keras-hub-nightly 0.16.1.dev202410020340__py3-none-any.whl → 0.19.0.dev202501260345__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (252) hide show
  1. keras_hub/api/layers/__init__.py +21 -3
  2. keras_hub/api/models/__init__.py +71 -12
  3. keras_hub/api/tokenizers/__init__.py +1 -1
  4. keras_hub/src/bounding_box/__init__.py +2 -0
  5. keras_hub/src/bounding_box/converters.py +102 -12
  6. keras_hub/src/layers/modeling/f_net_encoder.py +1 -1
  7. keras_hub/src/layers/modeling/masked_lm_head.py +2 -1
  8. keras_hub/src/layers/modeling/reversible_embedding.py +3 -16
  9. keras_hub/src/layers/modeling/rms_normalization.py +36 -0
  10. keras_hub/src/layers/modeling/rotary_embedding.py +3 -2
  11. keras_hub/src/layers/modeling/token_and_position_embedding.py +1 -1
  12. keras_hub/src/layers/modeling/transformer_decoder.py +8 -6
  13. keras_hub/src/layers/modeling/transformer_encoder.py +29 -7
  14. keras_hub/src/layers/preprocessing/audio_converter.py +3 -7
  15. keras_hub/src/layers/preprocessing/image_converter.py +170 -34
  16. keras_hub/src/metrics/bleu.py +4 -3
  17. keras_hub/src/models/albert/albert_presets.py +4 -12
  18. keras_hub/src/models/albert/albert_text_classifier.py +7 -7
  19. keras_hub/src/models/backbone.py +3 -14
  20. keras_hub/src/models/bart/bart_backbone.py +4 -4
  21. keras_hub/src/models/bart/bart_presets.py +3 -9
  22. keras_hub/src/models/bart/bart_seq_2_seq_lm.py +9 -8
  23. keras_hub/src/models/basnet/__init__.py +5 -0
  24. keras_hub/src/models/basnet/basnet.py +122 -0
  25. keras_hub/src/models/basnet/basnet_backbone.py +366 -0
  26. keras_hub/src/models/basnet/basnet_image_converter.py +8 -0
  27. keras_hub/src/models/basnet/basnet_preprocessor.py +14 -0
  28. keras_hub/src/models/basnet/basnet_presets.py +17 -0
  29. keras_hub/src/models/bert/bert_presets.py +14 -32
  30. keras_hub/src/models/bert/bert_text_classifier.py +3 -3
  31. keras_hub/src/models/bloom/bloom_presets.py +8 -24
  32. keras_hub/src/models/causal_lm.py +56 -12
  33. keras_hub/src/models/clip/__init__.py +5 -0
  34. keras_hub/src/models/clip/clip_backbone.py +286 -0
  35. keras_hub/src/models/clip/clip_encoder_block.py +19 -4
  36. keras_hub/src/models/clip/clip_image_converter.py +8 -0
  37. keras_hub/src/models/clip/clip_presets.py +93 -0
  38. keras_hub/src/models/clip/clip_text_encoder.py +4 -1
  39. keras_hub/src/models/clip/clip_tokenizer.py +18 -3
  40. keras_hub/src/models/clip/clip_vision_embedding.py +101 -0
  41. keras_hub/src/models/clip/clip_vision_encoder.py +159 -0
  42. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +2 -1
  43. keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -109
  44. keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +1 -1
  45. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +5 -15
  46. keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +4 -4
  47. keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +4 -4
  48. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +3 -2
  49. keras_hub/src/models/deberta_v3/relative_embedding.py +1 -1
  50. keras_hub/src/models/deeplab_v3/__init__.py +7 -0
  51. keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +200 -0
  52. keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +10 -0
  53. keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +16 -0
  54. keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +215 -0
  55. keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +17 -0
  56. keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +111 -0
  57. keras_hub/src/models/densenet/densenet_backbone.py +6 -4
  58. keras_hub/src/models/densenet/densenet_image_classifier.py +1 -129
  59. keras_hub/src/models/densenet/densenet_image_converter.py +2 -4
  60. keras_hub/src/models/densenet/densenet_presets.py +9 -15
  61. keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +1 -1
  62. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +2 -2
  63. keras_hub/src/models/distil_bert/distil_bert_presets.py +5 -10
  64. keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +5 -5
  65. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +3 -3
  66. keras_hub/src/models/efficientnet/__init__.py +9 -0
  67. keras_hub/src/models/efficientnet/cba.py +141 -0
  68. keras_hub/src/models/efficientnet/efficientnet_backbone.py +160 -61
  69. keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +14 -0
  70. keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +16 -0
  71. keras_hub/src/models/efficientnet/efficientnet_image_converter.py +10 -0
  72. keras_hub/src/models/efficientnet/efficientnet_presets.py +193 -0
  73. keras_hub/src/models/efficientnet/fusedmbconv.py +84 -41
  74. keras_hub/src/models/efficientnet/mbconv.py +53 -22
  75. keras_hub/src/models/electra/electra_backbone.py +2 -2
  76. keras_hub/src/models/electra/electra_presets.py +6 -18
  77. keras_hub/src/models/f_net/f_net_presets.py +2 -6
  78. keras_hub/src/models/f_net/f_net_text_classifier.py +3 -3
  79. keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +3 -3
  80. keras_hub/src/models/falcon/falcon_backbone.py +5 -3
  81. keras_hub/src/models/falcon/falcon_causal_lm.py +18 -8
  82. keras_hub/src/models/falcon/falcon_presets.py +1 -3
  83. keras_hub/src/models/falcon/falcon_tokenizer.py +7 -2
  84. keras_hub/src/models/feature_pyramid_backbone.py +1 -1
  85. keras_hub/src/models/flux/__init__.py +5 -0
  86. keras_hub/src/models/flux/flux_layers.py +496 -0
  87. keras_hub/src/models/flux/flux_maths.py +225 -0
  88. keras_hub/src/models/flux/flux_model.py +236 -0
  89. keras_hub/src/models/flux/flux_presets.py +3 -0
  90. keras_hub/src/models/flux/flux_text_to_image.py +146 -0
  91. keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +73 -0
  92. keras_hub/src/models/gemma/gemma_backbone.py +35 -20
  93. keras_hub/src/models/gemma/gemma_causal_lm.py +2 -2
  94. keras_hub/src/models/gemma/gemma_decoder_block.py +3 -1
  95. keras_hub/src/models/gemma/gemma_presets.py +29 -63
  96. keras_hub/src/models/gpt2/gpt2_causal_lm.py +2 -2
  97. keras_hub/src/models/gpt2/gpt2_presets.py +5 -14
  98. keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +2 -1
  99. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +3 -3
  100. keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +2 -1
  101. keras_hub/src/models/image_classifier.py +147 -2
  102. keras_hub/src/models/image_classifier_preprocessor.py +6 -3
  103. keras_hub/src/models/image_object_detector.py +87 -0
  104. keras_hub/src/models/image_object_detector_preprocessor.py +57 -0
  105. keras_hub/src/models/image_segmenter.py +0 -5
  106. keras_hub/src/models/image_segmenter_preprocessor.py +29 -4
  107. keras_hub/src/models/image_to_image.py +417 -0
  108. keras_hub/src/models/inpaint.py +520 -0
  109. keras_hub/src/models/llama/llama_backbone.py +138 -12
  110. keras_hub/src/models/llama/llama_causal_lm.py +3 -1
  111. keras_hub/src/models/llama/llama_presets.py +10 -20
  112. keras_hub/src/models/llama3/llama3_backbone.py +12 -11
  113. keras_hub/src/models/llama3/llama3_causal_lm.py +1 -1
  114. keras_hub/src/models/llama3/llama3_presets.py +4 -12
  115. keras_hub/src/models/llama3/llama3_tokenizer.py +25 -2
  116. keras_hub/src/models/mistral/mistral_backbone.py +16 -15
  117. keras_hub/src/models/mistral/mistral_causal_lm.py +6 -4
  118. keras_hub/src/models/mistral/mistral_presets.py +3 -9
  119. keras_hub/src/models/mistral/mistral_transformer_decoder.py +2 -1
  120. keras_hub/src/models/mit/__init__.py +6 -0
  121. keras_hub/src/models/{mix_transformer/mix_transformer_backbone.py → mit/mit_backbone.py} +47 -36
  122. keras_hub/src/models/mit/mit_image_classifier.py +12 -0
  123. keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +12 -0
  124. keras_hub/src/models/mit/mit_image_converter.py +8 -0
  125. keras_hub/src/models/{mix_transformer/mix_transformer_layers.py → mit/mit_layers.py} +20 -13
  126. keras_hub/src/models/mit/mit_presets.py +139 -0
  127. keras_hub/src/models/mobilenet/mobilenet_backbone.py +8 -8
  128. keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -92
  129. keras_hub/src/models/opt/opt_causal_lm.py +2 -2
  130. keras_hub/src/models/opt/opt_presets.py +4 -12
  131. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +63 -17
  132. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +3 -1
  133. keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +21 -23
  134. keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +2 -4
  135. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +173 -17
  136. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +14 -26
  137. keras_hub/src/models/phi3/phi3_causal_lm.py +3 -1
  138. keras_hub/src/models/phi3/phi3_decoder.py +0 -1
  139. keras_hub/src/models/phi3/phi3_presets.py +2 -6
  140. keras_hub/src/models/phi3/phi3_rotary_embedding.py +1 -1
  141. keras_hub/src/models/preprocessor.py +25 -11
  142. keras_hub/src/models/resnet/resnet_backbone.py +3 -14
  143. keras_hub/src/models/resnet/resnet_image_classifier.py +0 -137
  144. keras_hub/src/models/resnet/resnet_image_converter.py +2 -4
  145. keras_hub/src/models/resnet/resnet_presets.py +127 -18
  146. keras_hub/src/models/retinanet/__init__.py +5 -0
  147. keras_hub/src/models/retinanet/anchor_generator.py +52 -53
  148. keras_hub/src/models/retinanet/feature_pyramid.py +103 -39
  149. keras_hub/src/models/retinanet/non_max_supression.py +1 -0
  150. keras_hub/src/models/retinanet/prediction_head.py +192 -0
  151. keras_hub/src/models/retinanet/retinanet_backbone.py +146 -0
  152. keras_hub/src/models/retinanet/retinanet_image_converter.py +53 -0
  153. keras_hub/src/models/retinanet/retinanet_label_encoder.py +49 -51
  154. keras_hub/src/models/retinanet/retinanet_object_detector.py +381 -0
  155. keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +14 -0
  156. keras_hub/src/models/retinanet/retinanet_presets.py +16 -0
  157. keras_hub/src/models/roberta/roberta_backbone.py +2 -2
  158. keras_hub/src/models/roberta/roberta_presets.py +6 -8
  159. keras_hub/src/models/roberta/roberta_text_classifier.py +3 -3
  160. keras_hub/src/models/sam/__init__.py +5 -0
  161. keras_hub/src/models/sam/sam_backbone.py +2 -3
  162. keras_hub/src/models/sam/sam_image_converter.py +2 -4
  163. keras_hub/src/models/sam/sam_image_segmenter.py +16 -16
  164. keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +11 -1
  165. keras_hub/src/models/sam/sam_layers.py +5 -3
  166. keras_hub/src/models/sam/sam_presets.py +3 -9
  167. keras_hub/src/models/sam/sam_prompt_encoder.py +4 -2
  168. keras_hub/src/models/sam/sam_transformer.py +5 -4
  169. keras_hub/src/models/segformer/__init__.py +8 -0
  170. keras_hub/src/models/segformer/segformer_backbone.py +167 -0
  171. keras_hub/src/models/segformer/segformer_image_converter.py +8 -0
  172. keras_hub/src/models/segformer/segformer_image_segmenter.py +184 -0
  173. keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +31 -0
  174. keras_hub/src/models/segformer/segformer_presets.py +136 -0
  175. keras_hub/src/models/seq_2_seq_lm_preprocessor.py +1 -1
  176. keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +8 -1
  177. keras_hub/src/models/stable_diffusion_3/mmdit.py +577 -190
  178. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +189 -163
  179. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +178 -0
  180. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +193 -0
  181. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +43 -7
  182. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +25 -14
  183. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +1 -1
  184. keras_hub/src/models/t5/t5_backbone.py +5 -4
  185. keras_hub/src/models/t5/t5_presets.py +47 -19
  186. keras_hub/src/models/task.py +47 -39
  187. keras_hub/src/models/text_classifier.py +2 -2
  188. keras_hub/src/models/text_to_image.py +106 -41
  189. keras_hub/src/models/vae/__init__.py +1 -0
  190. keras_hub/src/models/vae/vae_backbone.py +184 -0
  191. keras_hub/src/models/vae/vae_layers.py +739 -0
  192. keras_hub/src/models/vgg/__init__.py +5 -0
  193. keras_hub/src/models/vgg/vgg_backbone.py +4 -24
  194. keras_hub/src/models/vgg/vgg_image_classifier.py +139 -33
  195. keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +12 -0
  196. keras_hub/src/models/vgg/vgg_image_converter.py +8 -0
  197. keras_hub/src/models/vgg/vgg_presets.py +48 -0
  198. keras_hub/src/models/vit/__init__.py +5 -0
  199. keras_hub/src/models/vit/vit_backbone.py +152 -0
  200. keras_hub/src/models/vit/vit_image_classifier.py +187 -0
  201. keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +12 -0
  202. keras_hub/src/models/vit/vit_image_converter.py +73 -0
  203. keras_hub/src/models/vit/vit_layers.py +391 -0
  204. keras_hub/src/models/vit/vit_presets.py +126 -0
  205. keras_hub/src/models/vit_det/vit_det_backbone.py +6 -4
  206. keras_hub/src/models/vit_det/vit_layers.py +3 -3
  207. keras_hub/src/models/whisper/whisper_audio_converter.py +2 -4
  208. keras_hub/src/models/whisper/whisper_backbone.py +6 -5
  209. keras_hub/src/models/whisper/whisper_decoder.py +3 -5
  210. keras_hub/src/models/whisper/whisper_presets.py +10 -30
  211. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +1 -1
  212. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +2 -2
  213. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +2 -6
  214. keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +4 -4
  215. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +2 -1
  216. keras_hub/src/models/xlnet/relative_attention.py +20 -19
  217. keras_hub/src/models/xlnet/xlnet_backbone.py +2 -2
  218. keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +3 -5
  219. keras_hub/src/models/xlnet/xlnet_encoder.py +7 -9
  220. keras_hub/src/samplers/contrastive_sampler.py +2 -3
  221. keras_hub/src/samplers/sampler.py +2 -1
  222. keras_hub/src/tests/test_case.py +41 -6
  223. keras_hub/src/tokenizers/byte_pair_tokenizer.py +7 -3
  224. keras_hub/src/tokenizers/byte_tokenizer.py +3 -10
  225. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +2 -9
  226. keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +9 -11
  227. keras_hub/src/tokenizers/tokenizer.py +10 -13
  228. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +9 -7
  229. keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +10 -3
  230. keras_hub/src/utils/keras_utils.py +2 -13
  231. keras_hub/src/utils/pipeline_model.py +3 -3
  232. keras_hub/src/utils/preset_utils.py +196 -144
  233. keras_hub/src/utils/tensor_utils.py +4 -4
  234. keras_hub/src/utils/timm/convert_densenet.py +6 -4
  235. keras_hub/src/utils/timm/convert_efficientnet.py +447 -0
  236. keras_hub/src/utils/timm/convert_resnet.py +1 -1
  237. keras_hub/src/utils/timm/convert_vgg.py +85 -0
  238. keras_hub/src/utils/timm/preset_loader.py +14 -9
  239. keras_hub/src/utils/transformers/convert_llama3.py +21 -5
  240. keras_hub/src/utils/transformers/convert_vit.py +150 -0
  241. keras_hub/src/utils/transformers/preset_loader.py +23 -0
  242. keras_hub/src/utils/transformers/safetensor_utils.py +4 -3
  243. keras_hub/src/version_utils.py +1 -1
  244. {keras_hub_nightly-0.16.1.dev202410020340.dist-info → keras_hub_nightly-0.19.0.dev202501260345.dist-info}/METADATA +86 -68
  245. keras_hub_nightly-0.19.0.dev202501260345.dist-info/RECORD +423 -0
  246. {keras_hub_nightly-0.16.1.dev202410020340.dist-info → keras_hub_nightly-0.19.0.dev202501260345.dist-info}/WHEEL +1 -1
  247. keras_hub/src/layers/preprocessing/resizing_image_converter.py +0 -138
  248. keras_hub/src/models/mix_transformer/__init__.py +0 -0
  249. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -119
  250. keras_hub/src/models/stable_diffusion_3/vae_image_decoder.py +0 -320
  251. keras_hub_nightly-0.16.1.dev202410020340.dist-info/RECORD +0 -357
  252. {keras_hub_nightly-0.16.1.dev202410020340.dist-info → keras_hub_nightly-0.19.0.dev202501260345.dist-info}/top_level.txt +0 -0
@@ -8,11 +8,9 @@ backbone_presets = {
8
8
  "lowercased. Trained on English Wikipedia + BooksCorpus."
9
9
  ),
10
10
  "params": 13548800,
11
- "official_name": "ELECTRA",
12
11
  "path": "electra",
13
- "model_card": "https://github.com/google-research/electra",
14
12
  },
15
- "kaggle_handle": "kaggle://keras/electra/keras/electra_small_discriminator_uncased_en/1",
13
+ "kaggle_handle": "kaggle://keras/electra/keras/electra_small_discriminator_uncased_en/2",
16
14
  },
17
15
  "electra_small_generator_uncased_en": {
18
16
  "metadata": {
@@ -21,11 +19,9 @@ backbone_presets = {
21
19
  "lowercased. Trained on English Wikipedia + BooksCorpus."
22
20
  ),
23
21
  "params": 13548800,
24
- "official_name": "ELECTRA",
25
22
  "path": "electra",
26
- "model_card": "https://github.com/google-research/electra",
27
23
  },
28
- "kaggle_handle": "kaggle://keras/electra/keras/electra_small_generator_uncased_en/1",
24
+ "kaggle_handle": "kaggle://keras/electra/keras/electra_small_generator_uncased_en/2",
29
25
  },
30
26
  "electra_base_discriminator_uncased_en": {
31
27
  "metadata": {
@@ -34,11 +30,9 @@ backbone_presets = {
34
30
  "lowercased. Trained on English Wikipedia + BooksCorpus."
35
31
  ),
36
32
  "params": 109482240,
37
- "official_name": "ELECTRA",
38
33
  "path": "electra",
39
- "model_card": "https://github.com/google-research/electra",
40
34
  },
41
- "kaggle_handle": "kaggle://keras/electra/keras/electra_base_discriminator_uncased_en/1",
35
+ "kaggle_handle": "kaggle://keras/electra/keras/electra_base_discriminator_uncased_en/2",
42
36
  },
43
37
  "electra_base_generator_uncased_en": {
44
38
  "metadata": {
@@ -47,11 +41,9 @@ backbone_presets = {
47
41
  "lowercased. Trained on English Wikipedia + BooksCorpus."
48
42
  ),
49
43
  "params": 33576960,
50
- "official_name": "ELECTRA",
51
44
  "path": "electra",
52
- "model_card": "https://github.com/google-research/electra",
53
45
  },
54
- "kaggle_handle": "kaggle://keras/electra/keras/electra_base_generator_uncased_en/1",
46
+ "kaggle_handle": "kaggle://keras/electra/keras/electra_base_generator_uncased_en/2",
55
47
  },
56
48
  "electra_large_discriminator_uncased_en": {
57
49
  "metadata": {
@@ -60,11 +52,9 @@ backbone_presets = {
60
52
  "lowercased. Trained on English Wikipedia + BooksCorpus."
61
53
  ),
62
54
  "params": 335141888,
63
- "official_name": "ELECTRA",
64
55
  "path": "electra",
65
- "model_card": "https://github.com/google-research/electra",
66
56
  },
67
- "kaggle_handle": "kaggle://keras/electra/keras/electra_large_discriminator_uncased_en/1",
57
+ "kaggle_handle": "kaggle://keras/electra/keras/electra_large_discriminator_uncased_en/2",
68
58
  },
69
59
  "electra_large_generator_uncased_en": {
70
60
  "metadata": {
@@ -73,10 +63,8 @@ backbone_presets = {
73
63
  "lowercased. Trained on English Wikipedia + BooksCorpus."
74
64
  ),
75
65
  "params": 51065344,
76
- "official_name": "ELECTRA",
77
66
  "path": "electra",
78
- "model_card": "https://github.com/google-research/electra",
79
67
  },
80
- "kaggle_handle": "kaggle://keras/electra/keras/electra_large_generator_uncased_en/1",
68
+ "kaggle_handle": "kaggle://keras/electra/keras/electra_large_generator_uncased_en/2",
81
69
  },
82
70
  }
@@ -8,11 +8,9 @@ backbone_presets = {
8
8
  "Trained on the C4 dataset."
9
9
  ),
10
10
  "params": 82861056,
11
- "official_name": "FNet",
12
11
  "path": "f_net",
13
- "model_card": "https://github.com/google-research/google-research/blob/master/f_net/README.md",
14
12
  },
15
- "kaggle_handle": "kaggle://keras/f_net/keras/f_net_base_en/2",
13
+ "kaggle_handle": "kaggle://keras/f_net/keras/f_net_base_en/3",
16
14
  },
17
15
  "f_net_large_en": {
18
16
  "metadata": {
@@ -21,10 +19,8 @@ backbone_presets = {
21
19
  "Trained on the C4 dataset."
22
20
  ),
23
21
  "params": 236945408,
24
- "official_name": "FNet",
25
22
  "path": "f_net",
26
- "model_card": "https://github.com/google-research/google-research/blob/master/f_net/README.md",
27
23
  },
28
- "kaggle_handle": "kaggle://keras/f_net/keras/f_net_large_en/2",
24
+ "kaggle_handle": "kaggle://keras/f_net/keras/f_net_large_en/3",
29
25
  },
30
26
  }
@@ -34,9 +34,9 @@ class FNetTextClassifier(TextClassifier):
34
34
  Args:
35
35
  backbone: A `keras_hub.models.FNetBackbone` instance.
36
36
  num_classes: int. Number of classes to predict.
37
- preprocessor: A `keras_hub.models.FNetTextClassifierPreprocessor` or `None`. If
38
- `None`, this model will not apply preprocessing, and inputs should
39
- be preprocessed before calling the model.
37
+ preprocessor: A `keras_hub.models.FNetTextClassifierPreprocessor` or
38
+ `None`. If `None`, this model will not apply preprocessing, and
39
+ inputs should be preprocessed before calling the model.
40
40
  activation: Optional `str` or callable. The
41
41
  activation function to use on the model outputs. Set
42
42
  `activation="softmax"` to return output probabilities.
@@ -22,9 +22,9 @@ class FNetTextClassifierPreprocessor(TextClassifierPreprocessor):
22
22
 
23
23
  1. Tokenize any number of input segments using the `tokenizer`.
24
24
  2. Pack the inputs together using a `keras_hub.layers.MultiSegmentPacker`.
25
- with the appropriate `"[CLS]"`, `"[SEP]"` and `"<pad>"` tokens.
26
- 3. Construct a dictionary with keys `"token_ids"`, and `"segment_ids"` that
27
- can be passed directly to `keras_hub.models.FNetBackbone`.
25
+ with the appropriate `"[CLS]"`, `"[SEP]"` and `"<pad>"` tokens.
26
+ 3. Construct a dictionary with keys `"token_ids"`, and `"segment_ids"`
27
+ that can be passed directly to `keras_hub.models.FNetBackbone`.
28
28
 
29
29
  This layer can be used directly with `tf.data.Dataset.map` to preprocess
30
30
  string data in the `(x, y, sample_weight)` format used by
@@ -20,15 +20,17 @@ class FalconBackbone(Backbone):
20
20
  Args:
21
21
  vocabulary_size: int. The size of the token vocabulary.
22
22
  num_layers: int. The number of transformer layers.
23
- num_attention_heads: int. The number of attention heads for each transformer.
24
- The hidden size must be divisible by the number of attention heads.
23
+ num_attention_heads: int. The number of attention heads for each
24
+ transformer. The hidden size must be divisible by the number of
25
+ attention heads.
25
26
  hidden_dim: int. The dimensionality of the embeddings and hidden states.
26
27
  intermediate_dim: int. The output dimension of the first Dense layer in
27
28
  the MLP network of each transformer.
28
29
  layer_norm_epsilon: float. Epsilon for the layer normalization layers in
29
30
  the transformer decoder.
30
31
  attention_dropout_rate: float. Dropout probability for the attention.
31
- feedforward_dropout_rate: flaot. Dropout probability for the feedforward.
32
+ feedforward_dropout_rate: flaot. Dropout probability for the
33
+ feedforward.
32
34
  dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
33
35
  for model computations and weights. Note that some computations,
34
36
  such as softmax and layer normalization, will always be done at
@@ -40,7 +40,9 @@ class FalconCausalLM(CausalLM):
40
40
 
41
41
  Use `generate()` to do text generation.
42
42
  ```python
43
- falcon_lm = keras_hub.models.FalconCausalLM.from_preset("falcon_refinedweb_1b_en")
43
+ falcon_lm = keras_hub.models.FalconCausalLM.from_preset(
44
+ "falcon_refinedweb_1b_en"
45
+ )
44
46
  falcon_lm.generate("I want to say", max_length=30)
45
47
 
46
48
  # Generate with batched prompts.
@@ -49,7 +51,9 @@ class FalconCausalLM(CausalLM):
49
51
 
50
52
  Compile the `generate()` function with a custom sampler.
51
53
  ```python
52
- falcon_lm = keras_hub.models.FalconCausalLM.from_preset("falcon_refinedweb_1b_en")
54
+ falcon_lm = keras_hub.models.FalconCausalLM.from_preset(
55
+ "falcon_refinedweb_1b_en"
56
+ )
53
57
  falcon_lm.compile(sampler="top_k")
54
58
  falcon_lm.generate("I want to say", max_length=30)
55
59
 
@@ -60,7 +64,8 @@ class FalconCausalLM(CausalLM):
60
64
  Use `generate()` without preprocessing.
61
65
  ```python
62
66
  prompt = {
63
- # Token ids for "<|endoftext|> Keras is".
67
+ # Token ids for
68
+ # "<|endoftext|> Keras is".
64
69
  "token_ids": np.array([[50256, 17337, 292, 318]] * 2),
65
70
  # Use `"padding_mask"` to indicate values that should not be overridden.
66
71
  "padding_mask": np.array([[1, 1, 1, 1]] * 2),
@@ -76,15 +81,20 @@ class FalconCausalLM(CausalLM):
76
81
  Call `fit()` on a single batch.
77
82
  ```python
78
83
  features = ["The quick brown fox jumped.", "I forgot my homework."]
79
- falcon_lm = keras_hub.models.FalconCausalLM.from_preset("falcon_refinedweb_1b_en")
84
+ falcon_lm = keras_hub.models.FalconCausalLM.from_preset(
85
+ "falcon_refinedweb_1b_en"
86
+ )
80
87
  falcon_lm.fit(x=features, batch_size=2)
81
88
  ```
82
89
 
83
90
  Call `fit()` without preprocessing.
84
91
  ```python
85
92
  x = {
86
- # Token ids for "<|endoftext|> Keras is deep learning library<|endoftext|>"
87
- "token_ids": np.array([[50256, 17337, 292, 318, 2769, 4673, 5888, 50256, 0]] * 2),
93
+ # Token ids for
94
+ # "<|endoftext|> Keras is deep learning library<|endoftext|>"
95
+ "token_ids": np.array(
96
+ [[50256, 17337, 292, 318, 2769,4673,5888, 50256, 0]] * 2
97
+ ),
88
98
  "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 0]] * 2),
89
99
  }
90
100
  y = np.array([[17337, 292, 318, 2769, 4673, 5888, 50256, 0, 0]] * 2)
@@ -164,8 +174,8 @@ class FalconCausalLM(CausalLM):
164
174
  Args:
165
175
  token_ids: a dense int Tensor with shape `(batch_size, max_length)`.
166
176
  cache: a dense float Tensor, the cache of key and value.
167
- cache_update_index: int, or int Tensor. The index of current inputs in the
168
- whole sequence.
177
+ cache_update_index: int, or int Tensor. The index of current inputs
178
+ in the whole sequence.
169
179
 
170
180
  Returns:
171
181
  A (logits, hidden_states, cache) tuple. Where `logits` is the
@@ -8,10 +8,8 @@ backbone_presets = {
8
8
  "350B tokens of RefinedWeb dataset."
9
9
  ),
10
10
  "params": 1311625216,
11
- "official_name": "Falcon",
12
11
  "path": "falcon",
13
- "model_card": "https://huggingface.co/tiiuae/falcon-rw-1b",
14
12
  },
15
- "kaggle_handle": "kaggle://keras/falcon/keras/falcon_refinedweb_1b_en/1",
13
+ "kaggle_handle": "kaggle://keras/falcon/keras/falcon_refinedweb_1b_en/2",
16
14
  },
17
15
  }
@@ -36,7 +36,9 @@ class FalconTokenizer(BytePairTokenizer):
36
36
 
37
37
  ```python
38
38
  # Unbatched input.
39
- tokenizer = keras_hub.models.FalconTokenizer.from_preset("falcon_refinedweb_1b_en")
39
+ tokenizer = keras_hub.models.FalconTokenizer.from_preset(
40
+ "falcon_refinedweb_1b_en"
41
+ )
40
42
  tokenizer("The quick brown fox jumped.")
41
43
 
42
44
  # Batched input.
@@ -49,7 +51,10 @@ class FalconTokenizer(BytePairTokenizer):
49
51
  vocab = {"<|endoftext|>": 0, "a": 4, "Ġquick": 5, "Ġfox": 6}
50
52
  merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
51
53
  merges += ["Ġ f", "o x", "Ġf ox"]
52
- tokenizer = keras_hub.models.FalconTokenizer(vocabulary=vocab, merges=merges)
54
+ tokenizer = keras_hub.models.FalconTokenizer(
55
+ vocabulary=vocab,
56
+ merges=merges,
57
+ )
53
58
  tokenizer("a quick fox.")
54
59
  ```
55
60
  """
@@ -15,7 +15,7 @@ class FeaturePyramidBackbone(Backbone):
15
15
  Example:
16
16
 
17
17
  ```python
18
- input_data = np.random.uniform(0, 255, size=(2, 224, 224, 3))
18
+ input_data = np.random.uniform(0, 256, size=(2, 224, 224, 3))
19
19
 
20
20
  # Convert to feature pyramid output format using ResNet.
21
21
  backbone = ResNetBackbone.from_preset("resnet50")
@@ -0,0 +1,5 @@
1
+ from keras_hub.src.models.flux.flux_model import FluxBackbone
2
+ from keras_hub.src.models.flux.flux_presets import presets
3
+ from keras_hub.src.utils.preset_utils import register_presets
4
+
5
+ register_presets(presets, FluxBackbone)