
|
274
|
+
mask=padding_mask,
|
275
|
+
stop_token_ids=stop_token_ids,
|
276
|
+
hidden_states=hidden_states,
|
277
|
+
model=self,
|
278
|
+
)
|
279
|
+
|
280
|
+
# Compute an output padding mask with the token ids we updated.
|
281
|
+
if stop_token_ids is not None:
|
282
|
+
# Build a mask of stop token locations not in the original
|
283
|
+
# prompt (not in locations where `padding_mask` is True).
|
284
|
+
end_locations = any_equal(
|
285
|
+
token_ids, stop_token_ids, ops.logical_not(padding_mask)
|
286
|
+
)
|
287
|
+
end_locations = ops.cast(end_locations, "int32")
|
288
|
+
# Use cumsum to get ones in all locations after end_locations.
|
289
|
+
cumsum = ops.cast(ops.cumsum(end_locations, axis=-1), "int32")
|
290
|
+
overflow = cumsum - end_locations
|
291
|
+
# Our padding mask is the inverse of these overflow locations.
|
292
|
+
padding_mask = ops.logical_not(ops.cast(overflow, "bool"))
|
293
|
+
else:
|
294
|
+
# Without early stopping, all locations will have been updated.
|
295
|
+
padding_mask = ops.ones_like(token_ids, dtype="bool")
|
296
|
+
return {
|
297
|
+
"token_ids": token_ids,
|
298
|
+
"padding_mask": padding_mask,
|
299
|
+
}
|
300
|
+
|
301
|
+
def score(
|
302
|
+
self,
|
303
|
+
token_ids,
|
304
|
+
padding_mask=None,
|
305
|
+
scoring_mode="logits",
|
306
|
+
layer_intercept_fn=None,
|
307
|
+
target_ids=None,
|
308
|
+
):
|
309
|
+
if scoring_mode not in ("logits", "loss"):
|
310
|
+
raise ValueError(
|
311
|
+
"Unsupported scoring_mode. Must be one of 'logits' or 'loss'."
|
312
|
+
)
|
313
|
+
|
314
|
+
if scoring_mode == "loss" and target_ids is None:
|
315
|
+
raise ValueError(
|
316
|
+
"Cannot compute loss without targets. Please provide target "
|
317
|
+
"token ids via the target_ids parameter."
|
318
|
+
)
|
319
|
+
|
320
|
+
batch_shape = ops.shape(token_ids)[:2]
|
321
|
+
assert len(batch_shape) == 2
|
322
|
+
|
323
|
+
if padding_mask is None:
|
324
|
+
padding_mask = ops.ones(shape=batch_shape)
|
325
|
+
|
326
|
+
if layer_intercept_fn is None:
|
327
|
+
|
328
|
+
def default_layer_intercept_fn(x, unused_i):
|
329
|
+
return x
|
330
|
+
|
331
|
+
layer_intercept_fn = default_layer_intercept_fn
|
332
|
+
|
333
|
+
token_embeddings = self.backbone.token_embedding(token_ids)
|
334
|
+
x = layer_intercept_fn(token_embeddings, -1)
|
335
|
+
|
336
|
+
for i, transformer_layer in enumerate(self.backbone.transformer_layers):
|
337
|
+
x = transformer_layer(x, decoder_padding_mask=padding_mask)
|
338
|
+
x = layer_intercept_fn(x, i)
|
339
|
+
|
340
|
+
x = self.backbone.layer_norm(x)
|
341
|
+
logits = self.backbone.token_embedding(x, reverse=True)
|
342
|
+
|
343
|
+
if scoring_mode == "logits":
|
344
|
+
return logits
|
345
|
+
|
346
|
+
per_token_loss_fn = keras.losses.SparseCategoricalCrossentropy(
|
347
|
+
from_logits=True, reduction="none"
|
348
|
+
)
|
349
|
+
per_token_loss = per_token_loss_fn(target_ids, logits)
|
350
|
+
return per_token_loss
|
@@ -0,0 +1,17 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
|
3
|
+
from keras_hub.src.models.qwen_moe.qwen_moe_backbone import QwenMoeBackbone
|
4
|
+
from keras_hub.src.models.qwen_moe.qwen_moe_tokenizer import QwenMoeTokenizer
|
5
|
+
|
6
|
+
|
7
|
+
@keras_hub_export(
|
8
|
+
[
|
9
|
+
"keras_hub.models.QwenMoeCausalLMPreprocessor",
|
10
|
+
]
|
11
|
+
)
|
12
|
+
class QwenMoeCausalLMPreprocessor(CausalLMPreprocessor):
|
13
|
+
backbone_cls = QwenMoeBackbone
|
14
|
+
tokenizer_cls = QwenMoeTokenizer
|
15
|
+
|
16
|
+
def __init__(self, *args, **kwargs):
|
17
|
+
super().__init__(*args, **kwargs)
|