keras-hub-nightly 0.16.1.dev202410020340__py3-none-any.whl → 0.19.0.dev202501260345__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (252) hide show
  1. keras_hub/api/layers/__init__.py +21 -3
  2. keras_hub/api/models/__init__.py +71 -12
  3. keras_hub/api/tokenizers/__init__.py +1 -1
  4. keras_hub/src/bounding_box/__init__.py +2 -0
  5. keras_hub/src/bounding_box/converters.py +102 -12
  6. keras_hub/src/layers/modeling/f_net_encoder.py +1 -1
  7. keras_hub/src/layers/modeling/masked_lm_head.py +2 -1
  8. keras_hub/src/layers/modeling/reversible_embedding.py +3 -16
  9. keras_hub/src/layers/modeling/rms_normalization.py +36 -0
  10. keras_hub/src/layers/modeling/rotary_embedding.py +3 -2
  11. keras_hub/src/layers/modeling/token_and_position_embedding.py +1 -1
  12. keras_hub/src/layers/modeling/transformer_decoder.py +8 -6
  13. keras_hub/src/layers/modeling/transformer_encoder.py +29 -7
  14. keras_hub/src/layers/preprocessing/audio_converter.py +3 -7
  15. keras_hub/src/layers/preprocessing/image_converter.py +170 -34
  16. keras_hub/src/metrics/bleu.py +4 -3
  17. keras_hub/src/models/albert/albert_presets.py +4 -12
  18. keras_hub/src/models/albert/albert_text_classifier.py +7 -7
  19. keras_hub/src/models/backbone.py +3 -14
  20. keras_hub/src/models/bart/bart_backbone.py +4 -4
  21. keras_hub/src/models/bart/bart_presets.py +3 -9
  22. keras_hub/src/models/bart/bart_seq_2_seq_lm.py +9 -8
  23. keras_hub/src/models/basnet/__init__.py +5 -0
  24. keras_hub/src/models/basnet/basnet.py +122 -0
  25. keras_hub/src/models/basnet/basnet_backbone.py +366 -0
  26. keras_hub/src/models/basnet/basnet_image_converter.py +8 -0
  27. keras_hub/src/models/basnet/basnet_preprocessor.py +14 -0
  28. keras_hub/src/models/basnet/basnet_presets.py +17 -0
  29. keras_hub/src/models/bert/bert_presets.py +14 -32
  30. keras_hub/src/models/bert/bert_text_classifier.py +3 -3
  31. keras_hub/src/models/bloom/bloom_presets.py +8 -24
  32. keras_hub/src/models/causal_lm.py +56 -12
  33. keras_hub/src/models/clip/__init__.py +5 -0
  34. keras_hub/src/models/clip/clip_backbone.py +286 -0
  35. keras_hub/src/models/clip/clip_encoder_block.py +19 -4
  36. keras_hub/src/models/clip/clip_image_converter.py +8 -0
  37. keras_hub/src/models/clip/clip_presets.py +93 -0
  38. keras_hub/src/models/clip/clip_text_encoder.py +4 -1
  39. keras_hub/src/models/clip/clip_tokenizer.py +18 -3
  40. keras_hub/src/models/clip/clip_vision_embedding.py +101 -0
  41. keras_hub/src/models/clip/clip_vision_encoder.py +159 -0
  42. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +2 -1
  43. keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -109
  44. keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +1 -1
  45. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +5 -15
  46. keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +4 -4
  47. keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +4 -4
  48. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +3 -2
  49. keras_hub/src/models/deberta_v3/relative_embedding.py +1 -1
  50. keras_hub/src/models/deeplab_v3/__init__.py +7 -0
  51. keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +200 -0
  52. keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +10 -0
  53. keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +16 -0
  54. keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +215 -0
  55. keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +17 -0
  56. keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +111 -0
  57. keras_hub/src/models/densenet/densenet_backbone.py +6 -4
  58. keras_hub/src/models/densenet/densenet_image_classifier.py +1 -129
  59. keras_hub/src/models/densenet/densenet_image_converter.py +2 -4
  60. keras_hub/src/models/densenet/densenet_presets.py +9 -15
  61. keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +1 -1
  62. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +2 -2
  63. keras_hub/src/models/distil_bert/distil_bert_presets.py +5 -10
  64. keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +5 -5
  65. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +3 -3
  66. keras_hub/src/models/efficientnet/__init__.py +9 -0
  67. keras_hub/src/models/efficientnet/cba.py +141 -0
  68. keras_hub/src/models/efficientnet/efficientnet_backbone.py +160 -61
  69. keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +14 -0
  70. keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +16 -0
  71. keras_hub/src/models/efficientnet/efficientnet_image_converter.py +10 -0
  72. keras_hub/src/models/efficientnet/efficientnet_presets.py +193 -0
  73. keras_hub/src/models/efficientnet/fusedmbconv.py +84 -41
  74. keras_hub/src/models/efficientnet/mbconv.py +53 -22
  75. keras_hub/src/models/electra/electra_backbone.py +2 -2
  76. keras_hub/src/models/electra/electra_presets.py +6 -18
  77. keras_hub/src/models/f_net/f_net_presets.py +2 -6
  78. keras_hub/src/models/f_net/f_net_text_classifier.py +3 -3
  79. keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +3 -3
  80. keras_hub/src/models/falcon/falcon_backbone.py +5 -3
  81. keras_hub/src/models/falcon/falcon_causal_lm.py +18 -8
  82. keras_hub/src/models/falcon/falcon_presets.py +1 -3
  83. keras_hub/src/models/falcon/falcon_tokenizer.py +7 -2
  84. keras_hub/src/models/feature_pyramid_backbone.py +1 -1
  85. keras_hub/src/models/flux/__init__.py +5 -0
  86. keras_hub/src/models/flux/flux_layers.py +496 -0
  87. keras_hub/src/models/flux/flux_maths.py +225 -0
  88. keras_hub/src/models/flux/flux_model.py +236 -0
  89. keras_hub/src/models/flux/flux_presets.py +3 -0
  90. keras_hub/src/models/flux/flux_text_to_image.py +146 -0
  91. keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +73 -0
  92. keras_hub/src/models/gemma/gemma_backbone.py +35 -20
  93. keras_hub/src/models/gemma/gemma_causal_lm.py +2 -2
  94. keras_hub/src/models/gemma/gemma_decoder_block.py +3 -1
  95. keras_hub/src/models/gemma/gemma_presets.py +29 -63
  96. keras_hub/src/models/gpt2/gpt2_causal_lm.py +2 -2
  97. keras_hub/src/models/gpt2/gpt2_presets.py +5 -14
  98. keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +2 -1
  99. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +3 -3
  100. keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +2 -1
  101. keras_hub/src/models/image_classifier.py +147 -2
  102. keras_hub/src/models/image_classifier_preprocessor.py +6 -3
  103. keras_hub/src/models/image_object_detector.py +87 -0
  104. keras_hub/src/models/image_object_detector_preprocessor.py +57 -0
  105. keras_hub/src/models/image_segmenter.py +0 -5
  106. keras_hub/src/models/image_segmenter_preprocessor.py +29 -4
  107. keras_hub/src/models/image_to_image.py +417 -0
  108. keras_hub/src/models/inpaint.py +520 -0
  109. keras_hub/src/models/llama/llama_backbone.py +138 -12
  110. keras_hub/src/models/llama/llama_causal_lm.py +3 -1
  111. keras_hub/src/models/llama/llama_presets.py +10 -20
  112. keras_hub/src/models/llama3/llama3_backbone.py +12 -11
  113. keras_hub/src/models/llama3/llama3_causal_lm.py +1 -1
  114. keras_hub/src/models/llama3/llama3_presets.py +4 -12
  115. keras_hub/src/models/llama3/llama3_tokenizer.py +25 -2
  116. keras_hub/src/models/mistral/mistral_backbone.py +16 -15
  117. keras_hub/src/models/mistral/mistral_causal_lm.py +6 -4
  118. keras_hub/src/models/mistral/mistral_presets.py +3 -9
  119. keras_hub/src/models/mistral/mistral_transformer_decoder.py +2 -1
  120. keras_hub/src/models/mit/__init__.py +6 -0
  121. keras_hub/src/models/{mix_transformer/mix_transformer_backbone.py → mit/mit_backbone.py} +47 -36
  122. keras_hub/src/models/mit/mit_image_classifier.py +12 -0
  123. keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +12 -0
  124. keras_hub/src/models/mit/mit_image_converter.py +8 -0
  125. keras_hub/src/models/{mix_transformer/mix_transformer_layers.py → mit/mit_layers.py} +20 -13
  126. keras_hub/src/models/mit/mit_presets.py +139 -0
  127. keras_hub/src/models/mobilenet/mobilenet_backbone.py +8 -8
  128. keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -92
  129. keras_hub/src/models/opt/opt_causal_lm.py +2 -2
  130. keras_hub/src/models/opt/opt_presets.py +4 -12
  131. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +63 -17
  132. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +3 -1
  133. keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +21 -23
  134. keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +2 -4
  135. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +173 -17
  136. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +14 -26
  137. keras_hub/src/models/phi3/phi3_causal_lm.py +3 -1
  138. keras_hub/src/models/phi3/phi3_decoder.py +0 -1
  139. keras_hub/src/models/phi3/phi3_presets.py +2 -6
  140. keras_hub/src/models/phi3/phi3_rotary_embedding.py +1 -1
  141. keras_hub/src/models/preprocessor.py +25 -11
  142. keras_hub/src/models/resnet/resnet_backbone.py +3 -14
  143. keras_hub/src/models/resnet/resnet_image_classifier.py +0 -137
  144. keras_hub/src/models/resnet/resnet_image_converter.py +2 -4
  145. keras_hub/src/models/resnet/resnet_presets.py +127 -18
  146. keras_hub/src/models/retinanet/__init__.py +5 -0
  147. keras_hub/src/models/retinanet/anchor_generator.py +52 -53
  148. keras_hub/src/models/retinanet/feature_pyramid.py +103 -39
  149. keras_hub/src/models/retinanet/non_max_supression.py +1 -0
  150. keras_hub/src/models/retinanet/prediction_head.py +192 -0
  151. keras_hub/src/models/retinanet/retinanet_backbone.py +146 -0
  152. keras_hub/src/models/retinanet/retinanet_image_converter.py +53 -0
  153. keras_hub/src/models/retinanet/retinanet_label_encoder.py +49 -51
  154. keras_hub/src/models/retinanet/retinanet_object_detector.py +381 -0
  155. keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +14 -0
  156. keras_hub/src/models/retinanet/retinanet_presets.py +16 -0
  157. keras_hub/src/models/roberta/roberta_backbone.py +2 -2
  158. keras_hub/src/models/roberta/roberta_presets.py +6 -8
  159. keras_hub/src/models/roberta/roberta_text_classifier.py +3 -3
  160. keras_hub/src/models/sam/__init__.py +5 -0
  161. keras_hub/src/models/sam/sam_backbone.py +2 -3
  162. keras_hub/src/models/sam/sam_image_converter.py +2 -4
  163. keras_hub/src/models/sam/sam_image_segmenter.py +16 -16
  164. keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +11 -1
  165. keras_hub/src/models/sam/sam_layers.py +5 -3
  166. keras_hub/src/models/sam/sam_presets.py +3 -9
  167. keras_hub/src/models/sam/sam_prompt_encoder.py +4 -2
  168. keras_hub/src/models/sam/sam_transformer.py +5 -4
  169. keras_hub/src/models/segformer/__init__.py +8 -0
  170. keras_hub/src/models/segformer/segformer_backbone.py +167 -0
  171. keras_hub/src/models/segformer/segformer_image_converter.py +8 -0
  172. keras_hub/src/models/segformer/segformer_image_segmenter.py +184 -0
  173. keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +31 -0
  174. keras_hub/src/models/segformer/segformer_presets.py +136 -0
  175. keras_hub/src/models/seq_2_seq_lm_preprocessor.py +1 -1
  176. keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +8 -1
  177. keras_hub/src/models/stable_diffusion_3/mmdit.py +577 -190
  178. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +189 -163
  179. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +178 -0
  180. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +193 -0
  181. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +43 -7
  182. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +25 -14
  183. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +1 -1
  184. keras_hub/src/models/t5/t5_backbone.py +5 -4
  185. keras_hub/src/models/t5/t5_presets.py +47 -19
  186. keras_hub/src/models/task.py +47 -39
  187. keras_hub/src/models/text_classifier.py +2 -2
  188. keras_hub/src/models/text_to_image.py +106 -41
  189. keras_hub/src/models/vae/__init__.py +1 -0
  190. keras_hub/src/models/vae/vae_backbone.py +184 -0
  191. keras_hub/src/models/vae/vae_layers.py +739 -0
  192. keras_hub/src/models/vgg/__init__.py +5 -0
  193. keras_hub/src/models/vgg/vgg_backbone.py +4 -24
  194. keras_hub/src/models/vgg/vgg_image_classifier.py +139 -33
  195. keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +12 -0
  196. keras_hub/src/models/vgg/vgg_image_converter.py +8 -0
  197. keras_hub/src/models/vgg/vgg_presets.py +48 -0
  198. keras_hub/src/models/vit/__init__.py +5 -0
  199. keras_hub/src/models/vit/vit_backbone.py +152 -0
  200. keras_hub/src/models/vit/vit_image_classifier.py +187 -0
  201. keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +12 -0
  202. keras_hub/src/models/vit/vit_image_converter.py +73 -0
  203. keras_hub/src/models/vit/vit_layers.py +391 -0
  204. keras_hub/src/models/vit/vit_presets.py +126 -0
  205. keras_hub/src/models/vit_det/vit_det_backbone.py +6 -4
  206. keras_hub/src/models/vit_det/vit_layers.py +3 -3
  207. keras_hub/src/models/whisper/whisper_audio_converter.py +2 -4
  208. keras_hub/src/models/whisper/whisper_backbone.py +6 -5
  209. keras_hub/src/models/whisper/whisper_decoder.py +3 -5
  210. keras_hub/src/models/whisper/whisper_presets.py +10 -30
  211. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +1 -1
  212. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +2 -2
  213. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +2 -6
  214. keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +4 -4
  215. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +2 -1
  216. keras_hub/src/models/xlnet/relative_attention.py +20 -19
  217. keras_hub/src/models/xlnet/xlnet_backbone.py +2 -2
  218. keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +3 -5
  219. keras_hub/src/models/xlnet/xlnet_encoder.py +7 -9
  220. keras_hub/src/samplers/contrastive_sampler.py +2 -3
  221. keras_hub/src/samplers/sampler.py +2 -1
  222. keras_hub/src/tests/test_case.py +41 -6
  223. keras_hub/src/tokenizers/byte_pair_tokenizer.py +7 -3
  224. keras_hub/src/tokenizers/byte_tokenizer.py +3 -10
  225. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +2 -9
  226. keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +9 -11
  227. keras_hub/src/tokenizers/tokenizer.py +10 -13
  228. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +9 -7
  229. keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +10 -3
  230. keras_hub/src/utils/keras_utils.py +2 -13
  231. keras_hub/src/utils/pipeline_model.py +3 -3
  232. keras_hub/src/utils/preset_utils.py +196 -144
  233. keras_hub/src/utils/tensor_utils.py +4 -4
  234. keras_hub/src/utils/timm/convert_densenet.py +6 -4
  235. keras_hub/src/utils/timm/convert_efficientnet.py +447 -0
  236. keras_hub/src/utils/timm/convert_resnet.py +1 -1
  237. keras_hub/src/utils/timm/convert_vgg.py +85 -0
  238. keras_hub/src/utils/timm/preset_loader.py +14 -9
  239. keras_hub/src/utils/transformers/convert_llama3.py +21 -5
  240. keras_hub/src/utils/transformers/convert_vit.py +150 -0
  241. keras_hub/src/utils/transformers/preset_loader.py +23 -0
  242. keras_hub/src/utils/transformers/safetensor_utils.py +4 -3
  243. keras_hub/src/version_utils.py +1 -1
  244. {keras_hub_nightly-0.16.1.dev202410020340.dist-info → keras_hub_nightly-0.19.0.dev202501260345.dist-info}/METADATA +86 -68
  245. keras_hub_nightly-0.19.0.dev202501260345.dist-info/RECORD +423 -0
  246. {keras_hub_nightly-0.16.1.dev202410020340.dist-info → keras_hub_nightly-0.19.0.dev202501260345.dist-info}/WHEEL +1 -1
  247. keras_hub/src/layers/preprocessing/resizing_image_converter.py +0 -138
  248. keras_hub/src/models/mix_transformer/__init__.py +0 -0
  249. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -119
  250. keras_hub/src/models/stable_diffusion_3/vae_image_decoder.py +0 -320
  251. keras_hub_nightly-0.16.1.dev202410020340.dist-info/RECORD +0 -357
  252. {keras_hub_nightly-0.16.1.dev202410020340.dist-info → keras_hub_nightly-0.19.0.dev202501260345.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,423 @@
1
+ keras_hub/__init__.py,sha256=QGdXyHgYt6cMUAP1ebxwc6oR86dE0dkMxNy2eOCQtFo,855
2
+ keras_hub/api/__init__.py,sha256=spMxsgqzjpeuC8rY4WP-2kAZ2qwwKRSbFwddXgUjqQE,524
3
+ keras_hub/api/bounding_box/__init__.py,sha256=T8R_X7BPm0et1xaZq8565uJmid7dylsSFSj4V-rGuFQ,1097
4
+ keras_hub/api/layers/__init__.py,sha256=YO_YLbcxMEboFEgmFkzRf_JfQciQukX2AseOGpWEbDo,3195
5
+ keras_hub/api/metrics/__init__.py,sha256=So8Ec-lOcTzn_UUMmAdzDm8RKkPu2dbRUm2px8gpUEI,381
6
+ keras_hub/api/models/__init__.py,sha256=suTcar7FqO5w9nNtalqmfYn7Fs6XmNEGpbojK-gaMEY,16795
7
+ keras_hub/api/samplers/__init__.py,sha256=n-_SEXxr2LNUzK2FqVFN7alsrkx1P_HOVTeLZKeGCdE,730
8
+ keras_hub/api/tokenizers/__init__.py,sha256=mtJgQy1spfQnPAkeLoeinsT_W9iCWHlJXwzcol5W1aU,2524
9
+ keras_hub/api/utils/__init__.py,sha256=Gp1E6gG-RtKQS3PBEQEOz9PQvXkXaJ0ySGMqZ7myN7A,215
10
+ keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
+ keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
12
+ keras_hub/src/version_utils.py,sha256=tTFXFFeAG8omIjQguMXQRXJIRBjW6nmc21CUsBB4mP8,222
13
+ keras_hub/src/bounding_box/__init__.py,sha256=7i6KnGupN4AVivR_dFjQyuuTbI0GkHy8d-aMXeqZdU8,95
14
+ keras_hub/src/bounding_box/converters.py,sha256=UUp1hwegpDZyIo8sh9TLNy1v6JjwmvwzL6wmHFMAtbk,21916
15
+ keras_hub/src/bounding_box/formats.py,sha256=YmskOz2BOSat7NaE__J9VfpSNGPJJR0znSzA4lp8MMI,3868
16
+ keras_hub/src/bounding_box/iou.py,sha256=wmBKEUwu7Q-dJMoTO9I493NQAwpU7lF4oWLpccpkQ0I,9116
17
+ keras_hub/src/bounding_box/to_dense.py,sha256=usSkar5PfEoW-ZasacBXNHpJ-XaRHLUTnSagef2sZxo,2775
18
+ keras_hub/src/bounding_box/to_ragged.py,sha256=Z7lZN-wlMIF0FLRknewgqrRlIDhmhvWh8QwLAcNxoek,2874
19
+ keras_hub/src/bounding_box/utils.py,sha256=ejWDLDTsZd_k3cfBqxhKWlYV2vwd0RInLmPNTPYpsLA,6441
20
+ keras_hub/src/bounding_box/validate_format.py,sha256=05hdCs7ICavuEPog2syCuNe8i8r0xPZQSnkQA7ncr2c,3054
21
+ keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
+ keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
23
+ keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
24
+ keras_hub/src/layers/modeling/cached_multi_head_attention.py,sha256=8IDyP3JMeALV1K7Ot04o6MehyS7zDVpci4uvlTZY1oc,5600
25
+ keras_hub/src/layers/modeling/f_net_encoder.py,sha256=zkVeO5Nk_kBZCUGq2LeDGmPEIM_cr-aGqCKtQGOHKTY,6842
26
+ keras_hub/src/layers/modeling/masked_lm_head.py,sha256=no6XQb76KB2cUiksYC0MSdyeDOK7pn8MY6cmdCDxpKs,9015
27
+ keras_hub/src/layers/modeling/position_embedding.py,sha256=FfTS6JGMhnOIzo9bHzvoxBbdQNctc32iRLI7ZjdxoTY,3850
28
+ keras_hub/src/layers/modeling/reversible_embedding.py,sha256=sfm5giI-bHu2J9xm9Tkydx8XM-I_m8Oe0wbW1gzrYjk,11141
29
+ keras_hub/src/layers/modeling/rms_normalization.py,sha256=Ylnc9vkDw1A_ZqiKpQ09jVTAGumS5rspjdQOkH-mxf4,1084
30
+ keras_hub/src/layers/modeling/rotary_embedding.py,sha256=BuMD2dCyZi73Eokddx8Q9cFb4pJVlOL2OgFwsom2p8I,6059
31
+ keras_hub/src/layers/modeling/sine_position_encoding.py,sha256=NAPW9HaVTMNZgUJNzA3l1B3C_FNvaY7IW-5tQgFgnNg,3453
32
+ keras_hub/src/layers/modeling/token_and_position_embedding.py,sha256=Q-MhVHZSd_W2eWjDCj-s7wo3z8UHmgZ-7j7hElkaXBQ,5263
33
+ keras_hub/src/layers/modeling/transformer_decoder.py,sha256=50KLxaZwaQglWIcFotx3BFh6RwCMXRvGZNXHQBrJ5KM,21172
34
+ keras_hub/src/layers/modeling/transformer_encoder.py,sha256=Qe19_aR6w4PTFbzvBmSP8-ggiAuOJcgCzaJWcjdzA9c,10625
35
+ keras_hub/src/layers/modeling/transformer_layer_utils.py,sha256=FuznrW33iG50B-VDN8R1RjuA5JG72yNMJ1TBgWLxR0E,3487
36
+ keras_hub/src/layers/preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
+ keras_hub/src/layers/preprocessing/audio_converter.py,sha256=YGh_kQw65a1Z6S5zzSNVP-ChyLYHq3-eOYpOS53xIN8,4156
38
+ keras_hub/src/layers/preprocessing/image_converter.py,sha256=QZr1XGsIR67-wuTspHgBt9a44mjuwIw9b5frzSF5Ia8,10542
39
+ keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py,sha256=itxWq3FHYlR0I7jKarQlSKbSmRLl9ut_UTSP3ZDwP0A,8162
40
+ keras_hub/src/layers/preprocessing/multi_segment_packer.py,sha256=ZNqnUFnc9Af122Q7T6YyUoXgIdU9AgIJfsvR1UrCjFU,12068
41
+ keras_hub/src/layers/preprocessing/preprocessing_layer.py,sha256=WyX41b9Ev_YJ5uVQVOAqD0PQasMOPDoyDjl_PkzkAkE,687
42
+ keras_hub/src/layers/preprocessing/random_deletion.py,sha256=x23nRo0ir2J4Ps42i9Xo9dVEkD22P9tZNhI2hXvREbM,9763
43
+ keras_hub/src/layers/preprocessing/random_swap.py,sha256=w2z7yNQsII5g4sEFi4GXfgxIc1S6UUt3a8YWZew_f4U,9504
44
+ keras_hub/src/layers/preprocessing/start_end_packer.py,sha256=lY2K937z6JucxNe7VknynhhjrcUfFigU6mqIdv2gS-Y,7973
45
+ keras_hub/src/metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
46
+ keras_hub/src/metrics/bleu.py,sha256=pnid5azpAxO6vKEfUtAby3nH29OGbwYKgVGOGeoaA3I,13694
47
+ keras_hub/src/metrics/edit_distance.py,sha256=kjhe8uNjvv8aN49RyrKAbNi7a8_OlB8fMza0J_CfNQg,6353
48
+ keras_hub/src/metrics/perplexity.py,sha256=dDUQcfE5JbAruG3spEkgue6IjHcynqgmGpJAqWg22Tw,6139
49
+ keras_hub/src/metrics/rouge_base.py,sha256=Pt2DUznhTTeR-fX1nQ_wSbPtmuTgxQTvrGpu8LRVapE,6264
50
+ keras_hub/src/metrics/rouge_l.py,sha256=JlZhMBV6wS_6zMd57pkTc6yxHkEJT9fVQMlPZKekQzQ,2729
51
+ keras_hub/src/metrics/rouge_n.py,sha256=JoFtmgjF4Ic263ny6bfD6vMHKreH9le3HnOOxemupRc,3620
52
+ keras_hub/src/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
+ keras_hub/src/models/backbone.py,sha256=lOv8id2qCkewrtBOrSObc3_nh_WOfsHsgGlIBsHug7g,10986
54
+ keras_hub/src/models/causal_lm.py,sha256=ReaF-i3SHsCkHh4c28jM72QjMQ8x7yiCwG39FRb-7KE,16786
55
+ keras_hub/src/models/causal_lm_preprocessor.py,sha256=YY7VJZicdmnjDSWi9g4_pEpd5bdJK166GlWcapvokF0,6663
56
+ keras_hub/src/models/feature_pyramid_backbone.py,sha256=clEW-TTQSVJ_5qFNdDF0iABkin1p_xlBUFjJrC7T0IA,2247
57
+ keras_hub/src/models/image_classifier.py,sha256=yt6cjhPfqs8A_eWXBsXdXFzn-aRgH2rVHUq7Zu7CyK8,7804
58
+ keras_hub/src/models/image_classifier_preprocessor.py,sha256=Bf7jSqHB1hX2ZWoWQS4GcXNOY_EjeoJi-_vtzCAqw4o,2690
59
+ keras_hub/src/models/image_object_detector.py,sha256=b4Gx6um7Li2-xNA6O2Nb_u0gGD4lmYGNbT3wVo5djho,3721
60
+ keras_hub/src/models/image_object_detector_preprocessor.py,sha256=3g_Qfcu5Gi_HDzXai-QOAL7Td_NC-VsUr-7rJbXnQvk,2232
61
+ keras_hub/src/models/image_segmenter.py,sha256=C1bzIO59pG58iist5GLn_qnlotDpcAVxPV_8a68BkAc,2876
62
+ keras_hub/src/models/image_segmenter_preprocessor.py,sha256=d7I2Hk0SKWyKpjRS6WYccmh_CYQBpWoj0JF5RRrU6rw,3748
63
+ keras_hub/src/models/image_to_image.py,sha256=IJLZ6svgvcQvypwF6oe4SbJj_Zuk2-CrgHFBQcsY7n8,16753
64
+ keras_hub/src/models/inpaint.py,sha256=fxZZrheYIK1rI6BjqZsxt9G2U0afMZR62Z87ZzuSNrQ,20815
65
+ keras_hub/src/models/masked_lm.py,sha256=uXO_dE_hILlOC9jNr6oK6IHi9IGUqLyNGvr6nMt8Rk0,3576
66
+ keras_hub/src/models/masked_lm_preprocessor.py,sha256=g8vrnyYwqdnSw5xppROM1Gzo_jmMWKYZoQCsKdfrFKk,5656
67
+ keras_hub/src/models/preprocessor.py,sha256=kBlahgVST3L6vKeWDM4fXuDoXa6pwaJW2A5__L85wFU,8487
68
+ keras_hub/src/models/seq_2_seq_lm.py,sha256=w0gX-5YZjatfvAJmFAgSHyqS_BLqc8FF8DPLGK8mrgI,1864
69
+ keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=DJmm4VTt8AdLtq1k9YKl_VR31cKUHaYjfSbrk7-fJqA,9667
70
+ keras_hub/src/models/task.py,sha256=a7eW8ylmsSY4opI5bEo_AQQOXBgsGU5CihQWm1DWfnw,14592
71
+ keras_hub/src/models/text_classifier.py,sha256=B6cTYDbDZW8vRvenXrLwgMMVIYMb7Pr14GvX8C_wclQ,4159
72
+ keras_hub/src/models/text_classifier_preprocessor.py,sha256=EoWp-GHnaLnAKTdAzDmC-soAV92ATF3QozdubdV2WXI,4722
73
+ keras_hub/src/models/text_to_image.py,sha256=NIy4S6Fh8MsbNiskAFhjmFXgRiiFqn_rOvpGOO6LlF0,13390
74
+ keras_hub/src/models/albert/__init__.py,sha256=rR6q_-8FujB1FXp6r4KOI7xi4gFjtAhQwXjp-MIhiyg,257
75
+ keras_hub/src/models/albert/albert_backbone.py,sha256=4NQFo8lhv8rFiNIwQeZxxKxFwT3nKcCt36FUa6oPGok,10073
76
+ keras_hub/src/models/albert/albert_masked_lm.py,sha256=jG6FttE_MAyBe8GzOEXMjEem3wo6UFGvxM3lRmXuS70,4126
77
+ keras_hub/src/models/albert/albert_masked_lm_preprocessor.py,sha256=OxAr-PwU2eELevV7uNJPpXNPpSySOouMfUJXbWKOyEE,4475
78
+ keras_hub/src/models/albert/albert_presets.py,sha256=Z0NYTJXFUR9-lJnhvYAkwXOOitMW0woMBhUO2QYdZm8,1681
79
+ keras_hub/src/models/albert/albert_text_classifier.py,sha256=y1ZABsI6-U3qWa8Oo6jtX5qIUEvCci5YsKRKXbu8Z7Q,6645
80
+ keras_hub/src/models/albert/albert_text_classifier_preprocessor.py,sha256=SPpjxnei4YMHqPuY6P4T8t7MPQgzyqtDxTMqsMllRtA,5539
81
+ keras_hub/src/models/albert/albert_tokenizer.py,sha256=dNEkjqUHJXBgprMCNH8qsjhoXuxtqa0510iEa_tNsmU,2984
82
+ keras_hub/src/models/bart/__init__.py,sha256=foekeZj_Z4I75KI2oB8AuyzXfRdEb8Fcvn-dbv9cTjs,245
83
+ keras_hub/src/models/bart/bart_backbone.py,sha256=9OXrITk3eBa3yx0qAsNm_JfzmMENX9JIWhsbjsDafEw,9714
84
+ keras_hub/src/models/bart/bart_presets.py,sha256=kUvisJlSE9muT1AkIj_4TKHysYofvambm15kjjFp654,1719
85
+ keras_hub/src/models/bart/bart_seq_2_seq_lm.py,sha256=0r9snJsqqmH8F1_CDQZyFgqLNMYJM8AYFkmqfxUNB1U,19262
86
+ keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py,sha256=3_e-ULIcm_3DKgt7X7cvyLZEDIEkpu9HdANgH6MjZgg,4373
87
+ keras_hub/src/models/bart/bart_tokenizer.py,sha256=Q7IXmIwXzhPSN427oQRyF9ufoExQGS184Yo_4boaOZo,2811
88
+ keras_hub/src/models/basnet/__init__.py,sha256=4N6XvIUYYJl5xtoaL3_9fawUX_qP3WmTYNEEU7tn8Gw,253
89
+ keras_hub/src/models/basnet/basnet.py,sha256=JA58Q9lmygdSOm5MUaPAlaL6B8XnmqCcRaGrk9c8P3Q,4287
90
+ keras_hub/src/models/basnet/basnet_backbone.py,sha256=P-jogkYIu9j7_28fl2RFQRMl87BXz1wcY_LtIrxBy1E,13505
91
+ keras_hub/src/models/basnet/basnet_image_converter.py,sha256=DwzAwtZeggYw_qyRQ-Abnnm885Wobv3wClxRzOTscI0,342
92
+ keras_hub/src/models/basnet/basnet_preprocessor.py,sha256=uM504utaXODSqR5zpKnopRuaV_l84zCg06RkNoNSKIs,510
93
+ keras_hub/src/models/basnet/basnet_presets.py,sha256=GQx-ijM1bqYRoz6_vXczKuCSZsfgmvyRoSvtTQBKres,561
94
+ keras_hub/src/models/bert/__init__.py,sha256=K_UmCqDgOFFvXgzjXRn5oG0WWi53rAsQMOmUrsiBe1k,245
95
+ keras_hub/src/models/bert/bert_backbone.py,sha256=o8GXUpoKPXLpfFzx5u9wI_3rZJeabPfYJEYSI09Clos,8069
96
+ keras_hub/src/models/bert/bert_masked_lm.py,sha256=8gb1g8h5VFVLmKNEPfLe26z7SOlFnzf9R9okK3rp8AU,4045
97
+ keras_hub/src/models/bert/bert_masked_lm_preprocessor.py,sha256=UAtj1gTxvrzTTueGts_9fkAyHeJ6cp269YwE69p7vys,4574
98
+ keras_hub/src/models/bert/bert_presets.py,sha256=C1RimzWTA2cKdZmsg91TCx2t4Rji52bq2AzmWWjSd50,3782
99
+ keras_hub/src/models/bert/bert_text_classifier.py,sha256=T6yTS7eM3gSmCcr80OVgfkD2eFp4TRNLsRjAfHjmcJc,5798
100
+ keras_hub/src/models/bert/bert_text_classifier_preprocessor.py,sha256=0KIVajjOUDBagJIA9dfXdlQZB08h2XumUVec5OZauAI,4713
101
+ keras_hub/src/models/bert/bert_tokenizer.py,sha256=hCyhRg_QTdexiaw23vcl1brxYJ-sPEImXSBCSTNwV9M,3025
102
+ keras_hub/src/models/bloom/__init__.py,sha256=_ljORJs8JQkGzLu-yRGLNISCQbV0Z4PfOF_vc7cEnjI,251
103
+ keras_hub/src/models/bloom/bloom_attention.py,sha256=vkiDDmlWPf6BshIcBfGDA0yxeBu7o0rx-nJxeCC9etk,6074
104
+ keras_hub/src/models/bloom/bloom_backbone.py,sha256=dvSXekDbukixkeKxTo8yvRPpxVjFMp387lynKuCSFi0,5820
105
+ keras_hub/src/models/bloom/bloom_causal_lm.py,sha256=dq8WjkGZgj5kc4wqsZCxXrHk-nAVgwMVL0ur__Y2Bx8,10961
106
+ keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py,sha256=KRvp3_lhRFPg8C028qEOJ9V2taI-07h5jj4DfkD7qoU,3011
107
+ keras_hub/src/models/bloom/bloom_decoder.py,sha256=fda8iX4wzx2M8AoLX7fDHkyoir89KLJXrKbOZf70SX8,6572
108
+ keras_hub/src/models/bloom/bloom_presets.py,sha256=7RptuZi__oJyiX6X4xE5ToANcEwsmLDqhuEKwFyKIPU,3215
109
+ keras_hub/src/models/bloom/bloom_tokenizer.py,sha256=6Konh7B_L9BqgjkA0z8-APFpr9sQmQPuAJFZSsCIClU,2574
110
+ keras_hub/src/models/clip/__init__.py,sha256=NcjBkTNWxLY4Ss9wV-NW9iS8k6AwMiS2ARMcxr6KEps,245
111
+ keras_hub/src/models/clip/clip_backbone.py,sha256=AyVhLwFg5nLFSaoaL8mLuNkK9uBPJ9y5FMQu4psTGvo,9877
112
+ keras_hub/src/models/clip/clip_encoder_block.py,sha256=4Jxqb0Pq3Joh-lHDq-Y2c8v-gcMm1sDjPID4eRGK0DE,3823
113
+ keras_hub/src/models/clip/clip_image_converter.py,sha256=XyHEDB4RbYiveMN1hLQxHgGADb_goyWyE0TceAd2owM,330
114
+ keras_hub/src/models/clip/clip_preprocessor.py,sha256=nUYu8Bgf3TU7jrR10kr0BIe7ph3aABvGtIqnjqrIb9k,4752
115
+ keras_hub/src/models/clip/clip_presets.py,sha256=b9Azial1dUtuNV96Q0Ahz-bcBRmlIjnZPUzMvAMb8OY,3348
116
+ keras_hub/src/models/clip/clip_text_encoder.py,sha256=BCIE24eKZJ3yc4T0sjD6-Msjr1FQRKpdTP7vpGEn_7M,5456
117
+ keras_hub/src/models/clip/clip_tokenizer.py,sha256=6gIm_LWRbCeBQUI9M2gA8-OXb4tXGygixkbcL6joV1c,7444
118
+ keras_hub/src/models/clip/clip_vision_embedding.py,sha256=6_qC7T1dqKd-39EreGmHZj-YfjOLEDDKjWnEKcKIyuY,3667
119
+ keras_hub/src/models/clip/clip_vision_encoder.py,sha256=q62MXySZN38uCsjqq8cttfBxD7P5abaKQV2i8_u4N6E,6385
120
+ keras_hub/src/models/csp_darknet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
121
+ keras_hub/src/models/csp_darknet/csp_darknet_backbone.py,sha256=J3T9eFNIdryhtAzxAjmxDjAagUmbh6QuRn17s8vJ_po,13745
122
+ keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py,sha256=2nMkmym36EF4v3BO-wwPIjO3OsRvGloDKW0RbHGB7ag,368
123
+ keras_hub/src/models/deberta_v3/__init__.py,sha256=6E-QtAD1uvTBobrn5bUoyB1qtaCJU-t73TtbAEH6i9g,288
124
+ keras_hub/src/models/deberta_v3/deberta_v3_backbone.py,sha256=oXdV7naTiMowuU3GsXEUo5K0GXiKbPKxdo27o5fXWjc,7258
125
+ keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py,sha256=ADBktf1DdiP9T6LCaMhdFiZ_mUbBRKMekY5mGwAeJIo,4186
126
+ keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py,sha256=qoUCmhHAqx_YW0GzHsE44u2AT8ms-HFBwkFovPqZdD0,4966
127
+ keras_hub/src/models/deberta_v3/deberta_v3_presets.py,sha256=ea5OOeuRNlaBvla-TWLSXim8jJzI0k2l7k5e-LbiDlA,2110
128
+ keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py,sha256=OuhJrC2klo6oNJ-g8CucJVzyo390pMlDx_BJnhh1B1Q,7252
129
+ keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py,sha256=3U2x8Nr7HhwdhAyd3duYo8jj0JDYuB8Z1WMzArzQpKI,5975
130
+ keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py,sha256=zEMCLy9eCiBEpA_xM2j8ACg7YJunD3bAruEK-1beElk,4987
131
+ keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py,sha256=UdcZyRsFGbjWiWP7gQomMIZsq-YoA_aaA3o5R-oerXc,8571
132
+ keras_hub/src/models/deberta_v3/disentangled_self_attention.py,sha256=twNrrj2sostMH_0j-5JEfJRwNGSM-rkmbzsESfXitYo,13146
133
+ keras_hub/src/models/deberta_v3/relative_embedding.py,sha256=Ye27E5DIBZ5_QBA2xKDK40SazpUMJ51LSC_Bb9rcyZc,2900
134
+ keras_hub/src/models/deeplab_v3/__init__.py,sha256=FHAUPM4a1DJj4EsNTbYEd1riNq__uHU4eB3t3Z1zgj0,288
135
+ keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py,sha256=dH7HHu_NAnE-HP6ivOL7fFLQZHt_MWmehlMccLljhPc,7764
136
+ keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py,sha256=mRkH3HdhpV0fCcQcVXEvIX7SNk-bAMb3SAHzgK-FD5c,371
137
+ keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py,sha256=hR9S6lNYamY0EBDBo3e1qTCiwtftmLXrN-UYuzfw5Io,581
138
+ keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py,sha256=mz9nG55gdXSTDE96AXgeTCwUFB95DIpTuqrvWIt5Lco,7840
139
+ keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py,sha256=ZKYY8A7mV2QvwXwjDUd9xAbVHo58-Hgj_IqNUbuyCIU,625
140
+ keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py,sha256=pubi30sPJKLOpz9fRQff2FZt_53KBvwf2uyaJ5YL7J8,3726
141
+ keras_hub/src/models/densenet/__init__.py,sha256=r7StyamnWeeZxOk9r4ZYNbS_YVhu9YGPyXhNxljvdPg,269
142
+ keras_hub/src/models/densenet/densenet_backbone.py,sha256=f2nfsXyXQert2aYHq-L-JZtp8inq1fs1K47rzZQ9nTI,6744
143
+ keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=ye-Ix3oU42pfsDoh-h1PG4di1kzldO0ZO7Nj304p_X4,544
144
+ keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py,sha256=xDZbTw_h6pjLDzf8QmbDyMnMsFzgh-dPX1ldg9kddhg,563
145
+ keras_hub/src/models/densenet/densenet_image_converter.py,sha256=DoxYlJVZ9uaabFhVjWOmzvhONoc8KNcQj2vQ6Z1AUpU,354
146
+ keras_hub/src/models/densenet/densenet_presets.py,sha256=d2GEB9cWYrzP8Qj1w8CWiRW976MibQBuk_YQYvgCzr4,1222
147
+ keras_hub/src/models/distil_bert/__init__.py,sha256=3Z0w-Mt3aOR0u9RGzjHQ7B3J3qBF2pGjupDGQ9yyzoc,303
148
+ keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=rnAf_GokB3wAeJwVZtgUKQO_bKJIa8RavhL_ykTJpNw,6440
149
+ keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=axeZd5UcxFr3_Q8H4yG10CINh93wbcyjlPLauqe5N9E,4289
150
+ keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py,sha256=rkrOkmEi883dA7MbouVBBMvOejUBuViP8lqlp4gyFJY,5230
151
+ keras_hub/src/models/distil_bert/distil_bert_presets.py,sha256=eN2tGTPCjGH7Dqjjlaif24_i8PX4ggabIwN3LJiFxtY,1380
152
+ keras_hub/src/models/distil_bert/distil_bert_text_classifier.py,sha256=iy2A-fTJZ2drgvw3AXjEgbS6DADtQuoCNxfNJ8W9yRU,6765
153
+ keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py,sha256=Z51X2EkimPN1qeWfwa0Ie7d3fmNe7J34D0YsRNUsj_k,4893
154
+ keras_hub/src/models/distil_bert/distil_bert_tokenizer.py,sha256=YS2K8Gtp8wHGrb2-KFnQanetFWmxYIr1tuZCGRT6tZw,3111
155
+ keras_hub/src/models/efficientnet/__init__.py,sha256=QSy7wnaMHs5Mx3OVrTN0twH6ynu7aXuIiIyijfxlzWs,311
156
+ keras_hub/src/models/efficientnet/cba.py,sha256=m9G-XueyUP-HAxiS0LZeEKgXMz0um3MUCIePNFU9muo,4610
157
+ keras_hub/src/models/efficientnet/efficientnet_backbone.py,sha256=dFA0rIJ0qO_Py4rb4W1MqVBxpXtCCxnIVgE3ichly90,25541
158
+ keras_hub/src/models/efficientnet/efficientnet_image_classifier.py,sha256=e37sWzxkQW0CuM78WOJozqHDErWiRLLmQbOV-uY7hI4,593
159
+ keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py,sha256=Njs8nGyz28Xngzrc7fQrIJH6ItDkDJUPEsBGKVlKgZs,612
160
+ keras_hub/src/models/efficientnet/efficientnet_image_converter.py,sha256=X9Io6IhjoUglywiyph48C0rt9Xp-3ZW4rsIzyt7zkmg,387
161
+ keras_hub/src/models/efficientnet/efficientnet_presets.py,sha256=Cb2IAGTThULOBXugs4R_U6UZuGffVSjQXPQTMz-MjzI,7610
162
+ keras_hub/src/models/efficientnet/fusedmbconv.py,sha256=7-3FzqCqjPC1WaYfYqluryegKpkqFlXZ32Y4y7VJ5G0,9503
163
+ keras_hub/src/models/efficientnet/mbconv.py,sha256=9tHiRWAO3KafgdqO5FYshdkGfXDx_zEkaiqA93ZiDbI,8942
164
+ keras_hub/src/models/electra/__init__.py,sha256=vaXl_uQx_oLeKZWxmc1NRgCJfHpYJ35JeF9as8U0q5M,263
165
+ keras_hub/src/models/electra/electra_backbone.py,sha256=h-QuFxACBvbMktkyGV2pIgn6dQ-kudJB1i14ekwEaL4,9004
166
+ keras_hub/src/models/electra/electra_presets.py,sha256=6f0WAYtDx5To4gvi6btN8I8y7yfc9ANchTHRKgCyIkg,2697
167
+ keras_hub/src/models/electra/electra_tokenizer.py,sha256=Ll_EW-14i-OZr6appQEt5ceMUCeEadF4yPJHMwaRfVs,2729
168
+ keras_hub/src/models/f_net/__init__.py,sha256=a3OAwgEVy3Rv88ZlBE9RYLrPCNteImhGkW-lSAq5hyI,249
169
+ keras_hub/src/models/f_net/f_net_backbone.py,sha256=6vZEq2UgoJxU2-aEesdXZnyRbACxpMZQ1akyVbGH8wg,8290
170
+ keras_hub/src/models/f_net/f_net_masked_lm.py,sha256=GDRtPdF4K2tPtnM6NqmMeZs6PCRwtBN5Bo1qIMeqwCU,3978
171
+ keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py,sha256=eCSaiMCcrrjS51SP5fF0OkWj57C2z_zmg_qGSEbvNNo,5081
172
+ keras_hub/src/models/f_net/f_net_presets.py,sha256=qwLRHB44rNYWg6_QN6h3ueYfouNNGSVkgYfX3YFMAIE,765
173
+ keras_hub/src/models/f_net/f_net_text_classifier.py,sha256=YoWq08mcn-oOsdiajxLy2f6zH3Gjv6hH8vkUrmPtQlw,4869
174
+ keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py,sha256=UUa7RKylLt41Z0wRxGzhSgWTaJjNAcgqkVeC-ZzJbfo,4822
175
+ keras_hub/src/models/f_net/f_net_tokenizer.py,sha256=ZRTaSfgZnYLTVXgM51303LpryRsSL5GaC2Cl_D7g27A,2285
176
+ keras_hub/src/models/falcon/__init__.py,sha256=IVwPgPbw0l8XJRPQETmeQNvpdn_SneXhe_3oRMOvdx8,257
177
+ keras_hub/src/models/falcon/falcon_attention.py,sha256=nBpvh3KGElNG062NfqznNJmTqKGN-0k_VZ7j7DryjMI,4497
178
+ keras_hub/src/models/falcon/falcon_backbone.py,sha256=nGJcHnbqncZRTPERRi4ZuYGcODpkH2Mu0-Db59vH5io,5451
179
+ keras_hub/src/models/falcon/falcon_causal_lm.py,sha256=2UEIeju5Tg-FstVuusejJ-MbHZ6vsNfsSJzzBM89fnU,10908
180
+ keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py,sha256=nI9E8N9enx5DppDHpLwGslb65rqGorL2sEz1jzet4gA,3033
181
+ keras_hub/src/models/falcon/falcon_presets.py,sha256=PDghkND0-7le4W-atm4BitzA127z-5ZyQguCnCChSBo,463
182
+ keras_hub/src/models/falcon/falcon_tokenizer.py,sha256=MF2QcWl5hsnjQRI3UWMETjb3lqYV-lDLyB7Bjkk_Pgs,2591
183
+ keras_hub/src/models/falcon/falcon_transformer_decoder.py,sha256=QqIK6v97uBXZFBG3qS6O8HrP9_93uOFzvHQgOiMO2eY,8125
184
+ keras_hub/src/models/flux/__init__.py,sha256=rBO-FNMbnfABw2QQazRmuWpIhhiVXwowaYQXWkTGeyU,224
185
+ keras_hub/src/models/flux/flux_layers.py,sha256=wevcAEbayBD8bVm-21FBi2LQ13pZzB99-qlTq1il5tI,16355
186
+ keras_hub/src/models/flux/flux_maths.py,sha256=2pnHW8HW7V2JZ8HIrUwE-UU4klpFQaOkoAvG5nWVfyY,7502
187
+ keras_hub/src/models/flux/flux_model.py,sha256=K92PyeFHIp8SwXuxhv__XCEaQ2wqSW1jOb97I4S24Rw,8991
188
+ keras_hub/src/models/flux/flux_presets.py,sha256=z7C_FbI1_F5YETXuWpc7Yh_0w-5N0eBQy6Oks_X9W88,54
189
+ keras_hub/src/models/flux/flux_text_to_image.py,sha256=Rf5dD2EhG0bE8Gyg9sqaA8YEexS1kdraofIkxiZDjvc,4166
190
+ keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=Fs9jr97QtmRUbRRz1kITpkuhDM2GoV3n0XSFC-qQA14,2252
191
+ keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
192
+ keras_hub/src/models/gemma/gemma_attention.py,sha256=1CVN5z9GKoU8TuNMih2_MweDkpd98xSqdic9F8xIBE8,8317
193
+ keras_hub/src/models/gemma/gemma_backbone.py,sha256=lNGsv3xmCD66N1WaebHkTMb4lISOYvvM4qY22UduxUk,13395
194
+ keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=3OXaIXlrKqMIuUnBk-bUz-0SYFL-XkkQTWm8qRY2YII,16770
195
+ keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
196
+ keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=f5UsRO-VNsKJfm_WHVJWK4UahhzYm3sKprJ8jjr-zm4,7628
197
+ keras_hub/src/models/gemma/gemma_presets.py,sha256=lWPjEb_6pFC1vdX7mwxf-C2im93YygmlSPjWvqnLWic,7178
198
+ keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=FhcyNL4lo63MqOhTQPFr07-u3BddL0fVM4TmOm8ku-I,2622
199
+ keras_hub/src/models/gemma/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
200
+ keras_hub/src/models/gpt2/__init__.py,sha256=_hqeljpBkW8DLABy4nKBzJxXUh29WIEW27obmDCiH5Q,245
201
+ keras_hub/src/models/gpt2/gpt2_backbone.py,sha256=H1LgDd-bavrWtdCavdI519qlaruE2Jj5H3-SMc-5d14,6961
202
+ keras_hub/src/models/gpt2/gpt2_causal_lm.py,sha256=ynAcvh0-WUmwMN7vgflau4LH4YRFLf986OYRZ3M2Znk,16765
203
+ keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py,sha256=3AD1LBFJ-u6bDdrwKa1LbINlEblZkhwB2sMJx-XEUZk,2992
204
+ keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=eYMIXw8Oebsr14GhqBh1CEhbLbIK3WnLUxaXj25fFpQ,3179
205
+ keras_hub/src/models/gpt2/gpt2_presets.py,sha256=1mflR1dVuEwFfNe3Fkra6vt7DrjmkAckjyP-LclNLFc,1897
206
+ keras_hub/src/models/gpt2/gpt2_tokenizer.py,sha256=-wA7ZTiRZDVdEKAskyQiXB5GLYuj9TkuADtyyYpoBuA,2615
207
+ keras_hub/src/models/gpt_neo_x/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
208
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=iCwNoeaHMLfnL-MLOeLir7G75XRJilvpmdKJeBAqLTY,8535
209
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py,sha256=yov92B8j9lXz-9ZOpLa_PLT7WgcRKWG8fwB824Z_1hw,6508
210
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py,sha256=HriMXNVjGlFTjCIgfLRR3AvsOPbjGToDM_XY-bdger0,7690
211
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=YiVz9qBHjQlwKgtUVrgBTFitHcX5pbmhhfHwaulyRxY,1957
212
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=hmB81V0SuI6bEsxEuFkYgq58wbcrv1YLvmXGin5T3E0,9732
213
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=aKso-8yGrynn3tZ5xm2egcXIBQo3__sWZDBtjmS3ZgU,1991
214
+ keras_hub/src/models/llama/__init__.py,sha256=svVZjGi71R3lVbq0AdbqlXj909mr3Rp9EPXdiO0w0G0,251
215
+ keras_hub/src/models/llama/llama_attention.py,sha256=HzTWtvTjfN_j0vA9-ComstHpI81tzUrJU3RSSvSCaI4,7194
216
+ keras_hub/src/models/llama/llama_backbone.py,sha256=tjNEIKIL9ncoEL5KNFE5i0oTUkysjmJmh3mHmCz4RCw,11861
217
+ keras_hub/src/models/llama/llama_causal_lm.py,sha256=9bP4-XDCMgsZuH1ILIMzmwq2Fyy6vkk1Vsht-lMGCNo,13258
218
+ keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=VTboOMiRBoxHrwP343upLUTsv3AG65r2H8h_PNPVphE,3047
219
+ keras_hub/src/models/llama/llama_decoder.py,sha256=6iERIblED0ZB5w_EUlHks4UvMnsrWONdO_Xdz2OzhWM,8623
220
+ keras_hub/src/models/llama/llama_layernorm.py,sha256=LfRbePHUJs00Ptf7dvNaw3Aj9n1xBMBpE_rS5zzsYMo,1050
221
+ keras_hub/src/models/llama/llama_presets.py,sha256=k0JPQggSQ0XUkhiPlfM0gTqHXGOt39InVLglPUi4AJU,1902
222
+ keras_hub/src/models/llama/llama_tokenizer.py,sha256=NKWhxTutQ2jd6sd3NSTy9plQyKGCmuNG7U6kVxhZU4Y,1981
223
+ keras_hub/src/models/llama3/__init__.py,sha256=Vqvr2E10cnANkrRQGNBJtVLNAu-Bg9Lx6sqKOZWFy_8,257
224
+ keras_hub/src/models/llama3/llama3_backbone.py,sha256=g_IkHys5cr0gBXhDiqgIICO93RdGAm6WS5NK2SPhFvM,2866
225
+ keras_hub/src/models/llama3/llama3_causal_lm.py,sha256=qk_onuf7S6d7rxAntilq2Q2orggMbPEJbNHJNVe2G0U,1541
226
+ keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=twbXel9hsQgGxDAoQhEQuVm2udnEybI4fAQTJzXAuBs,3064
227
+ keras_hub/src/models/llama3/llama3_presets.py,sha256=PWEW_hLMCD9SIYm3QLhRVIcwjrPuqv-KDebXACXRNbM,1579
228
+ keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=J-KxRc08vGs4olFw_4mtJs0W_dTeUyj_XxMycazBmxI,1934
229
+ keras_hub/src/models/mistral/__init__.py,sha256=vjBlzcrIsFSwJKnfwfTNMKstIEKGFTE3kVcdAdfwlnE,263
230
+ keras_hub/src/models/mistral/mistral_attention.py,sha256=HCkUIc2DVIlYC5hhwomENlqLOsKTvbCKF0lx0_OBAyA,7862
231
+ keras_hub/src/models/mistral/mistral_backbone.py,sha256=oatoqSX0z-xjKfXeSveL4P0Dcr84kd0o0pK_kuTbJtY,7257
232
+ keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=ujCKfsbuYzr8VusqPYcnTH6rTb0MRfzsinEraVhQksc,13234
233
+ keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=_4qq-uKktfIg_i081ZWjZGEIYZpedBwtBGpchQQ-qEk,3079
234
+ keras_hub/src/models/mistral/mistral_layer_norm.py,sha256=nimMZ5CTPK8v9eflfrGuzqmv-2vd2rGlPvcHOMwYZyg,1063
235
+ keras_hub/src/models/mistral/mistral_presets.py,sha256=76Cctnl-UXFtl76OFzMl7Q0E-oJuizbpIHoDlYA1pBI,939
236
+ keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=wyzR_Y2XwrDiBV3jIeBChSPiaOkVVaxFuLxMH2F6EYA,2005
237
+ keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=z5FCh9TEaznvhW3JOSKmFTotRbiuQhzJTZClW2m9sEw,9556
238
+ keras_hub/src/models/mit/__init__.py,sha256=F70_0PR_nPzPdMI8XOpXDRR_nxclGjcHv3iWSWUX3w8,316
239
+ keras_hub/src/models/mit/mit_backbone.py,sha256=FSSc1Fb15ERPCPQmWKcNVLTIIMaRIkOHTZppCmG88V8,6811
240
+ keras_hub/src/models/mit/mit_image_classifier.py,sha256=HKj6u6AqPbxinGYPRsz_ZdW2pEHAcFsKenrGHpRMobM,480
241
+ keras_hub/src/models/mit/mit_image_classifier_preprocessor.py,sha256=oNYs-pUK8VnzNEPcq5beYX0qfnnlbJcxY8o5s7bVQes,504
242
+ keras_hub/src/models/mit/mit_image_converter.py,sha256=Mw7nV-OzyBveGuZUNFsPPKyq9jXJVW2_cVH024CNkXM,311
243
+ keras_hub/src/models/mit/mit_layers.py,sha256=HUJO5uhJ6jgwANpwbQdPlEVwLRVb3BZQ-Ftjg3B9XvY,9734
244
+ keras_hub/src/models/mit/mit_presets.py,sha256=ooLrh2OoGZKxnCGnhB6BynYJtVCXH7nDDFhgQRWt36U,4528
245
+ keras_hub/src/models/mobilenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
246
+ keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=oIhNjPRWVtJvQbjaWxXzgIQwtRV10-dIWVR7LJM4Ev0,18192
247
+ keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=l5jo99I0fLlbwLub5jHw07CjC-NnmuV-ySJwXGI20Ek,351
248
+ keras_hub/src/models/opt/__init__.py,sha256=6Ybj8etxNaPsVcuZvaeHnKB3As92Px--dbiFAqOCIT0,239
249
+ keras_hub/src/models/opt/opt_backbone.py,sha256=mK5z_E5mSiIX5s0w4hr4IVQpT7K46W2ajZBmuMjxwaY,5873
250
+ keras_hub/src/models/opt/opt_causal_lm.py,sha256=UqN6E3vJDMx1Wgc5tpptsdFu6wadRgdHqgOLTAMiazw,10851
251
+ keras_hub/src/models/opt/opt_causal_lm_preprocessor.py,sha256=xHfslVMOZlAIj2V2jIc-1GizR8TzEbeg1aggfwFTsPY,3102
252
+ keras_hub/src/models/opt/opt_presets.py,sha256=LrjgI5gbq4Cvfl_pmeCnKn4hS_V_0GYTeJaDc9tbeZM,1745
253
+ keras_hub/src/models/opt/opt_tokenizer.py,sha256=oDHeed4xf07tm14hj_C78BkzMuuRwRP2cRHmqYnObrs,2557
254
+ keras_hub/src/models/pali_gemma/__init__.py,sha256=uODWTlttOOchcTLpiYHCEWMXnDxIz8ZVIeYFQN2bd8o,288
255
+ keras_hub/src/models/pali_gemma/pali_gemma_backbone.py,sha256=aRsLlgKqqxwtYxYy-D9k37YSJowUlRWfxpyRBFWDRnI,13413
256
+ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=AViEs6YltUqWnIVo7J02JkXcanBgLSdwZwF56TVr8gc,11345
257
+ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=F57y0fZ0wYYxfGIjfrJc1W9uQpViYFx5bvFjj5CqUbI,4814
258
+ keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=24ABQ1vGlppV-KfWh0YqJjzM_Lu2GIwvyJ4X2XXie_A,5616
259
+ keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsWIieiwfFBoP7mtPmQAwywkeLKbd7fhmzk,371
260
+ keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Ka1ChUUSKw-yY2th3QtmNtkeXt0krYfwhkHrScioMls,8979
261
+ keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
262
+ keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=ViPKfGksbxBGJ3iS3M_KWxRc8Ie4LF7rWWUKDiqECJE,18285
263
+ keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
264
+ keras_hub/src/models/phi3/phi3_attention.py,sha256=dN8QwwTP9TxPBDv0MCvObLF3nHm1H6xbYr3T1K0nmg8,9243
265
+ keras_hub/src/models/phi3/phi3_backbone.py,sha256=fY-OY2ZrqxDHglYjTM0OCacBdEQHwj-XNmU0MnXL7iU,8885
266
+ keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=kMMq7fQ8hlb_mLO_nU1lGVqILayulVvzzZgl2EvY9_k,8389
267
+ keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=gNx1k-n7d0XDwpNbcZiO9yLkwdXYCvwGyA3b0QCnPAE,3043
268
+ keras_hub/src/models/phi3/phi3_decoder.py,sha256=gTRqn-Wu9dz0u9VKrsdjkSs2mHvpKl2bCjOBLlJc9lg,9586
269
+ keras_hub/src/models/phi3/phi3_layernorm.py,sha256=Oqu81tGd97Lzx3kG1QEtZ0S6gbfn3GLgRzY8UWGJRBo,1049
270
+ keras_hub/src/models/phi3/phi3_presets.py,sha256=sb2ce7Gq1OikFEf2KIYG69rFKHYKj8qhlN-Ea8d6J7k,1366
271
+ keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=wqiRn8nETNcLc5Vsm_d_8s11Ro6ibWZbWvODdLqIOo4,5013
272
+ keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=bOPH14wTVVHJHq8mgzXLjsgvKMNhfO8eayevAPpjYVA,1992
273
+ keras_hub/src/models/resnet/__init__.py,sha256=C5UqlQ6apm8WSp1bnrxB6Bi3BGaknxRQs-r3b2wpaGA,257
274
+ keras_hub/src/models/resnet/resnet_backbone.py,sha256=Q7nlqcTXZzjqd0e-DsjHC4ok58yOX7qxseotym3uZpM,31276
275
+ keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=nf35EKDzvBkfhHsK-s6Ks0nbhvKO7HEOYZm94YckyWE,510
276
+ keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=fM7gyQ0qB-RRuI4USJkRD6q9-HVfuC71e-BLTo-UhHQ,543
277
+ keras_hub/src/models/resnet/resnet_image_converter.py,sha256=fgTxihJznGFss-y3Z-jp0JE3X1gaaB2y-f2KMwrT8Pk,342
278
+ keras_hub/src/models/resnet/resnet_presets.py,sha256=cryfXlC_FSEN_jrexKIh5aVbzp87oYetoWeWpX0_lWQ,6947
279
+ keras_hub/src/models/retinanet/__init__.py,sha256=veWIFvMN6151M69l7FvTcI-IIEe_8dLmNO5NLOszQ1c,275
280
+ keras_hub/src/models/retinanet/anchor_generator.py,sha256=0OgKSW3OKmbc0cOPHF6FYTAzn7fcHklg665PGSwAaDM,6504
281
+ keras_hub/src/models/retinanet/box_matcher.py,sha256=l820r1R-ByqiyVgmZ0YFjjz0njchDda-wItzLn1X84o,10834
282
+ keras_hub/src/models/retinanet/feature_pyramid.py,sha256=hbdrj6X-D2SlwOp2h1WcBlTdSAlLmFK43X7OrkJRoMA,17614
283
+ keras_hub/src/models/retinanet/non_max_supression.py,sha256=PMOLlRw-EnyEmhlUhJjEbHf1xXiplN95pUxQbiJQbN4,20996
284
+ keras_hub/src/models/retinanet/prediction_head.py,sha256=xWHt21-SS2t7vCmTONlR1lSbJXhml5jx68V8MGbGybg,7863
285
+ keras_hub/src/models/retinanet/retinanet_backbone.py,sha256=BJBPJLxpOCOU0Br7b4JsgCZBHQHLAhxLqo9BHNIsl1g,5659
286
+ keras_hub/src/models/retinanet/retinanet_image_converter.py,sha256=jO2WSUVubjYc_lRV7A5unhkqQBvqzZN9GHy3dd2ie0U,1730
287
+ keras_hub/src/models/retinanet/retinanet_label_encoder.py,sha256=K4Ffs5Gh052kIvStxQXM7jifMyJVAwAF3kZN-ofr9rQ,10935
288
+ keras_hub/src/models/retinanet/retinanet_object_detector.py,sha256=ROVALhkKq5ImLnlDh4wcc1hVZCF9BD2piKwkpglApUE,15510
289
+ keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py,sha256=oKA-rSgX5kIOsCxKjo5Z3x2R5R15k_kUNQQXZ7VAR0c,584
290
+ keras_hub/src/models/retinanet/retinanet_presets.py,sha256=ZOx4SM2c8BsqUQOikkWUhXLGq3Xut1hvjWt_gDXaJRM,510
291
+ keras_hub/src/models/roberta/__init__.py,sha256=3ouSnKdLlMwoDDLVKD9cNtxam6f8XWgCyc0pwWJ0Zjo,263
292
+ keras_hub/src/models/roberta/roberta_backbone.py,sha256=q16dylXbgWshT-elCA08lS_b_IZNphsBrrXiv3eJksM,6339
293
+ keras_hub/src/models/roberta/roberta_masked_lm.py,sha256=j2dFANRFHd1MNFP_REchljGWOcpOjCpdSya-WGdRzPA,4176
294
+ keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py,sha256=bk6AYRbVQXGprD1LmDW1N3qYp-Q520X6mnxNF8jFwmQ,5851
295
+ keras_hub/src/models/roberta/roberta_presets.py,sha256=lu8_E888-YGlhMo1kE4LnsR0RiJMs0OwNP0JwYafV_8,917
296
+ keras_hub/src/models/roberta/roberta_text_classifier.py,sha256=x36hU84P-ROReZniUA8sMODzj2olrHvG0F5RTiz6Two,6681
297
+ keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py,sha256=gAJa8JdPUmT1N7nxBqtaIbnfXV-xlNjTtkEevQhfjNU,5993
298
+ keras_hub/src/models/roberta/roberta_tokenizer.py,sha256=VKPrgXVT9aMKP7et2DIWKlTN8g4tIzjya0MHqNz9BwQ,2712
299
+ keras_hub/src/models/sam/__init__.py,sha256=fp71Q288xeE81tIOZkkudec4Acs8v4aO5WdyzCD9x-c,239
300
+ keras_hub/src/models/sam/sam_backbone.py,sha256=VtT-tjTaVW6v2u_JLe3vyKUoHASPDs5aetc3s0MDo6U,4302
301
+ keras_hub/src/models/sam/sam_image_converter.py,sha256=5POp3aYFu6CK3R0NNfeUBbjhguBkincSMNvlcIJXarE,324
302
+ keras_hub/src/models/sam/sam_image_segmenter.py,sha256=X7XFKPFLgpsUB4L8Ai8IfMEsXJdVVFZ0HuC8gbyWuWs,7780
303
+ keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py,sha256=7slvyhGoMHmSigagqIcjDJ3gX8fUJbuMBwmozC4FlCg,849
304
+ keras_hub/src/models/sam/sam_layers.py,sha256=dNyTlTHnnjnr-J9T06V1loZJsfrgfySWemn2CKEGa-Q,13902
305
+ keras_hub/src/models/sam/sam_mask_decoder.py,sha256=9RfjoNL7GSY6I9LZ3ulUa5cIoYSPJNP4KnHvq16lnM4,9549
306
+ keras_hub/src/models/sam/sam_presets.py,sha256=PVaWbFk5obdeh42pvW2_VqaieADOmKsbTU_X1Wp3sF8,875
307
+ keras_hub/src/models/sam/sam_prompt_encoder.py,sha256=-fIDCHaLg48XrelFqkZVy3xEYtNRyckCyWyQAuGfJ1w,11834
308
+ keras_hub/src/models/sam/sam_transformer.py,sha256=8Bfj6FP691djsSZrvH_dgo6llARlS7ReU-zoqsrHPvQ,5742
309
+ keras_hub/src/models/segformer/__init__.py,sha256=ERgxA8tyeG2l4G6ywHisn6Oo0Iu7_9OAkzrC9TEFHSE,365
310
+ keras_hub/src/models/segformer/segformer_backbone.py,sha256=T61WQ50T6IwSeiK1NfUKJu3eqbj_m5gz9cpUPtqMfcc,5666
311
+ keras_hub/src/models/segformer/segformer_image_converter.py,sha256=zePZ1cYZl-2TaEF82lj3y7kXjDao5Hgw8c7qfKI2Jd8,360
312
+ keras_hub/src/models/segformer/segformer_image_segmenter.py,sha256=JzX8oJASWdkw8wbm8cohjPnumIvBvj7GGEpbK7ex-6w,5926
313
+ keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py,sha256=p61nzDIC13MSm8tMl4tda00gMbUn9GXp27Rar5E4dJY,1091
314
+ keras_hub/src/models/segformer/segformer_presets.py,sha256=ET39ospixkTaCsjoMLdJrr3wlGvTAQu5prleVC5lMZI,4793
315
+ keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
316
+ keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=vtVhieAv277mAiZj7Kvvqg_Ba7klfQxZVk4PPxNNQ0s,3062
317
+ keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=0gq2tcIqcbiGKKDDj3vrRsF67U3qE9g706XPs2BfCOY,40979
318
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=w8lsMampk34M9xQi96mEnXmkaKQqFQtoFTW8zP7ilEA,24078
319
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=oQcVCWOwrdUTrr_JNekoMqdSlKYMGz5tG6v8uD25lTc,5479
320
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=t4uw920Jn1k80air3WRGimKf71aMVu6q73oWFH348vk,6384
321
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=x7Ez4L955MJE4ABtBy-63YpU9XpR0Ro8QWPzYYJs1yE,2167
322
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py,sha256=Yt-UIatVKANjjKFCFEj1rIHhOrt8hqefKKQJIAWcTLc,4567
323
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py,sha256=m5PdVSgTcYuqd7jOQ8wD4PAnMa7wY2WdhwpK3hdydhM,2756
324
+ keras_hub/src/models/stable_diffusion_3/t5_encoder.py,sha256=oV7P1uwCKdGiD93zXq7kmqX0elMZQU4UvBa8wg6P1hs,5113
325
+ keras_hub/src/models/t5/__init__.py,sha256=OWyoUeDY3v4DnO8Ry02DWV1bNSVGcC89PF9oCftyi1s,233
326
+ keras_hub/src/models/t5/t5_backbone.py,sha256=MUmabugPx5_BkAHkuJXr2-8z_yZfKD19SO0KJtlcHhA,10331
327
+ keras_hub/src/models/t5/t5_layer_norm.py,sha256=R8KPHFOq9N3SD013WjtloLWRzaEMNEyY0fbViNEFVXQ,630
328
+ keras_hub/src/models/t5/t5_multi_head_attention.py,sha256=gStbrTZZx8X3J-bHFgwgugQMP-Wa6SC6kdShrqbUttQ,11859
329
+ keras_hub/src/models/t5/t5_preprocessor.py,sha256=UVOnCHUJF_MBcOyfR9G9oeRUEoN3XotM6M0YQc2WNKU,2253
330
+ keras_hub/src/models/t5/t5_presets.py,sha256=I9rOBMG4dcBaSK3UHRcaJHUuVHeXsez60TYRqXZKL-A,3173
331
+ keras_hub/src/models/t5/t5_tokenizer.py,sha256=pLTu15JeYSpVmy-2600vBc-Mxn_uHyTKts4PI2MxxBM,2517
332
+ keras_hub/src/models/t5/t5_transformer_layer.py,sha256=uDeP84F1x7xJxki5iKe12Zn6eWD_4yVjoFXMuod-a3A,5347
333
+ keras_hub/src/models/vae/__init__.py,sha256=i3UaSW4IJf76O7lSPE1dyxOVjuHx8iAYKivqvUbDHOw,62
334
+ keras_hub/src/models/vae/vae_backbone.py,sha256=Yk0srJhB-zfxQeAoyZdNzvxfxPxPMVie0nqKU7cp-2M,7033
335
+ keras_hub/src/models/vae/vae_layers.py,sha256=NaPjITYTvMcEOrtCQZXxqtkbDzB7odtiNxJx-YpvYy8,27751
336
+ keras_hub/src/models/vgg/__init__.py,sha256=5ktFtITvvYja4Jg3q1LqPvGH-fMicx5wxCCpXT8aVKQ,239
337
+ keras_hub/src/models/vgg/vgg_backbone.py,sha256=XemFrdmX2i_JjvuAAgb7S-J11a1UPVjeDnEB_CHvkeA,3709
338
+ keras_hub/src/models/vgg/vgg_image_classifier.py,sha256=d-hlgvwbNhzR6r3q2oqEmRmuAuCpKzUwNC2JUwdzruI,7460
339
+ keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py,sha256=M7hBbDPws5Z7oDQPigBx-upHssul7Q_p0QIv3E4yOwo,504
340
+ keras_hub/src/models/vgg/vgg_image_converter.py,sha256=FKVrSNNBxIkiKvApzf4TZxidBb1z917Xs9nooHCcRLM,324
341
+ keras_hub/src/models/vgg/vgg_presets.py,sha256=UL7a8hdZ22duMADXwVypGnc20ME-ywI4QjtXu15usEI,1491
342
+ keras_hub/src/models/vit/__init__.py,sha256=GH7x3VjEXZLm-4F-c9-55QZE0lP2OLVICH0Hr5YCp9A,239
343
+ keras_hub/src/models/vit/vit_backbone.py,sha256=kGmRZO4u-1q4PBcbhJbiWVIEVYAcp2H4SPJgQimrJd0,5909
344
+ keras_hub/src/models/vit/vit_image_classifier.py,sha256=lMVxiD1_6drx7XQ7P7YzlqnFP7kT1zlMe84f-T3SDQI,6332
345
+ keras_hub/src/models/vit/vit_image_classifier_preprocessor.py,sha256=wu6YcBlXMWB9sKCPvmNdGBZKTLQt_HyHWS6P9nyDwsk,504
346
+ keras_hub/src/models/vit/vit_image_converter.py,sha256=5xVF04BzMcdTDc6aErAYj3_BuGmVd3zoJMcH1ho4T0g,2561
347
+ keras_hub/src/models/vit/vit_layers.py,sha256=Zsz-ARPY49S1nXLUtpFwtPfw31D-vCtKesEo_2JIKPA,13240
348
+ keras_hub/src/models/vit/vit_presets.py,sha256=zZhxUleOom1ie3gn0Mi-_xhhdFEEsnqSQyKADV2L38k,4479
349
+ keras_hub/src/models/vit_det/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
350
+ keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=DOZ5J7c1t5PAZ6y0pMmBoQTMOUup7UoUrYVfCs69ltY,7697
351
+ keras_hub/src/models/vit_det/vit_layers.py,sha256=mnwu56chMc6zxmfp_hsLdR7TXYy1_YsWy1KwGX9M5Ic,19840
352
+ keras_hub/src/models/whisper/__init__.py,sha256=45vTF01_e-7VzD-zvXPw1NiA9SCgDE8w0cI-6peG9cA,263
353
+ keras_hub/src/models/whisper/whisper_audio_converter.py,sha256=gnFaeYxft8kuVP4rd__5fRTrJDaskWvnVQZWx-IZGwE,8337
354
+ keras_hub/src/models/whisper/whisper_backbone.py,sha256=PqGY9-aNBp5NyiaBuwiJDdX-rsEFPAroZuECiTkboY4,11518
355
+ keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py,sha256=Dt6m0O5XU5_o4SOmMEkNj2RVqxMGJ3uIhouu_XLw0cc,4948
356
+ keras_hub/src/models/whisper/whisper_decoder.py,sha256=rx9tFiXyGPnu_CScG8t8_7TVCZ1HJMTgGsW_fMyD0Ps,5089
357
+ keras_hub/src/models/whisper/whisper_encoder.py,sha256=ZJ93D6mP95Mb9cFDZbfMWbB9FlrV3706ZsUwUJMKOdg,3730
358
+ keras_hub/src/models/whisper/whisper_presets.py,sha256=T1koXMeU-S3WCs10oTXIScVvn_4DoB6ah-EkqQLnVKI,3898
359
+ keras_hub/src/models/whisper/whisper_tokenizer.py,sha256=HcF3PMoaLm-bNH9J_mG_iCBWGtJO6ahCRGAjjCptQOs,5575
360
+ keras_hub/src/models/xlm_roberta/__init__.py,sha256=iiCNSvDxPXZdxDyQKRxSLp5qzSpTuodL2TlHfwfqQjQ,303
361
+ keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py,sha256=x7wSDya7M4qcmzAwskd6qx9avSQs8mWhvAMWS4hnpFY,2922
362
+ keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py,sha256=PTxsd3DSxciKL6ub4hRHXbusx7tFnIBj_pFJXPJu8zQ,4392
363
+ keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py,sha256=O3W7qj3u2RGXbEdyIAeAmgGCUX1kapZ3L5dLNTLOtpM,5995
364
+ keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py,sha256=h9998snjRV_4QGIT7ziLQpw_JO4o7SFvfUNl7ZtWqxQ,875
365
+ keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py,sha256=VadJN4LVUx_O0fhVBDtIKtwoYh4ub3bZzvNZlBXzN4k,7251
366
+ keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py,sha256=YwM-Ravzj_UxWhmm_xREvNxvT3kNTYQgRTkH6g9o2yM,6525
367
+ keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py,sha256=_YDoJHeo2_02laLyNbv3blvqylpXms-hzhqlxLRky4M,6784
368
+ keras_hub/src/models/xlnet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
369
+ keras_hub/src/models/xlnet/relative_attention.py,sha256=ZOzm7g2X1e9fP6xQOHonSIlW7z2mTxPrpfntugDnV5E,18072
370
+ keras_hub/src/models/xlnet/xlnet_backbone.py,sha256=cZVNzu1lPxCBme9cvhHSbgbDnX58tFrxZ0-tnIo_nm0,7811
371
+ keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py,sha256=QOYdbQBJ8mRQA1qFhj4JeHpzUToySYohe-oByxcFQaU,3942
372
+ keras_hub/src/models/xlnet/xlnet_encoder.py,sha256=VQEjNWG8CBGbZXQEmT2gx-6NOFXtmMOyRmw0Rs-Y6C0,12757
373
+ keras_hub/src/samplers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
374
+ keras_hub/src/samplers/beam_sampler.py,sha256=0lWr9jywbXf3h68Vu66_CSLVvqZJw9ji4K5Y7_nvh70,7182
375
+ keras_hub/src/samplers/contrastive_sampler.py,sha256=od69XNguQdgYpfhVjf5vc8BLhXiZ4QVmoSyd2ku_yWY,8304
376
+ keras_hub/src/samplers/greedy_sampler.py,sha256=Ldu2-KRLFKeeCSlOP29d9JvQnRW_S4w_GQijP8dhRdw,958
377
+ keras_hub/src/samplers/random_sampler.py,sha256=nQw2ldO0dwRFcz8SIC9xMty0CGc4m6DlAmNZEXMsdAg,1709
378
+ keras_hub/src/samplers/sampler.py,sha256=5HGmXn-zEj-7XDpwt1riw_U3Mw9oA4oZahP9OZ_VIt8,8083
379
+ keras_hub/src/samplers/serialization.py,sha256=K6FC4AY1sfOLLIk2k4G783XWnQ_Rk3z1QrO97cZimNw,2770
380
+ keras_hub/src/samplers/top_k_sampler.py,sha256=WSyrhmOCan55X2JYAnNWE88rkx66sXqdoerl87nOrDQ,2250
381
+ keras_hub/src/samplers/top_p_sampler.py,sha256=9r29WdqBlrW_2TBma6QqkRps2Uit4a6iZPmq1Gsiuko,3400
382
+ keras_hub/src/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
383
+ keras_hub/src/tests/test_case.py,sha256=JVD1srV8SgVvCLRUvFsKAYH-NeNyZTavveBw0bHsgWQ,27394
384
+ keras_hub/src/tokenizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
385
+ keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=WeUlHMAf5y_MUjFIfVhEcFoOZu-z4kkSj-Dq-pegM9w,24052
386
+ keras_hub/src/tokenizers/byte_tokenizer.py,sha256=GPIKaddXugbfckfhodADsBpaYb72DgFMs_xfXHnK4qU,10418
387
+ keras_hub/src/tokenizers/sentence_piece_tokenizer.py,sha256=nOqkpa2nHitITpdowPHdwxiN87e8huLW8Dt2gozVnhI,9350
388
+ keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py,sha256=caqgV9N4lH97zBviFPdpwo_O95AaJBEJLQv6Icq3Hs8,4774
389
+ keras_hub/src/tokenizers/tokenizer.py,sha256=v0Ka5ayrBwpsGBlkIadXK-b4RsMTbhV6BZrvKullbxY,9722
390
+ keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=hRv_XxoPIPDpHfO0ZttSOv_M89sMaFpvmllojvKz_ac,13553
391
+ keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=vP6AZgbzsRiuPCt3W_n94nsF7XiERnagWcH_rqJHtVU,19943
392
+ keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=cylrs02ZrYQ1TuZr9oyS3NrVbDwGctA3VXbIh1pFJMQ,6743
393
+ keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
394
+ keras_hub/src/utils/keras_utils.py,sha256=0yKIfFuO_IqAH8vHbG3ncRmCVKg__xRGfQtLYWZ8YuA,1695
395
+ keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
396
+ keras_hub/src/utils/preset_utils.py,sha256=gy0zjPZ3WYvB5LHekw60NU8bHdrV6qUMG84DuN5mT6M,30505
397
+ keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
398
+ keras_hub/src/utils/tensor_utils.py,sha256=YVJesN91bk-OzJXY1mOKBppuY8noBU7zhPQNXPxZVGc,14646
399
+ keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
400
+ keras_hub/src/utils/imagenet/imagenet_utils.py,sha256=MvIvv1WJo51ZXBxy4S7t_DsN3ZMtJWlC4cmRvKM2kIA,39304
401
+ keras_hub/src/utils/timm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
402
+ keras_hub/src/utils/timm/convert_densenet.py,sha256=fu8HBIQis5o3ib2tyI2qnmYScVrVIQySok8vTfa1qJ8,3393
403
+ keras_hub/src/utils/timm/convert_efficientnet.py,sha256=SgEIlyyinS04qoQpEgh3WazHq544zNUCCpfmWh3EjSs,17100
404
+ keras_hub/src/utils/timm/convert_resnet.py,sha256=8JFkVtdpy5z9h83LJ97rD-a8FRejXPZvMNksNuStqjM,5834
405
+ keras_hub/src/utils/timm/convert_vgg.py,sha256=MT5jGnLrzenPpe66Af_Lp1IdR9KGtsSrcmn6_UPqHvQ,2419
406
+ keras_hub/src/utils/timm/preset_loader.py,sha256=cdZDjthZdTD2myMOenQar4ACyi7VTuIzNRg24LuqS-4,3374
407
+ keras_hub/src/utils/transformers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
408
+ keras_hub/src/utils/transformers/convert_albert.py,sha256=VdKclZpCxtDWq3UbUUQZf4fR9DJK_JYZ73B4O_G9skg,7695
409
+ keras_hub/src/utils/transformers/convert_bart.py,sha256=Tk4h9Md9rwN5wjQbGIVrC7qzDpF8kI8qm-FKL8HlUok,14411
410
+ keras_hub/src/utils/transformers/convert_bert.py,sha256=4gQqXCJzC9QWdLPDUAq741K8t_kjPIET050YjUnLeDA,5977
411
+ keras_hub/src/utils/transformers/convert_distilbert.py,sha256=SlfIRhSRk5c1ir2HGiDPiXa5XdOId_DbcnZO9lbwyZ8,6498
412
+ keras_hub/src/utils/transformers/convert_gemma.py,sha256=ElCgwBpSN5Q7rV5PJawTsoytPzs5ZjuwoY60YAe8y_A,6533
413
+ keras_hub/src/utils/transformers/convert_gpt2.py,sha256=HCeHN_-GiQJRxLCM9OCJJ1watPVpIBF8ujS8pGbBOWc,5703
414
+ keras_hub/src/utils/transformers/convert_llama3.py,sha256=zlg0yFscjytyOFymDwqnbuXkmYvb88qqYzAROKcpaPU,5250
415
+ keras_hub/src/utils/transformers/convert_mistral.py,sha256=kVhN9h1ZFVhwkNW8p3wnS7eANJUXIsNy1RxWXy20Gqw,4760
416
+ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
417
+ keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
418
+ keras_hub/src/utils/transformers/preset_loader.py,sha256=DgGJXbTSB9Na8FIR-YWWVqQPOFxHwWrGm41EwcS_EFs,3797
419
+ keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
420
+ keras_hub_nightly-0.19.0.dev202501260345.dist-info/METADATA,sha256=RfHDb52lzO--RroElhD5NYIPT2rH7y1D1K8WhSHlphA,7498
421
+ keras_hub_nightly-0.19.0.dev202501260345.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
422
+ keras_hub_nightly-0.19.0.dev202501260345.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
423
+ keras_hub_nightly-0.19.0.dev202501260345.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.1.0)
2
+ Generator: setuptools (75.8.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,138 +0,0 @@
1
- import keras
2
- from keras import ops
3
-
4
- from keras_hub.src.api_export import keras_hub_export
5
- from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
6
- from keras_hub.src.utils.keras_utils import standardize_data_format
7
- from keras_hub.src.utils.tensor_utils import preprocessing_function
8
-
9
-
10
- @keras_hub_export("keras_hub.layers.ResizingImageConverter")
11
- class ResizingImageConverter(ImageConverter):
12
- """An `ImageConverter` that simply resizes the input image.
13
-
14
- The `ResizingImageConverter` is a subclass of `ImageConverter` for models
15
- that need to resize (and optionally rescale) image tensors before using them
16
- for modeling. The layer will take as input a raw image tensor (batched or
17
- unbatched) in the channels last or channels first format, and output a
18
- resize tensor.
19
-
20
- Args:
21
- height: int, the height of the output shape.
22
- width: int, the width of the output shape.
23
- scale: float or `None`. If set, the image we be rescaled with a
24
- `keras.layers.Rescaling` layer, multiplying the image by this
25
- scale.
26
- mean: tuples of floats per channel or `None`. If set, the image will be
27
- normalized per channel by subtracting mean.
28
- If set, also set `variance`.
29
- variance: tuples of floats per channel or `None`. If set, the image will
30
- be normalized per channel by dividing by `sqrt(variance)`.
31
- If set, also set `mean`.
32
- crop_to_aspect_ratio: If `True`, resize the images without aspect
33
- ratio distortion. When the original aspect ratio differs
34
- from the target aspect ratio, the output image will be
35
- cropped so as to return the
36
- largest possible window in the image (of size `(height, width)`)
37
- that matches the target aspect ratio. By default
38
- (`crop_to_aspect_ratio=False`), aspect ratio may not be preserved.
39
- interpolation: String, the interpolation method.
40
- Supports `"bilinear"`, `"nearest"`, `"bicubic"`,
41
- `"lanczos3"`, `"lanczos5"`. Defaults to `"bilinear"`.
42
- data_format: String, either `"channels_last"` or `"channels_first"`.
43
- The ordering of the dimensions in the inputs. `"channels_last"`
44
- corresponds to inputs with shape `(batch, height, width, channels)`
45
- while `"channels_first"` corresponds to inputs with shape
46
- `(batch, channels, height, width)`. It defaults to the
47
- `image_data_format` value found in your Keras config file at
48
- `~/.keras/keras.json`. If you never set it, then it will be
49
- `"channels_last"`.
50
-
51
- Examples:
52
- ```python
53
- # Resize images for `"pali_gemma_3b_224"`.
54
- converter = keras_hub.layers.ImageConverter.from_preset("pali_gemma_3b_224")
55
- converter(np.ones(2, 512, 512, 3)) # Output shape: (2, 224, 224, 3)
56
- # Resize images for `"pali_gemma_3b_224"`.
57
- converter = keras_hub.layers.ImageConverter.from_preset("pali_gemma_3b_448")
58
- converter(np.ones(2, 512, 512, 3)) # Output shape: (2, 448, 448, 3)
59
- ```
60
- """
61
-
62
- def __init__(
63
- self,
64
- height,
65
- width,
66
- scale=None,
67
- mean=None,
68
- variance=None,
69
- crop_to_aspect_ratio=True,
70
- interpolation="bilinear",
71
- data_format=None,
72
- **kwargs,
73
- ):
74
- super().__init__(**kwargs)
75
- # By default, we just do a simple resize. Any model can subclass this
76
- # layer for preprocessing of a raw image to a model image input.
77
- self.resizing = keras.layers.Resizing(
78
- height=height,
79
- width=width,
80
- crop_to_aspect_ratio=crop_to_aspect_ratio,
81
- interpolation=interpolation,
82
- data_format=data_format,
83
- dtype=self.dtype_policy,
84
- name="resizing",
85
- )
86
- if scale is not None:
87
- self.rescaling = keras.layers.Rescaling(
88
- scale=scale,
89
- dtype=self.dtype_policy,
90
- name="rescaling",
91
- )
92
- else:
93
- self.rescaling = None
94
- if (mean is not None) != (variance is not None):
95
- raise ValueError(
96
- "Both `mean` and `variance` should be set or `None`. Received "
97
- f"`mean={mean}`, `variance={variance}`."
98
- )
99
- self.scale = scale
100
- self.mean = mean
101
- self.variance = variance
102
- self.data_format = standardize_data_format(data_format)
103
-
104
- def image_size(self):
105
- """Returns the preprocessed size of a single image."""
106
- return (self.resizing.height, self.resizing.width)
107
-
108
- @preprocessing_function
109
- def call(self, inputs):
110
- x = self.resizing(inputs)
111
- if self.rescaling:
112
- x = self.rescaling(x)
113
- if self.mean is not None:
114
- # Avoid `layers.Normalization` so this works batched and unbatched.
115
- channels_first = self.data_format == "channels_first"
116
- if len(ops.shape(inputs)) == 3:
117
- broadcast_dims = (1, 2) if channels_first else (0, 1)
118
- else:
119
- broadcast_dims = (0, 2, 3) if channels_first else (0, 1, 2)
120
- mean = ops.expand_dims(ops.array(self.mean), broadcast_dims)
121
- std = ops.expand_dims(ops.sqrt(self.variance), broadcast_dims)
122
- x = (x - mean) / std
123
- return x
124
-
125
- def get_config(self):
126
- config = super().get_config()
127
- config.update(
128
- {
129
- "height": self.resizing.height,
130
- "width": self.resizing.width,
131
- "interpolation": self.resizing.interpolation,
132
- "crop_to_aspect_ratio": self.resizing.crop_to_aspect_ratio,
133
- "scale": self.scale,
134
- "mean": self.mean,
135
- "variance": self.variance,
136
- }
137
- )
138
- return config
File without changes