keras-hub-nightly 0.16.1.dev202410020340__py3-none-any.whl → 0.19.0.dev202501260345__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/api/layers/__init__.py +21 -3
- keras_hub/api/models/__init__.py +71 -12
- keras_hub/api/tokenizers/__init__.py +1 -1
- keras_hub/src/bounding_box/__init__.py +2 -0
- keras_hub/src/bounding_box/converters.py +102 -12
- keras_hub/src/layers/modeling/f_net_encoder.py +1 -1
- keras_hub/src/layers/modeling/masked_lm_head.py +2 -1
- keras_hub/src/layers/modeling/reversible_embedding.py +3 -16
- keras_hub/src/layers/modeling/rms_normalization.py +36 -0
- keras_hub/src/layers/modeling/rotary_embedding.py +3 -2
- keras_hub/src/layers/modeling/token_and_position_embedding.py +1 -1
- keras_hub/src/layers/modeling/transformer_decoder.py +8 -6
- keras_hub/src/layers/modeling/transformer_encoder.py +29 -7
- keras_hub/src/layers/preprocessing/audio_converter.py +3 -7
- keras_hub/src/layers/preprocessing/image_converter.py +170 -34
- keras_hub/src/metrics/bleu.py +4 -3
- keras_hub/src/models/albert/albert_presets.py +4 -12
- keras_hub/src/models/albert/albert_text_classifier.py +7 -7
- keras_hub/src/models/backbone.py +3 -14
- keras_hub/src/models/bart/bart_backbone.py +4 -4
- keras_hub/src/models/bart/bart_presets.py +3 -9
- keras_hub/src/models/bart/bart_seq_2_seq_lm.py +9 -8
- keras_hub/src/models/basnet/__init__.py +5 -0
- keras_hub/src/models/basnet/basnet.py +122 -0
- keras_hub/src/models/basnet/basnet_backbone.py +366 -0
- keras_hub/src/models/basnet/basnet_image_converter.py +8 -0
- keras_hub/src/models/basnet/basnet_preprocessor.py +14 -0
- keras_hub/src/models/basnet/basnet_presets.py +17 -0
- keras_hub/src/models/bert/bert_presets.py +14 -32
- keras_hub/src/models/bert/bert_text_classifier.py +3 -3
- keras_hub/src/models/bloom/bloom_presets.py +8 -24
- keras_hub/src/models/causal_lm.py +56 -12
- keras_hub/src/models/clip/__init__.py +5 -0
- keras_hub/src/models/clip/clip_backbone.py +286 -0
- keras_hub/src/models/clip/clip_encoder_block.py +19 -4
- keras_hub/src/models/clip/clip_image_converter.py +8 -0
- keras_hub/src/models/clip/clip_presets.py +93 -0
- keras_hub/src/models/clip/clip_text_encoder.py +4 -1
- keras_hub/src/models/clip/clip_tokenizer.py +18 -3
- keras_hub/src/models/clip/clip_vision_embedding.py +101 -0
- keras_hub/src/models/clip/clip_vision_encoder.py +159 -0
- keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +2 -1
- keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -109
- keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +1 -1
- keras_hub/src/models/deberta_v3/deberta_v3_presets.py +5 -15
- keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +4 -4
- keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +4 -4
- keras_hub/src/models/deberta_v3/disentangled_self_attention.py +3 -2
- keras_hub/src/models/deberta_v3/relative_embedding.py +1 -1
- keras_hub/src/models/deeplab_v3/__init__.py +7 -0
- keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +200 -0
- keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +10 -0
- keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +16 -0
- keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +215 -0
- keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +17 -0
- keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +111 -0
- keras_hub/src/models/densenet/densenet_backbone.py +6 -4
- keras_hub/src/models/densenet/densenet_image_classifier.py +1 -129
- keras_hub/src/models/densenet/densenet_image_converter.py +2 -4
- keras_hub/src/models/densenet/densenet_presets.py +9 -15
- keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +1 -1
- keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +2 -2
- keras_hub/src/models/distil_bert/distil_bert_presets.py +5 -10
- keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +5 -5
- keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +3 -3
- keras_hub/src/models/efficientnet/__init__.py +9 -0
- keras_hub/src/models/efficientnet/cba.py +141 -0
- keras_hub/src/models/efficientnet/efficientnet_backbone.py +160 -61
- keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +14 -0
- keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +16 -0
- keras_hub/src/models/efficientnet/efficientnet_image_converter.py +10 -0
- keras_hub/src/models/efficientnet/efficientnet_presets.py +193 -0
- keras_hub/src/models/efficientnet/fusedmbconv.py +84 -41
- keras_hub/src/models/efficientnet/mbconv.py +53 -22
- keras_hub/src/models/electra/electra_backbone.py +2 -2
- keras_hub/src/models/electra/electra_presets.py +6 -18
- keras_hub/src/models/f_net/f_net_presets.py +2 -6
- keras_hub/src/models/f_net/f_net_text_classifier.py +3 -3
- keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +3 -3
- keras_hub/src/models/falcon/falcon_backbone.py +5 -3
- keras_hub/src/models/falcon/falcon_causal_lm.py +18 -8
- keras_hub/src/models/falcon/falcon_presets.py +1 -3
- keras_hub/src/models/falcon/falcon_tokenizer.py +7 -2
- keras_hub/src/models/feature_pyramid_backbone.py +1 -1
- keras_hub/src/models/flux/__init__.py +5 -0
- keras_hub/src/models/flux/flux_layers.py +496 -0
- keras_hub/src/models/flux/flux_maths.py +225 -0
- keras_hub/src/models/flux/flux_model.py +236 -0
- keras_hub/src/models/flux/flux_presets.py +3 -0
- keras_hub/src/models/flux/flux_text_to_image.py +146 -0
- keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +73 -0
- keras_hub/src/models/gemma/gemma_backbone.py +35 -20
- keras_hub/src/models/gemma/gemma_causal_lm.py +2 -2
- keras_hub/src/models/gemma/gemma_decoder_block.py +3 -1
- keras_hub/src/models/gemma/gemma_presets.py +29 -63
- keras_hub/src/models/gpt2/gpt2_causal_lm.py +2 -2
- keras_hub/src/models/gpt2/gpt2_presets.py +5 -14
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +2 -1
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +3 -3
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +2 -1
- keras_hub/src/models/image_classifier.py +147 -2
- keras_hub/src/models/image_classifier_preprocessor.py +6 -3
- keras_hub/src/models/image_object_detector.py +87 -0
- keras_hub/src/models/image_object_detector_preprocessor.py +57 -0
- keras_hub/src/models/image_segmenter.py +0 -5
- keras_hub/src/models/image_segmenter_preprocessor.py +29 -4
- keras_hub/src/models/image_to_image.py +417 -0
- keras_hub/src/models/inpaint.py +520 -0
- keras_hub/src/models/llama/llama_backbone.py +138 -12
- keras_hub/src/models/llama/llama_causal_lm.py +3 -1
- keras_hub/src/models/llama/llama_presets.py +10 -20
- keras_hub/src/models/llama3/llama3_backbone.py +12 -11
- keras_hub/src/models/llama3/llama3_causal_lm.py +1 -1
- keras_hub/src/models/llama3/llama3_presets.py +4 -12
- keras_hub/src/models/llama3/llama3_tokenizer.py +25 -2
- keras_hub/src/models/mistral/mistral_backbone.py +16 -15
- keras_hub/src/models/mistral/mistral_causal_lm.py +6 -4
- keras_hub/src/models/mistral/mistral_presets.py +3 -9
- keras_hub/src/models/mistral/mistral_transformer_decoder.py +2 -1
- keras_hub/src/models/mit/__init__.py +6 -0
- keras_hub/src/models/{mix_transformer/mix_transformer_backbone.py → mit/mit_backbone.py} +47 -36
- keras_hub/src/models/mit/mit_image_classifier.py +12 -0
- keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +12 -0
- keras_hub/src/models/mit/mit_image_converter.py +8 -0
- keras_hub/src/models/{mix_transformer/mix_transformer_layers.py → mit/mit_layers.py} +20 -13
- keras_hub/src/models/mit/mit_presets.py +139 -0
- keras_hub/src/models/mobilenet/mobilenet_backbone.py +8 -8
- keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -92
- keras_hub/src/models/opt/opt_causal_lm.py +2 -2
- keras_hub/src/models/opt/opt_presets.py +4 -12
- keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +63 -17
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +3 -1
- keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +21 -23
- keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +2 -4
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +173 -17
- keras_hub/src/models/pali_gemma/pali_gemma_vit.py +14 -26
- keras_hub/src/models/phi3/phi3_causal_lm.py +3 -1
- keras_hub/src/models/phi3/phi3_decoder.py +0 -1
- keras_hub/src/models/phi3/phi3_presets.py +2 -6
- keras_hub/src/models/phi3/phi3_rotary_embedding.py +1 -1
- keras_hub/src/models/preprocessor.py +25 -11
- keras_hub/src/models/resnet/resnet_backbone.py +3 -14
- keras_hub/src/models/resnet/resnet_image_classifier.py +0 -137
- keras_hub/src/models/resnet/resnet_image_converter.py +2 -4
- keras_hub/src/models/resnet/resnet_presets.py +127 -18
- keras_hub/src/models/retinanet/__init__.py +5 -0
- keras_hub/src/models/retinanet/anchor_generator.py +52 -53
- keras_hub/src/models/retinanet/feature_pyramid.py +103 -39
- keras_hub/src/models/retinanet/non_max_supression.py +1 -0
- keras_hub/src/models/retinanet/prediction_head.py +192 -0
- keras_hub/src/models/retinanet/retinanet_backbone.py +146 -0
- keras_hub/src/models/retinanet/retinanet_image_converter.py +53 -0
- keras_hub/src/models/retinanet/retinanet_label_encoder.py +49 -51
- keras_hub/src/models/retinanet/retinanet_object_detector.py +381 -0
- keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +14 -0
- keras_hub/src/models/retinanet/retinanet_presets.py +16 -0
- keras_hub/src/models/roberta/roberta_backbone.py +2 -2
- keras_hub/src/models/roberta/roberta_presets.py +6 -8
- keras_hub/src/models/roberta/roberta_text_classifier.py +3 -3
- keras_hub/src/models/sam/__init__.py +5 -0
- keras_hub/src/models/sam/sam_backbone.py +2 -3
- keras_hub/src/models/sam/sam_image_converter.py +2 -4
- keras_hub/src/models/sam/sam_image_segmenter.py +16 -16
- keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +11 -1
- keras_hub/src/models/sam/sam_layers.py +5 -3
- keras_hub/src/models/sam/sam_presets.py +3 -9
- keras_hub/src/models/sam/sam_prompt_encoder.py +4 -2
- keras_hub/src/models/sam/sam_transformer.py +5 -4
- keras_hub/src/models/segformer/__init__.py +8 -0
- keras_hub/src/models/segformer/segformer_backbone.py +167 -0
- keras_hub/src/models/segformer/segformer_image_converter.py +8 -0
- keras_hub/src/models/segformer/segformer_image_segmenter.py +184 -0
- keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +31 -0
- keras_hub/src/models/segformer/segformer_presets.py +136 -0
- keras_hub/src/models/seq_2_seq_lm_preprocessor.py +1 -1
- keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +8 -1
- keras_hub/src/models/stable_diffusion_3/mmdit.py +577 -190
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +189 -163
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +178 -0
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +193 -0
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +43 -7
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +25 -14
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +1 -1
- keras_hub/src/models/t5/t5_backbone.py +5 -4
- keras_hub/src/models/t5/t5_presets.py +47 -19
- keras_hub/src/models/task.py +47 -39
- keras_hub/src/models/text_classifier.py +2 -2
- keras_hub/src/models/text_to_image.py +106 -41
- keras_hub/src/models/vae/__init__.py +1 -0
- keras_hub/src/models/vae/vae_backbone.py +184 -0
- keras_hub/src/models/vae/vae_layers.py +739 -0
- keras_hub/src/models/vgg/__init__.py +5 -0
- keras_hub/src/models/vgg/vgg_backbone.py +4 -24
- keras_hub/src/models/vgg/vgg_image_classifier.py +139 -33
- keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +12 -0
- keras_hub/src/models/vgg/vgg_image_converter.py +8 -0
- keras_hub/src/models/vgg/vgg_presets.py +48 -0
- keras_hub/src/models/vit/__init__.py +5 -0
- keras_hub/src/models/vit/vit_backbone.py +152 -0
- keras_hub/src/models/vit/vit_image_classifier.py +187 -0
- keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +12 -0
- keras_hub/src/models/vit/vit_image_converter.py +73 -0
- keras_hub/src/models/vit/vit_layers.py +391 -0
- keras_hub/src/models/vit/vit_presets.py +126 -0
- keras_hub/src/models/vit_det/vit_det_backbone.py +6 -4
- keras_hub/src/models/vit_det/vit_layers.py +3 -3
- keras_hub/src/models/whisper/whisper_audio_converter.py +2 -4
- keras_hub/src/models/whisper/whisper_backbone.py +6 -5
- keras_hub/src/models/whisper/whisper_decoder.py +3 -5
- keras_hub/src/models/whisper/whisper_presets.py +10 -30
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +1 -1
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +2 -2
- keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +2 -6
- keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +4 -4
- keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +2 -1
- keras_hub/src/models/xlnet/relative_attention.py +20 -19
- keras_hub/src/models/xlnet/xlnet_backbone.py +2 -2
- keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +3 -5
- keras_hub/src/models/xlnet/xlnet_encoder.py +7 -9
- keras_hub/src/samplers/contrastive_sampler.py +2 -3
- keras_hub/src/samplers/sampler.py +2 -1
- keras_hub/src/tests/test_case.py +41 -6
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +7 -3
- keras_hub/src/tokenizers/byte_tokenizer.py +3 -10
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +2 -9
- keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +9 -11
- keras_hub/src/tokenizers/tokenizer.py +10 -13
- keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +9 -7
- keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +10 -3
- keras_hub/src/utils/keras_utils.py +2 -13
- keras_hub/src/utils/pipeline_model.py +3 -3
- keras_hub/src/utils/preset_utils.py +196 -144
- keras_hub/src/utils/tensor_utils.py +4 -4
- keras_hub/src/utils/timm/convert_densenet.py +6 -4
- keras_hub/src/utils/timm/convert_efficientnet.py +447 -0
- keras_hub/src/utils/timm/convert_resnet.py +1 -1
- keras_hub/src/utils/timm/convert_vgg.py +85 -0
- keras_hub/src/utils/timm/preset_loader.py +14 -9
- keras_hub/src/utils/transformers/convert_llama3.py +21 -5
- keras_hub/src/utils/transformers/convert_vit.py +150 -0
- keras_hub/src/utils/transformers/preset_loader.py +23 -0
- keras_hub/src/utils/transformers/safetensor_utils.py +4 -3
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.16.1.dev202410020340.dist-info → keras_hub_nightly-0.19.0.dev202501260345.dist-info}/METADATA +86 -68
- keras_hub_nightly-0.19.0.dev202501260345.dist-info/RECORD +423 -0
- {keras_hub_nightly-0.16.1.dev202410020340.dist-info → keras_hub_nightly-0.19.0.dev202501260345.dist-info}/WHEEL +1 -1
- keras_hub/src/layers/preprocessing/resizing_image_converter.py +0 -138
- keras_hub/src/models/mix_transformer/__init__.py +0 -0
- keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -119
- keras_hub/src/models/stable_diffusion_3/vae_image_decoder.py +0 -320
- keras_hub_nightly-0.16.1.dev202410020340.dist-info/RECORD +0 -357
- {keras_hub_nightly-0.16.1.dev202410020340.dist-info → keras_hub_nightly-0.19.0.dev202501260345.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,87 @@
|
|
1
|
+
import keras
|
2
|
+
|
3
|
+
from keras_hub.src.api_export import keras_hub_export
|
4
|
+
from keras_hub.src.models.task import Task
|
5
|
+
|
6
|
+
|
7
|
+
@keras_hub_export("keras_hub.models.ImageObjectDetector")
|
8
|
+
class ImageObjectDetector(Task):
|
9
|
+
"""Base class for all image object detection tasks.
|
10
|
+
|
11
|
+
The `ImageObjectDetector` tasks wrap a `keras_hub.models.Backbone` and
|
12
|
+
a `keras_hub.models.Preprocessor` to create a model that can be used for
|
13
|
+
object detection. `ImageObjectDetector` tasks take an additional
|
14
|
+
`num_classes` argument, controlling the number of predicted output classes.
|
15
|
+
|
16
|
+
To fine-tune with `fit()`, pass a dataset containing tuples of `(x, y)`
|
17
|
+
labels where `x` is a string and `y` is dictionary with `boxes` and
|
18
|
+
`classes`.
|
19
|
+
|
20
|
+
All `ImageObjectDetector` tasks include a `from_preset()` constructor which
|
21
|
+
can be used to load a pre-trained config and weights.
|
22
|
+
"""
|
23
|
+
|
24
|
+
def compile(
|
25
|
+
self,
|
26
|
+
optimizer="auto",
|
27
|
+
box_loss="auto",
|
28
|
+
classification_loss="auto",
|
29
|
+
metrics=None,
|
30
|
+
**kwargs,
|
31
|
+
):
|
32
|
+
"""Configures the `ImageObjectDetector` task for training.
|
33
|
+
|
34
|
+
The `ImageObjectDetector` task extends the default compilation signature
|
35
|
+
of `keras.Model.compile` with defaults for `optimizer`, `loss`, and
|
36
|
+
`metrics`. To override these defaults, pass any value
|
37
|
+
to these arguments during compilation.
|
38
|
+
|
39
|
+
Args:
|
40
|
+
optimizer: `"auto"`, an optimizer name, or a `keras.Optimizer`
|
41
|
+
instance. Defaults to `"auto"`, which uses the default optimizer
|
42
|
+
for the given model and task. See `keras.Model.compile` and
|
43
|
+
`keras.optimizers` for more info on possible `optimizer` values.
|
44
|
+
box_loss: `"auto"`, a loss name, or a `keras.losses.Loss` instance.
|
45
|
+
Defaults to `"auto"`, where a
|
46
|
+
`keras.losses.Huber` loss will be
|
47
|
+
applied for the object detector task. See
|
48
|
+
`keras.Model.compile` and `keras.losses` for more info on
|
49
|
+
possible `loss` values.
|
50
|
+
classification_loss: `"auto"`, a loss name, or a `keras.losses.Loss`
|
51
|
+
instance. Defaults to `"auto"`, where a
|
52
|
+
`keras.losses.BinaryFocalCrossentropy` loss will be
|
53
|
+
applied for the object detector task. See
|
54
|
+
`keras.Model.compile` and `keras.losses` for more info on
|
55
|
+
possible `loss` values.
|
56
|
+
metrics: `a list of metrics to be evaluated by
|
57
|
+
the model during training and testing. Defaults to `None`.
|
58
|
+
See `keras.Model.compile` and `keras.metrics` for
|
59
|
+
more info on possible `metrics` values.
|
60
|
+
**kwargs: See `keras.Model.compile` for a full list of arguments
|
61
|
+
supported by the compile method.
|
62
|
+
"""
|
63
|
+
if optimizer == "auto":
|
64
|
+
optimizer = keras.optimizers.Adam(5e-5)
|
65
|
+
if box_loss == "auto":
|
66
|
+
box_loss = keras.losses.Huber(reduction="sum")
|
67
|
+
if classification_loss == "auto":
|
68
|
+
activation = getattr(self, "activation", None)
|
69
|
+
activation = keras.activations.get(activation)
|
70
|
+
from_logits = activation != keras.activations.sigmoid
|
71
|
+
classification_loss = keras.losses.BinaryFocalCrossentropy(
|
72
|
+
from_logits=from_logits, reduction="sum"
|
73
|
+
)
|
74
|
+
if metrics is not None:
|
75
|
+
raise ValueError("User metrics not yet supported")
|
76
|
+
|
77
|
+
losses = {
|
78
|
+
"bbox_regression": box_loss,
|
79
|
+
"cls_logits": classification_loss,
|
80
|
+
}
|
81
|
+
|
82
|
+
super().compile(
|
83
|
+
optimizer=optimizer,
|
84
|
+
loss=losses,
|
85
|
+
metrics=metrics,
|
86
|
+
**kwargs,
|
87
|
+
)
|
@@ -0,0 +1,57 @@
|
|
1
|
+
import keras
|
2
|
+
|
3
|
+
from keras_hub.src.api_export import keras_hub_export
|
4
|
+
from keras_hub.src.models.preprocessor import Preprocessor
|
5
|
+
from keras_hub.src.utils.tensor_utils import preprocessing_function
|
6
|
+
|
7
|
+
|
8
|
+
@keras_hub_export("keras_hub.models.ImageObjectDetectorPreprocessor")
|
9
|
+
class ImageObjectDetectorPreprocessor(Preprocessor):
|
10
|
+
"""Base class for object detector preprocessing layers.
|
11
|
+
|
12
|
+
`ImageObjectDetectorPreprocessor` tasks wraps a
|
13
|
+
`keras_hub.layers.Preprocessor` to create a preprocessing layer for
|
14
|
+
object detection tasks. It is intended to be paired with a
|
15
|
+
`keras_hub.models.ImageObjectDetector` task.
|
16
|
+
|
17
|
+
All `ImageObjectDetectorPreprocessor` take three inputs, `x`, `y`, and
|
18
|
+
`sample_weight`. `x`, the first input, should always be included. It can
|
19
|
+
be a image or batch of images. See examples below. `y` and `sample_weight`
|
20
|
+
are optional inputs that will be passed through unaltered. Usually, `y` will
|
21
|
+
be the a dict of `{"boxes": Tensor(batch_size, num_boxes, 4),
|
22
|
+
"classes": (batch_size, num_boxes)}.
|
23
|
+
|
24
|
+
The layer will returns either `x`, an `(x, y)` tuple if labels were
|
25
|
+
provided, or an `(x, y, sample_weight)` tuple if labels and sample weight
|
26
|
+
were provided. `x` will be the input images after all model preprocessing
|
27
|
+
has been applied.
|
28
|
+
|
29
|
+
All `ImageObjectDetectorPreprocessor` tasks include a `from_preset()`
|
30
|
+
constructor which can be used to load a pre-trained config and vocabularies.
|
31
|
+
You can call the `from_preset()` constructor directly on this base class, in
|
32
|
+
which case the correct class for your model will be automatically
|
33
|
+
instantiated.
|
34
|
+
|
35
|
+
Args:
|
36
|
+
image_converter: Preprocessing pipeline for images.
|
37
|
+
|
38
|
+
Examples.
|
39
|
+
```python
|
40
|
+
preprocessor = keras_hub.models.ImageObjectDetectorPreprocessor.from_preset(
|
41
|
+
"retinanet_resnet50",
|
42
|
+
)
|
43
|
+
"""
|
44
|
+
|
45
|
+
def __init__(
|
46
|
+
self,
|
47
|
+
image_converter=None,
|
48
|
+
**kwargs,
|
49
|
+
):
|
50
|
+
super().__init__(**kwargs)
|
51
|
+
self.image_converter = image_converter
|
52
|
+
|
53
|
+
@preprocessing_function
|
54
|
+
def call(self, x, y=None, sample_weight=None):
|
55
|
+
if self.image_converter:
|
56
|
+
x = self.image_converter(x)
|
57
|
+
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
@@ -16,11 +16,6 @@ class ImageSegmenter(Task):
|
|
16
16
|
be used to load a pre-trained config and weights.
|
17
17
|
"""
|
18
18
|
|
19
|
-
def __init__(self, *args, **kwargs):
|
20
|
-
super().__init__(*args, **kwargs)
|
21
|
-
# Default compilation.
|
22
|
-
self.compile()
|
23
|
-
|
24
19
|
def compile(
|
25
20
|
self,
|
26
21
|
optimizer="auto",
|
@@ -19,9 +19,12 @@ class ImageSegmenterPreprocessor(Preprocessor):
|
|
19
19
|
|
20
20
|
- `x`: The first input, should always be included. It can be an image or
|
21
21
|
a batch of images.
|
22
|
-
- `y`: (Optional) Usually the segmentation mask(s),
|
23
|
-
|
22
|
+
- `y`: (Optional) Usually the segmentation mask(s), if `resize_output_mask`
|
23
|
+
is set to `True` this will be resized to input image shape else will be
|
24
|
+
passed through unaltered.
|
24
25
|
- `sample_weight`: (Optional) Will be passed through unaltered.
|
26
|
+
- `resize_output_mask` bool: If set to `True` the output mask will be
|
27
|
+
resized to the same size as the input image. Defaults to `False`.
|
25
28
|
|
26
29
|
The layer will output either `x`, an `(x, y)` tuple if labels were provided,
|
27
30
|
or an `(x, y, sample_weight)` tuple if labels and sample weight were
|
@@ -29,7 +32,7 @@ class ImageSegmenterPreprocessor(Preprocessor):
|
|
29
32
|
been applied.
|
30
33
|
|
31
34
|
All `ImageSegmenterPreprocessor` tasks include a `from_preset()`
|
32
|
-
constructor which can be used to load a pre-trained config
|
35
|
+
constructor which can be used to load a pre-trained config.
|
33
36
|
You can call the `from_preset()` constructor directly on this base class, in
|
34
37
|
which case the correct class for your model will be automatically
|
35
38
|
instantiated.
|
@@ -49,7 +52,8 @@ class ImageSegmenterPreprocessor(Preprocessor):
|
|
49
52
|
x, y = preprocessor(x, y)
|
50
53
|
|
51
54
|
# Resize a batch of images and masks.
|
52
|
-
x, y = [np.ones((512, 512, 3)), np.zeros((512, 512, 3))],
|
55
|
+
x, y = [np.ones((512, 512, 3)), np.zeros((512, 512, 3))],
|
56
|
+
[np.ones((512, 512, 1)), np.zeros((512, 512, 1))]
|
53
57
|
x, y = preprocessor(x, y)
|
54
58
|
|
55
59
|
# Use a `tf.data.Dataset`.
|
@@ -61,13 +65,34 @@ class ImageSegmenterPreprocessor(Preprocessor):
|
|
61
65
|
def __init__(
|
62
66
|
self,
|
63
67
|
image_converter=None,
|
68
|
+
resize_output_mask=False,
|
64
69
|
**kwargs,
|
65
70
|
):
|
66
71
|
super().__init__(**kwargs)
|
67
72
|
self.image_converter = image_converter
|
73
|
+
self.resize_output_mask = resize_output_mask
|
68
74
|
|
69
75
|
@preprocessing_function
|
70
76
|
def call(self, x, y=None, sample_weight=None):
|
71
77
|
if self.image_converter:
|
72
78
|
x = self.image_converter(x)
|
79
|
+
|
80
|
+
if y is not None and self.image_converter and self.resize_output_mask:
|
81
|
+
y = keras.layers.Resizing(
|
82
|
+
height=(
|
83
|
+
self.image_converter.image_size[0]
|
84
|
+
if self.image_converter.image_size
|
85
|
+
else None
|
86
|
+
),
|
87
|
+
width=(
|
88
|
+
self.image_converter.image_size[1]
|
89
|
+
if self.image_converter.image_size
|
90
|
+
else None
|
91
|
+
),
|
92
|
+
crop_to_aspect_ratio=self.image_converter.crop_to_aspect_ratio,
|
93
|
+
interpolation="nearest",
|
94
|
+
data_format=self.image_converter.data_format,
|
95
|
+
dtype=self.dtype_policy,
|
96
|
+
name="mask_resizing",
|
97
|
+
)(y)
|
73
98
|
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
@@ -0,0 +1,417 @@
|
|
1
|
+
import itertools
|
2
|
+
from functools import partial
|
3
|
+
|
4
|
+
import keras
|
5
|
+
from keras import ops
|
6
|
+
from keras import random
|
7
|
+
|
8
|
+
from keras_hub.src.api_export import keras_hub_export
|
9
|
+
from keras_hub.src.models.task import Task
|
10
|
+
from keras_hub.src.utils.keras_utils import standardize_data_format
|
11
|
+
|
12
|
+
try:
|
13
|
+
import tensorflow as tf
|
14
|
+
except ImportError:
|
15
|
+
tf = None
|
16
|
+
|
17
|
+
|
18
|
+
@keras_hub_export("keras_hub.models.ImageToImage")
|
19
|
+
class ImageToImage(Task):
|
20
|
+
"""Base class for image-to-image tasks.
|
21
|
+
|
22
|
+
`ImageToImage` tasks wrap a `keras_hub.models.Backbone` and
|
23
|
+
a `keras_hub.models.Preprocessor` to create a model that can be used for
|
24
|
+
generation and generative fine-tuning.
|
25
|
+
|
26
|
+
`ImageToImage` tasks provide an additional, high-level `generate()` function
|
27
|
+
which can be used to generate image by token with a (image, string) in,
|
28
|
+
image out signature.
|
29
|
+
|
30
|
+
All `ImageToImage` tasks include a `from_preset()` constructor which can be
|
31
|
+
used to load a pre-trained config and weights.
|
32
|
+
|
33
|
+
Example:
|
34
|
+
|
35
|
+
```python
|
36
|
+
# Load a Stable Diffusion 3 backbone with pre-trained weights.
|
37
|
+
reference_image = np.ones((1024, 1024, 3), dtype="float32")
|
38
|
+
image_to_image = keras_hub.models.ImageToImage.from_preset(
|
39
|
+
"stable_diffusion_3_medium",
|
40
|
+
)
|
41
|
+
image_to_image.generate(
|
42
|
+
reference_image,
|
43
|
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
44
|
+
)
|
45
|
+
|
46
|
+
# Load a Stable Diffusion 3 backbone at bfloat16 precision.
|
47
|
+
image_to_image = keras_hub.models.ImageToImage.from_preset(
|
48
|
+
"stable_diffusion_3_medium",
|
49
|
+
dtype="bfloat16",
|
50
|
+
)
|
51
|
+
image_to_image.generate(
|
52
|
+
reference_image,
|
53
|
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
54
|
+
)
|
55
|
+
```
|
56
|
+
"""
|
57
|
+
|
58
|
+
def __init__(self, *args, **kwargs):
|
59
|
+
super().__init__(*args, **kwargs)
|
60
|
+
# Default compilation.
|
61
|
+
self.compile()
|
62
|
+
|
63
|
+
@property
|
64
|
+
def support_negative_prompts(self):
|
65
|
+
"""Whether the model supports `negative_prompts` key in `generate()`."""
|
66
|
+
return bool(True)
|
67
|
+
|
68
|
+
@property
|
69
|
+
def image_shape(self):
|
70
|
+
return tuple(self.backbone.image_shape)
|
71
|
+
|
72
|
+
@property
|
73
|
+
def latent_shape(self):
|
74
|
+
return tuple(self.backbone.latent_shape)
|
75
|
+
|
76
|
+
def compile(
|
77
|
+
self,
|
78
|
+
optimizer="auto",
|
79
|
+
loss="auto",
|
80
|
+
*,
|
81
|
+
metrics="auto",
|
82
|
+
**kwargs,
|
83
|
+
):
|
84
|
+
"""Configures the `ImageToImage` task for training.
|
85
|
+
|
86
|
+
The `ImageToImage` task extends the default compilation signature of
|
87
|
+
`keras.Model.compile` with defaults for `optimizer`, `loss`, and
|
88
|
+
`metrics`. To override these defaults, pass any value
|
89
|
+
to these arguments during compilation.
|
90
|
+
|
91
|
+
Args:
|
92
|
+
optimizer: `"auto"`, an optimizer name, or a `keras.Optimizer`
|
93
|
+
instance. Defaults to `"auto"`, which uses the default optimizer
|
94
|
+
for the given model and task. See `keras.Model.compile` and
|
95
|
+
`keras.optimizers` for more info on possible `optimizer` values.
|
96
|
+
loss: `"auto"`, a loss name, or a `keras.losses.Loss` instance.
|
97
|
+
Defaults to `"auto"`, where a
|
98
|
+
`keras.losses.MeanSquaredError` loss will be applied. See
|
99
|
+
`keras.Model.compile` and `keras.losses` for more info on
|
100
|
+
possible `loss` values.
|
101
|
+
metrics: `"auto"`, or a list of metrics to be evaluated by
|
102
|
+
the model during training and testing. Defaults to `"auto"`,
|
103
|
+
where a `keras.metrics.MeanSquaredError` will be applied to
|
104
|
+
track the loss of the model during training. See
|
105
|
+
`keras.Model.compile` and `keras.metrics` for more info on
|
106
|
+
possible `metrics` values.
|
107
|
+
**kwargs: See `keras.Model.compile` for a full list of arguments
|
108
|
+
supported by the compile method.
|
109
|
+
"""
|
110
|
+
# Ref: https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py#L410-L414
|
111
|
+
if optimizer == "auto":
|
112
|
+
optimizer = keras.optimizers.AdamW(
|
113
|
+
1e-4, weight_decay=1e-2, epsilon=1e-8, clipnorm=1.0
|
114
|
+
)
|
115
|
+
if loss == "auto":
|
116
|
+
loss = keras.losses.MeanSquaredError()
|
117
|
+
if metrics == "auto":
|
118
|
+
metrics = [keras.metrics.MeanSquaredError()]
|
119
|
+
super().compile(
|
120
|
+
optimizer=optimizer,
|
121
|
+
loss=loss,
|
122
|
+
metrics=metrics,
|
123
|
+
**kwargs,
|
124
|
+
)
|
125
|
+
self.generate_function = None
|
126
|
+
|
127
|
+
def generate_step(self, *args, **kwargs):
|
128
|
+
"""Run generation on batches of input."""
|
129
|
+
raise NotImplementedError
|
130
|
+
|
131
|
+
def make_generate_function(self):
|
132
|
+
"""Create or return the compiled generation function."""
|
133
|
+
if self.generate_function is not None:
|
134
|
+
return self.generate_function
|
135
|
+
|
136
|
+
self.generate_function = self.generate_step
|
137
|
+
if keras.config.backend() == "torch":
|
138
|
+
import torch
|
139
|
+
|
140
|
+
def wrapped_function(*args, **kwargs):
|
141
|
+
with torch.no_grad():
|
142
|
+
return self.generate_step(*args, **kwargs)
|
143
|
+
|
144
|
+
self.generate_function = wrapped_function
|
145
|
+
elif keras.config.backend() == "tensorflow" and not self.run_eagerly:
|
146
|
+
self.generate_function = tf.function(
|
147
|
+
self.generate_step, jit_compile=self.jit_compile
|
148
|
+
)
|
149
|
+
elif keras.config.backend() == "jax" and not self.run_eagerly:
|
150
|
+
import jax
|
151
|
+
|
152
|
+
@partial(jax.jit)
|
153
|
+
def compiled_function(state, *args, **kwargs):
|
154
|
+
(
|
155
|
+
trainable_variables,
|
156
|
+
non_trainable_variables,
|
157
|
+
) = state
|
158
|
+
mapping = itertools.chain(
|
159
|
+
zip(self.trainable_variables, trainable_variables),
|
160
|
+
zip(self.non_trainable_variables, non_trainable_variables),
|
161
|
+
)
|
162
|
+
|
163
|
+
with keras.StatelessScope(state_mapping=mapping):
|
164
|
+
outputs = self.generate_step(*args, **kwargs)
|
165
|
+
return outputs
|
166
|
+
|
167
|
+
def wrapped_function(*args, **kwargs):
|
168
|
+
# Create an explicit tuple of all variable state.
|
169
|
+
state = (
|
170
|
+
# Use the explicit variable.value to preserve the
|
171
|
+
# sharding spec of distribution.
|
172
|
+
[v.value for v in self.trainable_variables],
|
173
|
+
[v.value for v in self.non_trainable_variables],
|
174
|
+
)
|
175
|
+
outputs = compiled_function(state, *args, **kwargs)
|
176
|
+
return outputs
|
177
|
+
|
178
|
+
self.generate_function = wrapped_function
|
179
|
+
return self.generate_function
|
180
|
+
|
181
|
+
def _normalize_generate_inputs(self, inputs):
|
182
|
+
"""Normalize user input to the generate function.
|
183
|
+
|
184
|
+
This function converts all inputs to tensors, adds a batch dimension if
|
185
|
+
necessary, and returns a iterable "dataset like" object (either an
|
186
|
+
actual `tf.data.Dataset` or a list with a single batch element).
|
187
|
+
|
188
|
+
The input format must be one of the following:
|
189
|
+
- A dict with "images", "prompts" and/or "negative_prompts" keys
|
190
|
+
- A tf.data.Dataset with "images", "prompts" and/or "negative_prompts"
|
191
|
+
keys
|
192
|
+
|
193
|
+
The output will be a dict with "images", "prompts" and/or
|
194
|
+
"negative_prompts" keys.
|
195
|
+
"""
|
196
|
+
if tf and isinstance(inputs, tf.data.Dataset):
|
197
|
+
_inputs = {
|
198
|
+
"images": inputs.map(lambda x: x["images"]).as_numpy_iterator(),
|
199
|
+
"prompts": inputs.map(
|
200
|
+
lambda x: x["prompts"]
|
201
|
+
).as_numpy_iterator(),
|
202
|
+
}
|
203
|
+
if self.support_negative_prompts:
|
204
|
+
_inputs["negative_prompts"] = inputs.map(
|
205
|
+
lambda x: x["negative_prompts"]
|
206
|
+
).as_numpy_iterator()
|
207
|
+
return _inputs, False
|
208
|
+
|
209
|
+
if (
|
210
|
+
not isinstance(inputs, dict)
|
211
|
+
or "images" not in inputs
|
212
|
+
or "prompts" not in inputs
|
213
|
+
):
|
214
|
+
raise ValueError(
|
215
|
+
'`inputs` must be a dict with "images" and "prompts" keys or a'
|
216
|
+
f"tf.data.Dataset. Received: inputs={inputs}"
|
217
|
+
)
|
218
|
+
|
219
|
+
def normalize(x):
|
220
|
+
if isinstance(x, str):
|
221
|
+
return [x], True
|
222
|
+
if tf and isinstance(x, tf.Tensor) and x.shape.rank == 0:
|
223
|
+
return x[tf.newaxis], True
|
224
|
+
return x, False
|
225
|
+
|
226
|
+
def normalize_images(x):
|
227
|
+
data_format = getattr(
|
228
|
+
self.backbone, "data_format", standardize_data_format(None)
|
229
|
+
)
|
230
|
+
input_is_scalar = False
|
231
|
+
x = ops.convert_to_tensor(x)
|
232
|
+
if len(ops.shape(x)) < 4:
|
233
|
+
x = ops.expand_dims(x, axis=0)
|
234
|
+
input_is_scalar = True
|
235
|
+
x = ops.image.resize(
|
236
|
+
x,
|
237
|
+
(self.backbone.image_shape[0], self.backbone.image_shape[1]),
|
238
|
+
interpolation="nearest",
|
239
|
+
data_format=data_format,
|
240
|
+
)
|
241
|
+
return x, input_is_scalar
|
242
|
+
|
243
|
+
def get_dummy_prompts(x):
|
244
|
+
dummy_prompts = [""] * len(x)
|
245
|
+
if tf and isinstance(x, tf.Tensor):
|
246
|
+
return tf.convert_to_tensor(dummy_prompts)
|
247
|
+
else:
|
248
|
+
return dummy_prompts
|
249
|
+
|
250
|
+
for key in inputs:
|
251
|
+
if key == "images":
|
252
|
+
inputs[key], input_is_scalar = normalize_images(inputs[key])
|
253
|
+
else:
|
254
|
+
inputs[key], input_is_scalar = normalize(inputs[key])
|
255
|
+
|
256
|
+
if self.support_negative_prompts and "negative_prompts" not in inputs:
|
257
|
+
inputs["negative_prompts"] = get_dummy_prompts(inputs["prompts"])
|
258
|
+
|
259
|
+
return [inputs], input_is_scalar
|
260
|
+
|
261
|
+
def _normalize_generate_outputs(self, outputs, input_is_scalar):
|
262
|
+
"""Normalize user output from the generate function.
|
263
|
+
|
264
|
+
This function converts all output to numpy with a value range of
|
265
|
+
`[0, 255]`. If a batch dimension was added to the input, it is removed
|
266
|
+
from the output.
|
267
|
+
"""
|
268
|
+
|
269
|
+
def normalize(x):
|
270
|
+
outputs = ops.concatenate(x, axis=0)
|
271
|
+
outputs = ops.clip(ops.divide(ops.add(outputs, 1.0), 2.0), 0.0, 1.0)
|
272
|
+
outputs = ops.cast(ops.round(ops.multiply(outputs, 255.0)), "uint8")
|
273
|
+
outputs = ops.squeeze(outputs, 0) if input_is_scalar else outputs
|
274
|
+
return ops.convert_to_numpy(outputs)
|
275
|
+
|
276
|
+
if isinstance(outputs[0], dict):
|
277
|
+
normalized = {}
|
278
|
+
for key in outputs[0]:
|
279
|
+
normalized[key] = normalize([x[key] for x in outputs])
|
280
|
+
return normalized
|
281
|
+
return normalize([x for x in outputs])
|
282
|
+
|
283
|
+
def generate(
|
284
|
+
self,
|
285
|
+
inputs,
|
286
|
+
num_steps,
|
287
|
+
strength,
|
288
|
+
guidance_scale=None,
|
289
|
+
seed=None,
|
290
|
+
):
|
291
|
+
"""Generate image based on the provided `inputs`.
|
292
|
+
|
293
|
+
Typically, `inputs` is a dict with `"images"` and `"prompts"` keys.
|
294
|
+
`"images"` are reference images within a value range of
|
295
|
+
`[-1.0, 1.0]`, which will be resized to `self.backbone.height` and
|
296
|
+
`self.backbone.width`, then encoded into latent space by the VAE
|
297
|
+
encoder. `"prompts"` are strings that will be tokenized and encoded by
|
298
|
+
the text encoder.
|
299
|
+
|
300
|
+
Some models support a `"negative_prompts"` key, which helps steer the
|
301
|
+
model away from generating certain styles and elements. To enable this,
|
302
|
+
add `"negative_prompts"` to the input dict.
|
303
|
+
|
304
|
+
If `inputs` are a `tf.data.Dataset`, outputs will be generated
|
305
|
+
"batch-by-batch" and concatenated. Otherwise, all inputs will be
|
306
|
+
processed as batches.
|
307
|
+
|
308
|
+
Args:
|
309
|
+
inputs: python data, tensor data, or a `tf.data.Dataset`. The format
|
310
|
+
must be one of the following:
|
311
|
+
- A dict with `"images"`, `"prompts"` and/or
|
312
|
+
`"negative_prompts"` keys.
|
313
|
+
- A `tf.data.Dataset` with `"images"`, `"prompts"` and/or
|
314
|
+
`"negative_prompts"` keys.
|
315
|
+
num_steps: int. The number of diffusion steps to take.
|
316
|
+
strength: float. Indicates the extent to which the reference
|
317
|
+
`images` are transformed. Must be between `0.0` and `1.0`. When
|
318
|
+
`strength=1.0`, `images` is essentially ignore and added noise
|
319
|
+
is maximum and the denoising process runs for the full number of
|
320
|
+
iterations specified in `num_steps`.
|
321
|
+
guidance_scale: Optional float. The classifier free guidance scale
|
322
|
+
defined in [Classifier-Free Diffusion Guidance](
|
323
|
+
https://arxiv.org/abs/2207.12598). A higher scale encourages
|
324
|
+
generating images more closely related to the prompts, typically
|
325
|
+
at the cost of lower image quality. Note that some models don't
|
326
|
+
utilize classifier-free guidance.
|
327
|
+
seed: optional int. Used as a random seed.
|
328
|
+
"""
|
329
|
+
num_steps = int(num_steps)
|
330
|
+
strength = float(strength)
|
331
|
+
guidance_scale = (
|
332
|
+
float(guidance_scale) if guidance_scale is not None else None
|
333
|
+
)
|
334
|
+
if strength < 0.0 or strength > 1.0:
|
335
|
+
raise ValueError(
|
336
|
+
"`strength` must be between `0.0` and `1.0`. "
|
337
|
+
f"Received strength={strength}."
|
338
|
+
)
|
339
|
+
if guidance_scale is not None and guidance_scale > 1.0:
|
340
|
+
guidance_scale = ops.convert_to_tensor(float(guidance_scale))
|
341
|
+
else:
|
342
|
+
guidance_scale = None
|
343
|
+
starting_step = int(num_steps * (1.0 - strength))
|
344
|
+
starting_step = ops.convert_to_tensor(starting_step, "int32")
|
345
|
+
num_steps = ops.convert_to_tensor(int(num_steps), "int32")
|
346
|
+
|
347
|
+
# Check `inputs` format.
|
348
|
+
required_keys = ["images", "prompts"]
|
349
|
+
if tf and isinstance(inputs, tf.data.Dataset):
|
350
|
+
spec = inputs.element_spec
|
351
|
+
if not all(key in spec for key in required_keys):
|
352
|
+
raise ValueError(
|
353
|
+
"Expected a `tf.data.Dataset` with the following keys:"
|
354
|
+
f"{required_keys}. Received: inputs.element_spec={spec}"
|
355
|
+
)
|
356
|
+
else:
|
357
|
+
if not isinstance(inputs, dict):
|
358
|
+
raise ValueError(
|
359
|
+
"Expected a `dict` or `tf.data.Dataset`. "
|
360
|
+
f"Received: inputs={inputs} of type {type(inputs)}."
|
361
|
+
)
|
362
|
+
if not all(key in inputs for key in required_keys):
|
363
|
+
raise ValueError(
|
364
|
+
"Expected a `dict` with the following keys:"
|
365
|
+
f"{required_keys}. "
|
366
|
+
f"Received: inputs.keys={list(inputs.keys())}"
|
367
|
+
)
|
368
|
+
|
369
|
+
# Setup our three main passes.
|
370
|
+
# 1. Preprocessing strings to dense integer tensors.
|
371
|
+
# 2. Generate outputs via a compiled function on dense tensors.
|
372
|
+
# 3. Postprocess dense tensors to a value range of `[0, 255]`.
|
373
|
+
generate_function = self.make_generate_function()
|
374
|
+
|
375
|
+
def preprocess(x):
|
376
|
+
if self.preprocessor is not None:
|
377
|
+
return self.preprocessor.generate_preprocess(x)
|
378
|
+
else:
|
379
|
+
return x
|
380
|
+
|
381
|
+
def generate(images, x):
|
382
|
+
token_ids = x[0] if self.support_negative_prompts else x
|
383
|
+
|
384
|
+
# Initialize noises.
|
385
|
+
if isinstance(token_ids, dict):
|
386
|
+
arbitrary_key = list(token_ids.keys())[0]
|
387
|
+
batch_size = ops.shape(token_ids[arbitrary_key])[0]
|
388
|
+
else:
|
389
|
+
batch_size = ops.shape(token_ids)[0]
|
390
|
+
noise_shape = (batch_size,) + self.latent_shape[1:]
|
391
|
+
noises = random.normal(noise_shape, dtype="float32", seed=seed)
|
392
|
+
|
393
|
+
return generate_function(
|
394
|
+
images, noises, x, starting_step, num_steps, guidance_scale
|
395
|
+
)
|
396
|
+
|
397
|
+
# Normalize and preprocess inputs.
|
398
|
+
inputs, input_is_scalar = self._normalize_generate_inputs(inputs)
|
399
|
+
if self.support_negative_prompts:
|
400
|
+
images = [x["images"] for x in inputs]
|
401
|
+
token_ids = [preprocess(x["prompts"]) for x in inputs]
|
402
|
+
negative_token_ids = [
|
403
|
+
preprocess(x["negative_prompts"]) for x in inputs
|
404
|
+
]
|
405
|
+
# Tuple format: (images, (token_ids, negative_token_ids)).
|
406
|
+
inputs = [
|
407
|
+
x for x in zip(images, zip(token_ids, negative_token_ids))
|
408
|
+
]
|
409
|
+
else:
|
410
|
+
images = [x["images"] for x in inputs]
|
411
|
+
token_ids = [preprocess(x["prompts"]) for x in inputs]
|
412
|
+
# Tuple format: (images, token_ids).
|
413
|
+
inputs = [x for x in zip(images, token_ids)]
|
414
|
+
|
415
|
+
# Image-to-image.
|
416
|
+
outputs = [generate(*x) for x in inputs]
|
417
|
+
return self._normalize_generate_outputs(outputs, input_is_scalar)
|