keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl → 0.16.0.dev2024092017__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/__init__.py +0 -6
- keras_hub/api/__init__.py +2 -0
- keras_hub/api/bounding_box/__init__.py +36 -0
- keras_hub/api/layers/__init__.py +14 -0
- keras_hub/api/models/__init__.py +97 -48
- keras_hub/api/tokenizers/__init__.py +30 -0
- keras_hub/api/utils/__init__.py +22 -0
- keras_hub/src/api_export.py +15 -9
- keras_hub/src/bounding_box/__init__.py +13 -0
- keras_hub/src/bounding_box/converters.py +529 -0
- keras_hub/src/bounding_box/formats.py +162 -0
- keras_hub/src/bounding_box/iou.py +263 -0
- keras_hub/src/bounding_box/to_dense.py +95 -0
- keras_hub/src/bounding_box/to_ragged.py +99 -0
- keras_hub/src/bounding_box/utils.py +194 -0
- keras_hub/src/bounding_box/validate_format.py +99 -0
- keras_hub/src/layers/preprocessing/audio_converter.py +121 -0
- keras_hub/src/layers/preprocessing/image_converter.py +130 -0
- keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +2 -0
- keras_hub/src/layers/preprocessing/multi_segment_packer.py +9 -8
- keras_hub/src/layers/preprocessing/preprocessing_layer.py +2 -29
- keras_hub/src/layers/preprocessing/random_deletion.py +33 -31
- keras_hub/src/layers/preprocessing/random_swap.py +33 -31
- keras_hub/src/layers/preprocessing/resizing_image_converter.py +101 -0
- keras_hub/src/layers/preprocessing/start_end_packer.py +3 -2
- keras_hub/src/models/albert/__init__.py +1 -2
- keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +6 -86
- keras_hub/src/models/albert/{albert_classifier.py → albert_text_classifier.py} +34 -10
- keras_hub/src/models/albert/{albert_preprocessor.py → albert_text_classifier_preprocessor.py} +14 -70
- keras_hub/src/models/albert/albert_tokenizer.py +17 -36
- keras_hub/src/models/backbone.py +12 -34
- keras_hub/src/models/bart/__init__.py +1 -2
- keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +21 -148
- keras_hub/src/models/bart/bart_tokenizer.py +12 -39
- keras_hub/src/models/bert/__init__.py +1 -5
- keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +6 -87
- keras_hub/src/models/bert/bert_presets.py +1 -4
- keras_hub/src/models/bert/{bert_classifier.py → bert_text_classifier.py} +19 -12
- keras_hub/src/models/bert/{bert_preprocessor.py → bert_text_classifier_preprocessor.py} +14 -70
- keras_hub/src/models/bert/bert_tokenizer.py +17 -35
- keras_hub/src/models/bloom/__init__.py +1 -2
- keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/bloom/bloom_tokenizer.py +12 -41
- keras_hub/src/models/causal_lm.py +10 -29
- keras_hub/src/models/causal_lm_preprocessor.py +195 -0
- keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +54 -15
- keras_hub/src/models/deberta_v3/__init__.py +1 -4
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +14 -77
- keras_hub/src/models/deberta_v3/{deberta_v3_classifier.py → deberta_v3_text_classifier.py} +16 -11
- keras_hub/src/models/deberta_v3/{deberta_v3_preprocessor.py → deberta_v3_text_classifier_preprocessor.py} +23 -64
- keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +30 -25
- keras_hub/src/models/densenet/densenet_backbone.py +46 -22
- keras_hub/src/models/distil_bert/__init__.py +1 -4
- keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +14 -76
- keras_hub/src/models/distil_bert/{distil_bert_classifier.py → distil_bert_text_classifier.py} +17 -12
- keras_hub/src/models/distil_bert/{distil_bert_preprocessor.py → distil_bert_text_classifier_preprocessor.py} +23 -63
- keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +19 -35
- keras_hub/src/models/efficientnet/__init__.py +13 -0
- keras_hub/src/models/efficientnet/efficientnet_backbone.py +569 -0
- keras_hub/src/models/efficientnet/fusedmbconv.py +229 -0
- keras_hub/src/models/efficientnet/mbconv.py +238 -0
- keras_hub/src/models/electra/__init__.py +1 -2
- keras_hub/src/models/electra/electra_tokenizer.py +17 -32
- keras_hub/src/models/f_net/__init__.py +1 -2
- keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +12 -78
- keras_hub/src/models/f_net/{f_net_classifier.py → f_net_text_classifier.py} +17 -10
- keras_hub/src/models/f_net/{f_net_preprocessor.py → f_net_text_classifier_preprocessor.py} +19 -63
- keras_hub/src/models/f_net/f_net_tokenizer.py +17 -35
- keras_hub/src/models/falcon/__init__.py +1 -2
- keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/falcon/falcon_tokenizer.py +12 -35
- keras_hub/src/models/gemma/__init__.py +1 -2
- keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +6 -90
- keras_hub/src/models/gemma/gemma_decoder_block.py +1 -1
- keras_hub/src/models/gemma/gemma_tokenizer.py +12 -23
- keras_hub/src/models/gpt2/__init__.py +1 -2
- keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/gpt2/gpt2_preprocessor.py +12 -90
- keras_hub/src/models/gpt2/gpt2_tokenizer.py +12 -34
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +12 -34
- keras_hub/src/models/image_classifier.py +0 -5
- keras_hub/src/models/image_classifier_preprocessor.py +83 -0
- keras_hub/src/models/llama/__init__.py +1 -2
- keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +6 -85
- keras_hub/src/models/llama/llama_tokenizer.py +12 -25
- keras_hub/src/models/llama3/__init__.py +1 -2
- keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/llama3/llama3_tokenizer.py +12 -33
- keras_hub/src/models/masked_lm.py +0 -2
- keras_hub/src/models/masked_lm_preprocessor.py +156 -0
- keras_hub/src/models/mistral/__init__.py +1 -2
- keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/mistral/mistral_tokenizer.py +12 -23
- keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +2 -2
- keras_hub/src/models/mobilenet/__init__.py +13 -0
- keras_hub/src/models/mobilenet/mobilenet_backbone.py +530 -0
- keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +114 -0
- keras_hub/src/models/opt/__init__.py +1 -2
- keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +6 -93
- keras_hub/src/models/opt/opt_tokenizer.py +12 -41
- keras_hub/src/models/pali_gemma/__init__.py +1 -4
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +28 -28
- keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +25 -0
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +5 -5
- keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +11 -3
- keras_hub/src/models/phi3/__init__.py +1 -2
- keras_hub/src/models/phi3/phi3_causal_lm.py +3 -9
- keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/phi3/phi3_tokenizer.py +12 -36
- keras_hub/src/models/preprocessor.py +72 -83
- keras_hub/src/models/resnet/__init__.py +6 -0
- keras_hub/src/models/resnet/resnet_backbone.py +390 -42
- keras_hub/src/models/resnet/resnet_image_classifier.py +33 -6
- keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +28 -0
- keras_hub/src/models/{llama3/llama3_preprocessor.py → resnet/resnet_image_converter.py} +7 -5
- keras_hub/src/models/resnet/resnet_presets.py +95 -0
- keras_hub/src/models/retinanet/__init__.py +13 -0
- keras_hub/src/models/retinanet/anchor_generator.py +175 -0
- keras_hub/src/models/retinanet/box_matcher.py +259 -0
- keras_hub/src/models/retinanet/non_max_supression.py +578 -0
- keras_hub/src/models/roberta/__init__.py +1 -2
- keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +22 -74
- keras_hub/src/models/roberta/{roberta_classifier.py → roberta_text_classifier.py} +16 -11
- keras_hub/src/models/roberta/{roberta_preprocessor.py → roberta_text_classifier_preprocessor.py} +21 -53
- keras_hub/src/models/roberta/roberta_tokenizer.py +13 -52
- keras_hub/src/models/seq_2_seq_lm_preprocessor.py +269 -0
- keras_hub/src/models/stable_diffusion_v3/__init__.py +13 -0
- keras_hub/src/models/stable_diffusion_v3/clip_encoder_block.py +103 -0
- keras_hub/src/models/stable_diffusion_v3/clip_preprocessor.py +93 -0
- keras_hub/src/models/stable_diffusion_v3/clip_text_encoder.py +149 -0
- keras_hub/src/models/stable_diffusion_v3/clip_tokenizer.py +167 -0
- keras_hub/src/models/stable_diffusion_v3/mmdit.py +427 -0
- keras_hub/src/models/stable_diffusion_v3/mmdit_block.py +317 -0
- keras_hub/src/models/stable_diffusion_v3/t5_xxl_preprocessor.py +74 -0
- keras_hub/src/models/stable_diffusion_v3/t5_xxl_text_encoder.py +155 -0
- keras_hub/src/models/stable_diffusion_v3/vae_attention.py +126 -0
- keras_hub/src/models/stable_diffusion_v3/vae_image_decoder.py +186 -0
- keras_hub/src/models/t5/__init__.py +1 -2
- keras_hub/src/models/t5/t5_tokenizer.py +13 -23
- keras_hub/src/models/task.py +71 -116
- keras_hub/src/models/{classifier.py → text_classifier.py} +19 -13
- keras_hub/src/models/text_classifier_preprocessor.py +138 -0
- keras_hub/src/models/whisper/__init__.py +1 -2
- keras_hub/src/models/whisper/{whisper_audio_feature_extractor.py → whisper_audio_converter.py} +20 -18
- keras_hub/src/models/whisper/whisper_backbone.py +0 -3
- keras_hub/src/models/whisper/whisper_presets.py +10 -10
- keras_hub/src/models/whisper/whisper_tokenizer.py +20 -16
- keras_hub/src/models/xlm_roberta/__init__.py +1 -4
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +26 -72
- keras_hub/src/models/xlm_roberta/{xlm_roberta_classifier.py → xlm_roberta_text_classifier.py} +16 -11
- keras_hub/src/models/xlm_roberta/{xlm_roberta_preprocessor.py → xlm_roberta_text_classifier_preprocessor.py} +26 -53
- keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +25 -10
- keras_hub/src/tests/test_case.py +46 -0
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +30 -17
- keras_hub/src/tokenizers/byte_tokenizer.py +14 -15
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +20 -7
- keras_hub/src/tokenizers/tokenizer.py +67 -32
- keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +14 -15
- keras_hub/src/tokenizers/word_piece_tokenizer.py +34 -47
- keras_hub/src/utils/imagenet/__init__.py +13 -0
- keras_hub/src/utils/imagenet/imagenet_utils.py +1067 -0
- keras_hub/src/utils/keras_utils.py +0 -50
- keras_hub/src/utils/preset_utils.py +230 -68
- keras_hub/src/utils/tensor_utils.py +187 -69
- keras_hub/src/utils/timm/convert_resnet.py +19 -16
- keras_hub/src/utils/timm/preset_loader.py +66 -0
- keras_hub/src/utils/transformers/convert_albert.py +193 -0
- keras_hub/src/utils/transformers/convert_bart.py +373 -0
- keras_hub/src/utils/transformers/convert_bert.py +7 -17
- keras_hub/src/utils/transformers/convert_distilbert.py +10 -20
- keras_hub/src/utils/transformers/convert_gemma.py +5 -19
- keras_hub/src/utils/transformers/convert_gpt2.py +5 -18
- keras_hub/src/utils/transformers/convert_llama3.py +7 -18
- keras_hub/src/utils/transformers/convert_mistral.py +129 -0
- keras_hub/src/utils/transformers/convert_pali_gemma.py +7 -29
- keras_hub/src/utils/transformers/preset_loader.py +77 -0
- keras_hub/src/utils/transformers/safetensor_utils.py +2 -2
- keras_hub/src/version_utils.py +1 -1
- keras_hub_nightly-0.16.0.dev2024092017.dist-info/METADATA +202 -0
- keras_hub_nightly-0.16.0.dev2024092017.dist-info/RECORD +334 -0
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/WHEEL +1 -1
- keras_hub/src/models/bart/bart_preprocessor.py +0 -276
- keras_hub/src/models/bloom/bloom_preprocessor.py +0 -185
- keras_hub/src/models/electra/electra_preprocessor.py +0 -154
- keras_hub/src/models/falcon/falcon_preprocessor.py +0 -187
- keras_hub/src/models/gemma/gemma_preprocessor.py +0 -191
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +0 -145
- keras_hub/src/models/llama/llama_preprocessor.py +0 -189
- keras_hub/src/models/mistral/mistral_preprocessor.py +0 -190
- keras_hub/src/models/opt/opt_preprocessor.py +0 -188
- keras_hub/src/models/phi3/phi3_preprocessor.py +0 -190
- keras_hub/src/models/whisper/whisper_preprocessor.py +0 -326
- keras_hub/src/utils/timm/convert.py +0 -37
- keras_hub/src/utils/transformers/convert.py +0 -101
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +0 -34
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +0 -297
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,334 @@
|
|
1
|
+
keras_hub/__init__.py,sha256=La-s5SQDd0312puWDSbPJ2XYxFXtg0jsCdUa2LMY-Z8,1440
|
2
|
+
keras_hub/api/__init__.py,sha256=8EwhEBO-o-92lvGv6M5zOdkNL9Bd3xfutlfGNJ8QwBE,1109
|
3
|
+
keras_hub/api/bounding_box/__init__.py,sha256=LNSVZLB1WJ9hMg0wxt7HTfFFd9uAFviH9x9CnfJYzBA,1682
|
4
|
+
keras_hub/api/layers/__init__.py,sha256=4OlmzaQ0I8RuHp7Ot9580loeElsV4QeB2Lon8ZB_a1Q,2600
|
5
|
+
keras_hub/api/metrics/__init__.py,sha256=tgQfooPHzlq6w34RHfro6vO8IUITLTf-jU2IWEBxxUM,966
|
6
|
+
keras_hub/api/models/__init__.py,sha256=0BRVIXtv8DrIbE5n1JeAR_gVeF1_sG_zeMI0cR0rjBI,13396
|
7
|
+
keras_hub/api/samplers/__init__.py,sha256=l56H4y3h_HlRn_PpeMyZ6vC7228EH_BVFo4Caay-zQ8,1315
|
8
|
+
keras_hub/api/tokenizers/__init__.py,sha256=nzMwKmxkMCOiYB35BIgxHNveCM9WoYRp7ChhmVK8MIM,3042
|
9
|
+
keras_hub/api/utils/__init__.py,sha256=4IXDgmXqFzqrCK2MPgkih0Ye1s-8hrlBaUk-n5Kqwl4,800
|
10
|
+
keras_hub/src/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
11
|
+
keras_hub/src/api_export.py,sha256=agkICNX5rGcJy_Bj29vaNmhH3no9KqJBO-V3MaqR6HQ,2062
|
12
|
+
keras_hub/src/version_utils.py,sha256=vh5ESN52dm8BwVQf6-R6UvY3JMG3DW8LHanrErKekC8,806
|
13
|
+
keras_hub/src/bounding_box/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
14
|
+
keras_hub/src/bounding_box/converters.py,sha256=V2ti6xPpaBgeLKbTpCsHsABdYOYASerIKX9oWqeOjHo,18450
|
15
|
+
keras_hub/src/bounding_box/formats.py,sha256=5bbHO-n2ADsKIOBJDHMvIPCeNBaV1_mj-NVCgBKNiu8,4453
|
16
|
+
keras_hub/src/bounding_box/iou.py,sha256=eK5TlQxkvLvHIf5Pet-NdkepY_d322c5XknZjwH8TN8,9700
|
17
|
+
keras_hub/src/bounding_box/to_dense.py,sha256=Wu-3T7ICft06T8cuJwNQ_QlyywassMt_z8HA4OOM4TU,3361
|
18
|
+
keras_hub/src/bounding_box/to_ragged.py,sha256=mIeWbnQFDjJJIyYrX2S8OMvNiIlFeyvMJ_u8MW4XF8Y,3459
|
19
|
+
keras_hub/src/bounding_box/utils.py,sha256=XRD2UedumbvtV25XTpUm9el4pweP7dYLDkjN83X4Uv8,7026
|
20
|
+
keras_hub/src/bounding_box/validate_format.py,sha256=K_hR1cVGfjZ8ZKECKtx3BfAa_kMx5JUZP_vMSybcL0A,3640
|
21
|
+
keras_hub/src/layers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
22
|
+
keras_hub/src/layers/modeling/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
23
|
+
keras_hub/src/layers/modeling/alibi_bias.py,sha256=jr8ER2Azi0jARM1x9iXYju32vvXVbu6-TterH4OWWAY,4996
|
24
|
+
keras_hub/src/layers/modeling/cached_multi_head_attention.py,sha256=d1ymIJzeqcTwex09Qp9KmxSUwclp524yzMfO4QIDCQw,6186
|
25
|
+
keras_hub/src/layers/modeling/f_net_encoder.py,sha256=feSGkV-V1lGOcf1mUGG50yAv7gmtbFlR0769At20C5k,7427
|
26
|
+
keras_hub/src/layers/modeling/masked_lm_head.py,sha256=37ptV0CNt4n9FQSHHFmOWzLA3TsP-zAP8cKn4y1oVbI,9589
|
27
|
+
keras_hub/src/layers/modeling/position_embedding.py,sha256=Xampv16F6uF3K6ZSmZDav3IDwop5mpqRl2n_dd_hKRg,4436
|
28
|
+
keras_hub/src/layers/modeling/reversible_embedding.py,sha256=ijG5IqUTz2TdNSOc14PVttVeOSbhMXBlYkUYh-Qnoaw,12396
|
29
|
+
keras_hub/src/layers/modeling/rotary_embedding.py,sha256=LGQK-1QJaiE7SErXOh88osEMO7Aki9s_-wFIa_aBYOY,6640
|
30
|
+
keras_hub/src/layers/modeling/sine_position_encoding.py,sha256=8KNgPvOUlFoSffeOo5DA0TkGr6Aep-4QyKn26BqPDtA,4039
|
31
|
+
keras_hub/src/layers/modeling/token_and_position_embedding.py,sha256=D5AQm37i2EsL6Y2ORP_Jkot4Ky0ujTPgMSv4uyvadeo,5848
|
32
|
+
keras_hub/src/layers/modeling/transformer_decoder.py,sha256=CUqecS9Tthl2Nzh9BoKYxVEArnfiNQPJOigskGQitxc,21691
|
33
|
+
keras_hub/src/layers/modeling/transformer_encoder.py,sha256=PwwtGUxDFay-_QcOLevu6tcuDv40Au_ADM5KUhIl91s,10486
|
34
|
+
keras_hub/src/layers/modeling/transformer_layer_utils.py,sha256=qF9YfBWK7tt37UHDa4HbC7C6qjKIz85msGTpEYYgx2M,4073
|
35
|
+
keras_hub/src/layers/preprocessing/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
36
|
+
keras_hub/src/layers/preprocessing/audio_converter.py,sha256=8UUS2OpEgu_mTna5TYd80bmFskqXLfzyo4yVqpxsyx0,4871
|
37
|
+
keras_hub/src/layers/preprocessing/image_converter.py,sha256=6FOyuDipx-8sCB2ZxrE3sv-xDghoUION48NIL_TbPh0,5348
|
38
|
+
keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py,sha256=PP4j-f_bIvJbsdtEHV3vaguPRE49_GBMy0cNf4ZgUPk,8749
|
39
|
+
keras_hub/src/layers/preprocessing/multi_segment_packer.py,sha256=0se5fOIz-2fMt4ALvQXJ1gLxBGIaR3OdWzFFp_UDgl8,12654
|
40
|
+
keras_hub/src/layers/preprocessing/preprocessing_layer.py,sha256=5jFBScsNWuYyokPt8mUoyYeOkKH9ZS7MkeC3j-nxYHU,1273
|
41
|
+
keras_hub/src/layers/preprocessing/random_deletion.py,sha256=P4YkpDXgQnlXEgukk6V_iuIrRIQOOC9i8KMkpd7UDic,10349
|
42
|
+
keras_hub/src/layers/preprocessing/random_swap.py,sha256=Wu6pNuQ1l_5VRGlRxcomrWyEnqYfA4PcK-mHNuvSjr0,10090
|
43
|
+
keras_hub/src/layers/preprocessing/resizing_image_converter.py,sha256=xbDDbJUL2IJ7Zv-CWFH8qtNjvGDrsj4Kf2L3usohIC0,4282
|
44
|
+
keras_hub/src/layers/preprocessing/start_end_packer.py,sha256=3IvVoOE-0kovt_8o2w-uVYEPFhGg-tmv3cwuJQu7VPc,8560
|
45
|
+
keras_hub/src/metrics/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
46
|
+
keras_hub/src/metrics/bleu.py,sha256=r0vROmLVVNjc1d9fwJgc64lwmhEXHNaNT1ed1h7Y0E0,14259
|
47
|
+
keras_hub/src/metrics/edit_distance.py,sha256=M2V0ud3C10BJBOgpSccKE-9XD9qPwS2DfJfWkcD1UjY,6939
|
48
|
+
keras_hub/src/metrics/perplexity.py,sha256=ecgzTdF8NPeYUmFNps0ppaXQTz6TnfWqnqfvvbIuNa8,6725
|
49
|
+
keras_hub/src/metrics/rouge_base.py,sha256=7FqGEKzJruc8CDna2Zl5CZIbAARel0_dkP9hH558T7Q,6850
|
50
|
+
keras_hub/src/metrics/rouge_l.py,sha256=b12lw1pZbLb-GfWo2Z7T80EAb7OCw4rCsJFZi-seFd8,3315
|
51
|
+
keras_hub/src/metrics/rouge_n.py,sha256=1u4HAezeZAhtPKVMpMKe5NNIOc5Ct05jdLRa8dgEYYE,4206
|
52
|
+
keras_hub/src/models/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
53
|
+
keras_hub/src/models/backbone.py,sha256=uC785MLiwKw7zaXxM1y_-FXENIj4fWDrIqX89O-u47M,12075
|
54
|
+
keras_hub/src/models/causal_lm.py,sha256=2iijHG3E-R9oC-eSkgyr0a_XnRmAaRWnhVFYyrq3vZE,15377
|
55
|
+
keras_hub/src/models/causal_lm_preprocessor.py,sha256=VvHwIwnQyKzMDKTtW0CuWQ0faRn9cAEBwBPLwS_LgDI,7248
|
56
|
+
keras_hub/src/models/feature_pyramid_backbone.py,sha256=p4z7urzAAz0V6Q9WS57heaxWVLKW-11LoFKnXYxetUA,2832
|
57
|
+
keras_hub/src/models/image_classifier.py,sha256=72qxEL01DSKE-Ugg4tpZqkLQpYf15bPfpknBnbx_G8Q,3754
|
58
|
+
keras_hub/src/models/image_classifier_preprocessor.py,sha256=Az9596ow470lqCzYF0I-GUkHbVfWx4GiynvpwGws6f0,3199
|
59
|
+
keras_hub/src/models/masked_lm.py,sha256=x8jeqgYsKsgeVPAirVRPHDdT21FAhqJ45pb8mIPc410,4161
|
60
|
+
keras_hub/src/models/masked_lm_preprocessor.py,sha256=Z6mo0szZp5Kfn6LmtY7EjZWGxLdR4c75hfw97V310Kc,6241
|
61
|
+
keras_hub/src/models/preprocessor.py,sha256=PZruA4xHS_w0-9hWLD1iJ79aOQMP81aJPYXl5SpjXak,7174
|
62
|
+
keras_hub/src/models/seq_2_seq_lm.py,sha256=PmdgShThfg2VIYMviKsU11jD3KgBZnYZGZp9HXVO4LU,2449
|
63
|
+
keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=fQv-zg7vvIpy3ucCbIkiey8AGH7rEuhDpCilul2JjsE,10272
|
64
|
+
keras_hub/src/models/task.py,sha256=elkNVXUAbUskRprIBmTDiJkFheLo1mLTX9lppelHucc,14432
|
65
|
+
keras_hub/src/models/text_classifier.py,sha256=BhsLovKyIVslm4ibrzFqtxrqljyNehk1lTpQ-r3bq5k,4744
|
66
|
+
keras_hub/src/models/text_classifier_preprocessor.py,sha256=6Mkypx3UUj4gUmLlocaLZBc2Addk_pshKPWwy7wb788,5307
|
67
|
+
keras_hub/src/models/albert/__init__.py,sha256=RuIE1aGly5hA0OHBu_QA09XairoViM1kvS6K3kzVB3Q,843
|
68
|
+
keras_hub/src/models/albert/albert_backbone.py,sha256=MNurFI3ansonMPJi8gmRf0dXwMwE38C-DJzqdkuLs9o,10659
|
69
|
+
keras_hub/src/models/albert/albert_masked_lm.py,sha256=Y8N5HqQ3fUl4lUG4T_vbn_zI-Pink8oDFRKlxfGm6S8,4712
|
70
|
+
keras_hub/src/models/albert/albert_masked_lm_preprocessor.py,sha256=v85sOAogJ4u4kfN0oq8_oVFf9AoFmqY7E48Czbucb6Y,5061
|
71
|
+
keras_hub/src/models/albert/albert_presets.py,sha256=LLn1rJQXFPee2QCM6z4EnrkZBYw7qe3vmLn5XvDFfSA,2795
|
72
|
+
keras_hub/src/models/albert/albert_text_classifier.py,sha256=xWRu-JNfMSbtRL38yBWPOz1KA-BJAvVjL4FxntRnQ7A,7231
|
73
|
+
keras_hub/src/models/albert/albert_text_classifier_preprocessor.py,sha256=gy8BlsAhYSmkfn3CItViJT7MGDk-4b9MpnlZivKqa7g,6125
|
74
|
+
keras_hub/src/models/albert/albert_tokenizer.py,sha256=_PSU17dxw79NeINVYv_CA225aSE5lIHn09wxJJt7XM0,3570
|
75
|
+
keras_hub/src/models/bart/__init__.py,sha256=QniU0N7lU_FWZxGPyHqqOAeNOoBM0BEvuQVv_s9GH0E,831
|
76
|
+
keras_hub/src/models/bart/bart_backbone.py,sha256=4hCYeOZF8kYdO9-ev8OASYSdrqDApk2XHiSl9hue_VM,10286
|
77
|
+
keras_hub/src/models/bart/bart_presets.py,sha256=TvSPseluMhV233tlXiZAs_8ecOka-N4ZNSS_WPfP0vI,2736
|
78
|
+
keras_hub/src/models/bart/bart_seq_2_seq_lm.py,sha256=7Q-O23PjFz5BU5lGHUYUIRkv8kxnRGHkfV79JK-jcdg,19910
|
79
|
+
keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py,sha256=sR5SjoB4e3nuYgAMtuhM8s__6Ii3lCESUOdchGLXfEY,4960
|
80
|
+
keras_hub/src/models/bart/bart_tokenizer.py,sha256=ugMJIbnr15-xD1d6D3OBqKC1ci-ry14DWaXLXR8GEbE,3398
|
81
|
+
keras_hub/src/models/bert/__init__.py,sha256=NluxLMYegxQy8QznfukqS2HHMUu2vVaDfFeWDhGNK4s,831
|
82
|
+
keras_hub/src/models/bert/bert_backbone.py,sha256=mxnxa5cVfM9fNGnhblguSYcQh62nlRX_696_dI3dNH0,8655
|
83
|
+
keras_hub/src/models/bert/bert_masked_lm.py,sha256=6-sZP4anfiVWq_EwbfMbbz1bcZF1uP7lolCz_6O6rao,4631
|
84
|
+
keras_hub/src/models/bert/bert_masked_lm_preprocessor.py,sha256=wp80B97OTQMGgonsRhtnpiFBMmCFqbzZwPna6BMWlkc,5160
|
85
|
+
keras_hub/src/models/bert/bert_presets.py,sha256=4NmCoYQuX0j-G-6rPeHTpv7uV-1kIFmTb9cdjuCxnTI,5609
|
86
|
+
keras_hub/src/models/bert/bert_text_classifier.py,sha256=YIjJ4FTycOA6ZtJ0xwgcviz4tPa1YKc_bx5NWy29Ilc,6384
|
87
|
+
keras_hub/src/models/bert/bert_text_classifier_preprocessor.py,sha256=gVu-XE9doX7V5VYCVpWtpVv0ILWkv2umInF0wb4ehP8,5299
|
88
|
+
keras_hub/src/models/bert/bert_tokenizer.py,sha256=XP58gh3zxDQgrK5y5cVvuPwIO75U7l7Xopt5n79pUuU,3611
|
89
|
+
keras_hub/src/models/bloom/__init__.py,sha256=ck7AqlWlHHTslBEZCxa_ps-nOC-7hyEsu4uielO0SIU,837
|
90
|
+
keras_hub/src/models/bloom/bloom_attention.py,sha256=kqnwV3sfyZThjnzc52yDQg4op-2KZfhsXN2QJRM6erY,6659
|
91
|
+
keras_hub/src/models/bloom/bloom_backbone.py,sha256=i2Dc2FeYSPYVyKNc9XhfDTX6mV3P-P1gfrZUV_UeacM,6406
|
92
|
+
keras_hub/src/models/bloom/bloom_causal_lm.py,sha256=7uxEnEZFIlmZgHg7D-EArr459kka6ljWEUotPhSyi3U,11548
|
93
|
+
keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py,sha256=WVTWRUbQXUBlfC80JucV6ifcI5t6jjN5MtVsxNEYluk,3598
|
94
|
+
keras_hub/src/models/bloom/bloom_decoder.py,sha256=hSoeVnwRQvGbpVhYmf7-k8FB3Wg4auwZWdr2ubiNtxc,7157
|
95
|
+
keras_hub/src/models/bloom/bloom_presets.py,sha256=7GiGFPmcXd_UraNsWGQffpzjKDRF-7nqIoUsic78xf0,4696
|
96
|
+
keras_hub/src/models/bloom/bloom_tokenizer.py,sha256=ZMx8mHhw0D50zmmvYdmpg-Lk2GcvHz7pPlRpPlhS_2s,3161
|
97
|
+
keras_hub/src/models/csp_darknet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
98
|
+
keras_hub/src/models/csp_darknet/csp_darknet_backbone.py,sha256=Zc3liZuKV-lgAKSAGGKZzsYyFRQwMFMI1qIkUGVUMBM,14718
|
99
|
+
keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py,sha256=h74Q_VHaoSAkwBsDV-ZufN6fb9NFX2gDVk7AOvX-HUk,4388
|
100
|
+
keras_hub/src/models/deberta_v3/__init__.py,sha256=NCuHFWsgQl-Wer7w3xETvqFtF75AyKabjAYdOlyN34w,874
|
101
|
+
keras_hub/src/models/deberta_v3/deberta_v3_backbone.py,sha256=_J-PpSLubay58YO51BicDK0bF97aUeoC21ZQOt1O9r0,7831
|
102
|
+
keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py,sha256=urcktTsXN3kDWnppplnC8yISGx37qGW5HdwHSC7VDLE,4773
|
103
|
+
keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py,sha256=l-hcoKKQPz_VB-CJNq0oLxEd5hxLHb2DU9-TqE28Fz8,5552
|
104
|
+
keras_hub/src/models/deberta_v3/deberta_v3_presets.py,sha256=pDcdjJ7mIz8QdTxLxllmY7_9hsgCRdVlsYREKnHw5Ek,3300
|
105
|
+
keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py,sha256=lQla4R7UH5olF8xs5By6aKwpGtpoE3IPlovjrhB-hYQ,7825
|
106
|
+
keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py,sha256=z_PynLHhc2OFasaV1DMHEyyKEC4miK4KqWj1-2WAEOc,6561
|
107
|
+
keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py,sha256=NLLkMvotpPZUdRELaSRuJuVmiOGxwmnjmjuswa6NJdw,5574
|
108
|
+
keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py,sha256=Zt10UPxYsr_x8isO_OrXeaquWVJbcE49raM6_BkDdEs,9142
|
109
|
+
keras_hub/src/models/deberta_v3/disentangled_self_attention.py,sha256=MxpWy30h9JB8nlEk7V9_wETzP-tpv1Sd1Wiz_pHGpkI,13708
|
110
|
+
keras_hub/src/models/deberta_v3/relative_embedding.py,sha256=QT5MAnheJ1wSKFeN49pdnZzWkztz5K2oYYuNEtB_5xM,3472
|
111
|
+
keras_hub/src/models/densenet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
112
|
+
keras_hub/src/models/densenet/densenet_backbone.py,sha256=cMTTaI1WogaSjt8x8bpPMvApYp5NVmeHTfupUmZZ774,7661
|
113
|
+
keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=bmmkNNpxwkwfqI_ZMmoEATClmgmmkW6NO5tDK8BCt2Y,4336
|
114
|
+
keras_hub/src/models/distil_bert/__init__.py,sha256=EiJUA3y_b22rMacMbBD7jD0eBSzR-wbVtF73k2RsQow,889
|
115
|
+
keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=ZW2OgNlWXeRlfI5BrcJLYr4Oc2qNJZoDxjoL7-cGuIQ,7027
|
116
|
+
keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=1BFS1At_HYlLK21VWyhQPrPtActpmR52A8LJG2c6N8Y,4862
|
117
|
+
keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py,sha256=2vge8ivK7Fl8iFKm1Si2MMru9yKOo27J0UUsFRuAdOk,5816
|
118
|
+
keras_hub/src/models/distil_bert/distil_bert_presets.py,sha256=jrLwBwTaxofI5jTEV3UTPTeVePdzbJtVO9OclP-Mf4w,2312
|
119
|
+
keras_hub/src/models/distil_bert/distil_bert_text_classifier.py,sha256=Q-qGmyl6i2JUFZI59KUWzlzLTIRmYtgahFHo3pUE9g4,7324
|
120
|
+
keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py,sha256=sad3XpW2HfjG2iQ4JRm1tw2jp4pZCN4LYwF1mM4GUps,5480
|
121
|
+
keras_hub/src/models/distil_bert/distil_bert_tokenizer.py,sha256=VK7kZJEbsClp20uWVb6pj-WSUU5IMdRBk0jyUIM_RIg,3698
|
122
|
+
keras_hub/src/models/efficientnet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
123
|
+
keras_hub/src/models/efficientnet/efficientnet_backbone.py,sha256=krz5lgw5cPs2EyKArq99XnIfUeBVbkeq2PhPFADO04c,21841
|
124
|
+
keras_hub/src/models/efficientnet/fusedmbconv.py,sha256=_6aNQKL2XdVNgoAdKvvTh_NDkWeU66q98EFUOjEQ1UM,7933
|
125
|
+
keras_hub/src/models/efficientnet/mbconv.py,sha256=LNbEj7RpEZ0SqzEu-7ZpH1BKm6Ne2sXPckc5c2DMqUk,8212
|
126
|
+
keras_hub/src/models/electra/__init__.py,sha256=ixE5hAkfTFfErqbYVyIUKMT8MUz-u_175QXxEBIiGBU,849
|
127
|
+
keras_hub/src/models/electra/electra_backbone.py,sha256=nLKE67xffbyWSmHtSsR6SZQId2BJ03pjSACMx9fa6do,9590
|
128
|
+
keras_hub/src/models/electra/electra_presets.py,sha256=7UxPjVFmNM6jbzJxXlnNzYZCdrC9JIz39FWlHvG7ubM,3954
|
129
|
+
keras_hub/src/models/electra/electra_tokenizer.py,sha256=WjGhKVxtDMMcm-bMUNSvcR2z1O9nWeuMPWZQa9Dc2x0,3315
|
130
|
+
keras_hub/src/models/f_net/__init__.py,sha256=MrkNt4swYV-pWb4biE1ITcYxEwWxiKRwCukhbgNo_Lg,835
|
131
|
+
keras_hub/src/models/f_net/f_net_backbone.py,sha256=h1IqRGEHKKhDiFUnqhaM2Rxs2yk6r0u-kBZSjtyDip4,8877
|
132
|
+
keras_hub/src/models/f_net/f_net_masked_lm.py,sha256=GHdUf5PNUzT-YH9ZMf5FxmGx7NExFfTISnScf74zIKk,4565
|
133
|
+
keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py,sha256=rKh-a2EB2GfUX1osmDoBy6apzUdjiCKJc8CDxKQLlfI,5667
|
134
|
+
keras_hub/src/models/f_net/f_net_presets.py,sha256=IP_ImbHzZScyMJBeWWgGDXduAbjddwdFpGGwO5JQwIE,1640
|
135
|
+
keras_hub/src/models/f_net/f_net_text_classifier.py,sha256=p6zZehLEywEpIMqolHhZHna2V0RlSiMcSv0TCOCJVCQ,5456
|
136
|
+
keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py,sha256=zERq-1mayzI6FHMlwckHlruN406jswxu0jWq1i9VnE0,5408
|
137
|
+
keras_hub/src/models/f_net/f_net_tokenizer.py,sha256=kqjxe_G8_4mEXsICcJC2HSwvhtIfwdaq1Q8bTTqkZps,2872
|
138
|
+
keras_hub/src/models/falcon/__init__.py,sha256=Djjo5fD8XJTMQA8x5DOVbqzaHPsWos45BvxTuGuFvPE,843
|
139
|
+
keras_hub/src/models/falcon/falcon_attention.py,sha256=1U__Yfv0BcEm61zMsqHIGu6XZPkAcLbLCFEhSS5o0HQ,5082
|
140
|
+
keras_hub/src/models/falcon/falcon_backbone.py,sha256=fyV1ssWMSq87_Rt13kWpwiIpRRRlGm3qTKgCYvK991Q,6012
|
141
|
+
keras_hub/src/models/falcon/falcon_causal_lm.py,sha256=Fdh_36XpFiItwk9Gy_wxForY9LtoA8-OkosTU3VG3_E,11419
|
142
|
+
keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py,sha256=rGZ9kWVbb0NnncvgRoQ2BfcBCwIDBLIewCbeq7fuXzo,3619
|
143
|
+
keras_hub/src/models/falcon/falcon_presets.py,sha256=Ab6pydPHFSDK-3iuKPa8SI9Zfdf9iOcqBMhhCQlLUQo,1159
|
144
|
+
keras_hub/src/models/falcon/falcon_tokenizer.py,sha256=LHJI2hXGO9f83NVMjoM-irWa01KynCjVcmo-CPNPf8M,3141
|
145
|
+
keras_hub/src/models/falcon/falcon_transformer_decoder.py,sha256=uPtU0PC5XndPs6ak5mxAaGTmkQVlVrrEy_G4SwlkZ78,8710
|
146
|
+
keras_hub/src/models/gemma/__init__.py,sha256=pcIU4-Xl2vy3C8FGXNU8lNwcxTLblUbtZnRUG9UfKc4,837
|
147
|
+
keras_hub/src/models/gemma/gemma_attention.py,sha256=mKwcU_s0epJzRllxGVg-Bbc1CuC5a2hVgcRyESDrctQ,8902
|
148
|
+
keras_hub/src/models/gemma/gemma_backbone.py,sha256=RO9O_AhUlboUzBYxYFDFFdYBjaXaDifPB-Yz2idnYZ8,13501
|
149
|
+
keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=jOy_X0QR-olMfCPyFtmXRZSllWz3oy10JYwLzAPtXAg,17357
|
150
|
+
keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=uZdYAAMIeABh339U9qmSPVRxVXtU4Ko4nrih1nN0QX4,3498
|
151
|
+
keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=OgvSypSaKXNKatmua62HITyUzl79enh4x_sUZhBRItY,8173
|
152
|
+
keras_hub/src/models/gemma/gemma_presets.py,sha256=7N5dcMjMb4gOb9ysCLdVqLFDpvV3bETiB6Hq2XrdGWA,9867
|
153
|
+
keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=JZ3XDScSsAV9y8uM-uKrO-lyu3PNyXNynrJqVJQbJo0,3208
|
154
|
+
keras_hub/src/models/gemma/rms_normalization.py,sha256=27nA9BjNVkwI-icHISK57qJl8wxRdWGM5g4K_DzjAeI,1419
|
155
|
+
keras_hub/src/models/gpt2/__init__.py,sha256=Oy1WReI1aRiW_EU-TMdhs5Srr-KNaYOfXAxixFfK3WY,831
|
156
|
+
keras_hub/src/models/gpt2/gpt2_backbone.py,sha256=WK0mJ1CRGIE0jfc7A3toslt_cFcynyU2jczjUJVSazc,7548
|
157
|
+
keras_hub/src/models/gpt2/gpt2_causal_lm.py,sha256=88Dpewafe9lmLgkHNqxhk6TeLjX1uMx2Q2geU5xUPGY,17352
|
158
|
+
keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py,sha256=-TE1IBKuHwbLbD--UKUsJq18IjRJDCM8DjRShWl3KMA,3578
|
159
|
+
keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=gLIndASgIBxKRYzFjclAhMUkrSFUtZEVFsPXUXpiIyU,3766
|
160
|
+
keras_hub/src/models/gpt2/gpt2_presets.py,sha256=v5OJ5A0oUfxJamPFOkhoQvsrcqmkhOH7fFzHiQroR-w,3020
|
161
|
+
keras_hub/src/models/gpt2/gpt2_tokenizer.py,sha256=Xq_Du7TiR6IntGZzsmj1rtNQq7yFa1U-E4Do95qsS68,3202
|
162
|
+
keras_hub/src/models/gpt_neo_x/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
163
|
+
keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=5dJ_yxqdAvhSmVAnkpfgRdFV8DQNribAkj6oqvlBCuY,9111
|
164
|
+
keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py,sha256=OhsAHoR7lYRlu38jB3YRNdP5xn1YYDmEz6dEC3WI1ls,7094
|
165
|
+
keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py,sha256=YO_fc5AcGYmaGC8z0Ehpws_SuUCcdtozyBlbcjVRn9s,8276
|
166
|
+
keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=Ugl9p6q7Pts3x0tboH2ZpL79RmNPpeitSNszcs88Wmk,2543
|
167
|
+
keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=vss1MngY_SQ2nSUjHsZkDDmpeASQOVscTb1-7jpTosM,10314
|
168
|
+
keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=b6uu6xlKVBUdBwsw5t2vP5OisXk5QJd4mvjiizPAds8,2577
|
169
|
+
keras_hub/src/models/llama/__init__.py,sha256=XBMAoTkyvCPk4ia7ODOy_AdxahE-BWon7wxXGv_bF-E,837
|
170
|
+
keras_hub/src/models/llama/llama_attention.py,sha256=m8DmMnYhl9zCXJFN_UGh7MHgyy8l3_FZcecAoKSJg8o,7779
|
171
|
+
keras_hub/src/models/llama/llama_backbone.py,sha256=4oOV6T7il43-_WNoxhgirXbhVCijBL4O2oog6IUR_B8,7184
|
172
|
+
keras_hub/src/models/llama/llama_causal_lm.py,sha256=i7o4vNO_tnY_hHD11V6mdkRJxkKIy1HM0mvrTYEd8oY,13694
|
173
|
+
keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=PHABWx2GMAwbr676JMYLkKMsV6KCA_Ry8-8wv5gUw_c,3634
|
174
|
+
keras_hub/src/models/llama/llama_decoder.py,sha256=42Pc6lpwM6ycnYR2PW6CO3C8lyn6N7vop9KcAIow1II,9208
|
175
|
+
keras_hub/src/models/llama/llama_layernorm.py,sha256=VifoRNrwWmLimQ4cWbJpVCPSegkijpxFERZcoObtV9o,1635
|
176
|
+
keras_hub/src/models/llama/llama_presets.py,sha256=8ZaxSmDTRif8BMGKs8Ib3ijwspSIiV_arNzCwg5P5-U,3015
|
177
|
+
keras_hub/src/models/llama/llama_tokenizer.py,sha256=W80pMsE2cAl_DE5u2Bzig9GM0viPS4nWQaw4rfslvHY,2567
|
178
|
+
keras_hub/src/models/llama3/__init__.py,sha256=g2n4QAR2tpn5waeeFgpUV4xgW7tnwnZ1An_Mqg0D09M,843
|
179
|
+
keras_hub/src/models/llama3/llama3_backbone.py,sha256=VxX3cMpzra7m7TaG2W-gTllWE5Kvl8yOkES3GSUzXl8,3441
|
180
|
+
keras_hub/src/models/llama3/llama3_causal_lm.py,sha256=tSJQGbKY09bJMnLfjERrc_0qHFUd9Lp8kxMGJdtkJU8,2126
|
181
|
+
keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=4VknKZdH8-_wVFj-dU6aJxkrHCPyLrICWehbFGroi3k,3650
|
182
|
+
keras_hub/src/models/llama3/llama3_presets.py,sha256=5v1MZ77mBMxU4tHGbO03jwHxKflUpjLj0RnCU8Ksa-U,2588
|
183
|
+
keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=Q0EjX3MzxQzo94eEO1EXxfNsyhuQcvl2fX1JfZUSo0w,1375
|
184
|
+
keras_hub/src/models/mistral/__init__.py,sha256=EpGh-S5Q7iH9sGxbRi2yKM32_0eClKBt5ZL-2ME-oyo,849
|
185
|
+
keras_hub/src/models/mistral/mistral_attention.py,sha256=xivc90DwGIONxKPXm9wyt2UwbNKFYiLagUV3hoOypuM,8447
|
186
|
+
keras_hub/src/models/mistral/mistral_backbone.py,sha256=2Sp0rtBQKrSM2RvaCVX1ulHqNblzuAzxlH-LRvqdIWw,7831
|
187
|
+
keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=Twx-kzVz0EP2losFCuS03G5J8LBE-BOswPLZ_PZxpd4,13671
|
188
|
+
keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=Cpx2Sns2irEYp_LoTpkKecrZN3KmO8Cn9GnDLZI4AsU,3665
|
189
|
+
keras_hub/src/models/mistral/mistral_layer_norm.py,sha256=Nlo5iYrpOSYDdPODJuXpK5Wpl3INCSuoLzt4MM4ShYc,1648
|
190
|
+
keras_hub/src/models/mistral/mistral_presets.py,sha256=uF1Q4zllcV1upIlqmn3gxhVWzot6Olw9PSUi-qwU2cw,1914
|
191
|
+
keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=pO7mpzYgRDFpIrsmLBL3zxkadrOE0xfFj30c2nHN42c,2591
|
192
|
+
keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=6CdaZt1lQ9VcLz_OoYroqiqvsZfq9H5VGaWab25aCRI,10127
|
193
|
+
keras_hub/src/models/mix_transformer/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
194
|
+
keras_hub/src/models/mix_transformer/mix_transformer_backbone.py,sha256=TYcQCAMTZedirh2L4z8LrjfhmxR2CoImzIvVXFTiTMc,6833
|
195
|
+
keras_hub/src/models/mix_transformer/mix_transformer_classifier.py,sha256=QUTeq4f07nrCE-hIKoam_M6jJ6aM9l6s_At5sRTo0JY,4310
|
196
|
+
keras_hub/src/models/mix_transformer/mix_transformer_layers.py,sha256=Bi4lHMfiKgI-XOt21BBfKoK05uU3GcDJ3mQrGfCXb6Y,10123
|
197
|
+
keras_hub/src/models/mobilenet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
198
|
+
keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=G02NFvx2xy2mbEBX6mtJzhPwygZDAhJ2TMk2ejAuLg0,19168
|
199
|
+
keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=Oo3URtyqjfnmsyO9uncxOVHO9Giv607LBJ3UE8pWacU,3794
|
200
|
+
keras_hub/src/models/opt/__init__.py,sha256=DiiylcsbseSQ8te8KWZ6BTIaKYSzXHUPGBgFssFNGFY,825
|
201
|
+
keras_hub/src/models/opt/opt_backbone.py,sha256=cbm9I7d3QlGD8l2W1eK8esqc5gm77tpwxg4t9nC-FtA,6460
|
202
|
+
keras_hub/src/models/opt/opt_causal_lm.py,sha256=z6M8cQV-c8q7HmikNA9RuvsMMvQYF21-ZcC0nVGfnp8,11438
|
203
|
+
keras_hub/src/models/opt/opt_causal_lm_preprocessor.py,sha256=UzjIzQYtPfIjIyQ6PjnOHU2rstiy7J3uRuwnMnuXuRs,3687
|
204
|
+
keras_hub/src/models/opt/opt_presets.py,sha256=6sLgktbfdi8aEX4ntGL1y7uBvbrLUlSFSvU0Owg4GR4,2914
|
205
|
+
keras_hub/src/models/opt/opt_tokenizer.py,sha256=TG0tlJ3jryDKXPo8AruKyP51eCdKKjJWv1QtVHfbTOc,3144
|
206
|
+
keras_hub/src/models/pali_gemma/__init__.py,sha256=OFu-CQIlUlUox6tGkKvNePwc3ZkPGcmOVsBqcP-w5Fw,873
|
207
|
+
keras_hub/src/models/pali_gemma/pali_gemma_backbone.py,sha256=Bfl1TCdADD9yYiDiTK5nynUClWmTPYgVE8kxDjPBw0Y,11501
|
208
|
+
keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=PnE3sOEuwwMR8b7jcxclyAeBJyZJp9k6nprJn26RbSA,11782
|
209
|
+
keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=dMCoGiYGMbye_6IFT_CD8VNgExA7GyBpTnbqXP47-K8,5399
|
210
|
+
keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=fXLO4uHtWYTuEPmyN9q-F0AfnA1TAcq2Yl20pFpLt1s,5761
|
211
|
+
keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=Wm1A-HuOMxesAHFbEpP5ZkPbdDaVW5CTTwkyFpI-WdI,990
|
212
|
+
keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=cG5cV2bkiDJlKDiHX76BpnClsY5PcmLDezDg7emeiA4,2986
|
213
|
+
keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=7F1TQql3DEN517iVbNL60u6fQPimrGQvWBYh16ng8JU,3000
|
214
|
+
keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=JUfJuyobcEb60jp3sIxlq12gIH_qsn97h4hsecimipQ,19092
|
215
|
+
keras_hub/src/models/phi3/__init__.py,sha256=ENAOZhScWf9RbPmkiuICR5gr36ZMUn4AniLvJOrykj8,831
|
216
|
+
keras_hub/src/models/phi3/phi3_attention.py,sha256=BcYApteLjbrCzube7jHVagc0mMpDCReRyvsQhQcJzY8,9828
|
217
|
+
keras_hub/src/models/phi3/phi3_backbone.py,sha256=MvTE5bMmVpFHinZIEDBM1lfJFbgu4zg-0e-8_4hK-No,9470
|
218
|
+
keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=E-7iZfaQ75R4kAS7Gmsho2-obwQM6oP76CL1YaWy0gM,8825
|
219
|
+
keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=QsYrXZ2V3IlqBU-9zu0Ebf5EQZe8fnudVDp-ra0Enwg,3629
|
220
|
+
keras_hub/src/models/phi3/phi3_decoder.py,sha256=x2Bq_lhlPhImloTXDw5w1Cr73tRB8Ta9qpqS44z0EuE,10172
|
221
|
+
keras_hub/src/models/phi3/phi3_layernorm.py,sha256=r8Pqn9uHZSs3CbDbtjxED7cHtqj4a9TvQlGkzX5oxY8,1634
|
222
|
+
keras_hub/src/models/phi3/phi3_presets.py,sha256=S7_gIqPxU5FQAEnAE_68UrfGGSLOMvoVxL8SrMig0Ao,2195
|
223
|
+
keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=QVJIgpOw6iMicGrsPdW8eF84vV_stf0Tqm2qBJdsKH0,5597
|
224
|
+
keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=hlA-u2sTRYARDW3ABICPeiOYW1AJwr-5kvZk3EB5z7M,2577
|
225
|
+
keras_hub/src/models/resnet/__init__.py,sha256=41gttaQ7gt_ZaqDa_GKuMPfIk5c88-GrdC1h9fBUTXc,843
|
226
|
+
keras_hub/src/models/resnet/resnet_backbone.py,sha256=n9aKIpQcJCsAZrBiiN1vxUMHeQgYudRHdu_MsdRQZqw,33260
|
227
|
+
keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=I-dmx0O_ES3m3W5D4ICCux5zzDMZ2cM0vYGM9CDi5AE,5395
|
228
|
+
keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=Vrs9NBZRL5fgDXXY27GZJg5xMa5_wovi8A2z8kFl2nc,1129
|
229
|
+
keras_hub/src/models/resnet/resnet_image_converter.py,sha256=820drIU5Kkib7gC7T418mmrhsBHSkenfEiZ6-fkChv0,961
|
230
|
+
keras_hub/src/models/resnet/resnet_presets.py,sha256=DZoufeJyrVDL4aHSztQNzZj8Cb_OGX53Fn0Ze4RuZCI,3550
|
231
|
+
keras_hub/src/models/retinanet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
232
|
+
keras_hub/src/models/retinanet/anchor_generator.py,sha256=VQwgIAWh-6s28TU8MHFdl556U6h7rfF9B9iVI_zwI7c,7027
|
233
|
+
keras_hub/src/models/retinanet/box_matcher.py,sha256=SvGn_6d5sfjq522UaHpxVCE2S5Nwml_aj5yAKApTNE4,11420
|
234
|
+
keras_hub/src/models/retinanet/non_max_supression.py,sha256=5rDXA1Lk27T1TK3cwTrRIAbh8ceZLcbL4Koei96bBVQ,21522
|
235
|
+
keras_hub/src/models/roberta/__init__.py,sha256=P-9HOooyuSriDclHrf0YvdRy95bU08VPU7P8nBsy59U,849
|
236
|
+
keras_hub/src/models/roberta/roberta_backbone.py,sha256=KR3y11RpA4dvKmQ2HaRoWNTLGnLs6Lqx-HXYejQt4G8,6926
|
237
|
+
keras_hub/src/models/roberta/roberta_masked_lm.py,sha256=N0r6XEZAVMNgyTorFQzyT8EiEXtWO3R2PnL6s2P3YDQ,4763
|
238
|
+
keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py,sha256=hHoIHC-VRQN3hskTxlrBwDjKGeUqkm03IjV9IxTdPMQ,6437
|
239
|
+
keras_hub/src/models/roberta/roberta_presets.py,sha256=Ys5WnfBCzrRDLVLrAm412ojHY0yyj6KtSJWslN8re6g,1764
|
240
|
+
keras_hub/src/models/roberta/roberta_text_classifier.py,sha256=A4psd1Ef0ZSPMCsBpSLe5xmZqsFSn5XZ8gr_ekL9EoU,7268
|
241
|
+
keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py,sha256=xK0dGPi3nZ5mUoRtTSE8OhibQSaOvzkGELhPAJAB5sc,6579
|
242
|
+
keras_hub/src/models/roberta/roberta_tokenizer.py,sha256=RlKxa0eo7KYgRH5HSHrflna2LkB9pS6qjm2cr4DbuBg,3299
|
243
|
+
keras_hub/src/models/stable_diffusion_v3/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
244
|
+
keras_hub/src/models/stable_diffusion_v3/clip_encoder_block.py,sha256=6-bOVTGHCSniDYf616UhKmDHM239y8J5wdjZATXgxig,3556
|
245
|
+
keras_hub/src/models/stable_diffusion_v3/clip_preprocessor.py,sha256=90QYFvAlSk_F1HC80VG6IceVN0Q8paIHZQpbaG2pMec,3172
|
246
|
+
keras_hub/src/models/stable_diffusion_v3/clip_text_encoder.py,sha256=hVL3DaoYOTYd3bi0PUoKcMJTFxvsMwQ905uS7Ol__DU,5233
|
247
|
+
keras_hub/src/models/stable_diffusion_v3/clip_tokenizer.py,sha256=5CdplYY3L50tgEflJep2VjjVjlLz-JMmobGd6QnyI6I,6296
|
248
|
+
keras_hub/src/models/stable_diffusion_v3/mmdit.py,sha256=wlH6x9bS6gL3SsuiTpF541_2bwtrCOnUQIdPPavXCV0,14596
|
249
|
+
keras_hub/src/models/stable_diffusion_v3/mmdit_block.py,sha256=xY-iqzIHb_h_nzzuQKDbbjPi3738A8XlL3nIGc5Taas,10877
|
250
|
+
keras_hub/src/models/stable_diffusion_v3/t5_xxl_preprocessor.py,sha256=Liu6yg4ipCoisx0MGhJZvJTpOedl12NxxeBZtgrc0vs,2645
|
251
|
+
keras_hub/src/models/stable_diffusion_v3/t5_xxl_text_encoder.py,sha256=xiK82Z4ioTEpgJre8YQ_8GkrwFNsbyxYurmTUDCrweU,5735
|
252
|
+
keras_hub/src/models/stable_diffusion_v3/vae_attention.py,sha256=YQpVu4NaySi2pgczD-lru_jUYHg6YBxjDZvyclJ4T1s,4189
|
253
|
+
keras_hub/src/models/stable_diffusion_v3/vae_image_decoder.py,sha256=ww6s-h4YjNKdRhv9bv9Gx2UA1JYOjn54IDAWFtjLO1Y,5879
|
254
|
+
keras_hub/src/models/t5/__init__.py,sha256=1XZ5_R-qymPE1M1IyTqyNAW6_sWn8viJGXjqzB61sFw,819
|
255
|
+
keras_hub/src/models/t5/t5_backbone.py,sha256=y_gEISm9CxL_1goJLwR-moAxS-bzxNNcdL__w7e8Isw,10844
|
256
|
+
keras_hub/src/models/t5/t5_layer_norm.py,sha256=lVP_6IajHf8kX0APzGNdSZa-8IkkzsiLy5VcKOGhtkg,1216
|
257
|
+
keras_hub/src/models/t5/t5_multi_head_attention.py,sha256=ToRrHmJKiTJ2F8jF1HIgHCagme7MSxn9FIQGEXlH3Vo,12445
|
258
|
+
keras_hub/src/models/t5/t5_presets.py,sha256=2RT_NuJcqDdSeAsoSJXh5O_ax2H-s4YKTAoYErVPwPQ,3590
|
259
|
+
keras_hub/src/models/t5/t5_tokenizer.py,sha256=UnmZjiKhyb4AU7zALW3YAM_6_OGzYOVEGStBiw4ICvg,3103
|
260
|
+
keras_hub/src/models/t5/t5_transformer_layer.py,sha256=wnu108InkHH9YMmFNTbmgIqcrKQQUxeJ7S1dcjUfBSY,5933
|
261
|
+
keras_hub/src/models/vgg/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
262
|
+
keras_hub/src/models/vgg/vgg_backbone.py,sha256=dMXIGypDQdLztvbHz0JgSdTGXXAZj11vLxG5oHk4ZNw,5479
|
263
|
+
keras_hub/src/models/vgg/vgg_image_classifier.py,sha256=1bH6E46yHxN5tey2Mc62U3l4_5mTZ40U00bws-c6wqE,4106
|
264
|
+
keras_hub/src/models/vit_det/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
265
|
+
keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=Tyw3xTOW1rlHV-copzotzpaoPLWU8nA-LtViUGGgSlw,8541
|
266
|
+
keras_hub/src/models/vit_det/vit_layers.py,sha256=JeUzOT2jmSOoJ_OiHOfLSkkCUZ5mlK5Mfd21DwudRCQ,20436
|
267
|
+
keras_hub/src/models/whisper/__init__.py,sha256=FI-xj6FwZDAAdCfKhOrE1_roQ8cXhD1gK4G6CLTvPQo,849
|
268
|
+
keras_hub/src/models/whisper/whisper_audio_converter.py,sha256=JqtA2kLUMFKZ4FrI8g2piEjahE-0-F3Yp4qQXS1cYf4,8973
|
269
|
+
keras_hub/src/models/whisper/whisper_backbone.py,sha256=Y0HVz-RqBHc-dtP4BVIHTfSTx7LZB7kjuJw-925oewQ,12101
|
270
|
+
keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py,sha256=LhFOdBaZio6o4B3GYsxljCftuw_XfhUgxdAhM5m_z5I,5533
|
271
|
+
keras_hub/src/models/whisper/whisper_decoder.py,sha256=yp6Qw7RfTMvlqBRCunsD_mtYX422JAGA7u6MdC8D9dE,5856
|
272
|
+
keras_hub/src/models/whisper/whisper_encoder.py,sha256=h2ailNfJlTqvbxIYWk2V2OJzbNGmiukzqgd6TbHxW0M,4316
|
273
|
+
keras_hub/src/models/whisper/whisper_presets.py,sha256=IM3XJtvC3veclEIpAPCzWn2tVDKbCg9IWTPT9p3mmAo,5754
|
274
|
+
keras_hub/src/models/whisper/whisper_tokenizer.py,sha256=Ii6B8X51j2ySYTOswVeZNl30tn53i_0bLBquUDfkuC0,6161
|
275
|
+
keras_hub/src/models/xlm_roberta/__init__.py,sha256=Ra4PvYYrKK4LHzq3nHmDOAOwW5Ka1k92RplTvQ1fti8,889
|
276
|
+
keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py,sha256=Msm1U2pJbrC3XfeCpSvmdC4RiIRa3-9yckvc3lSr4OM,3509
|
277
|
+
keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py,sha256=37_Qn1x-_TTHGG_29VlbQcRb41pAiTK-c88jlrt098s,4965
|
278
|
+
keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py,sha256=a5uVVbROS30hqh2AYmpz0Bo8HWfuwOXSS5pPoEQzJlE,6581
|
279
|
+
keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py,sha256=LsaoAJ8ddyTDCJ6JmVlVy00C4r8khZZOg3YmW3aY5YA,1762
|
280
|
+
keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py,sha256=XN4o9CVeCXiEBM2L1nHBksJXYQ643P9EY20FllvqpGo,7824
|
281
|
+
keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py,sha256=DFnJMgim_NJrzppWNSSUDi3sUASiKithFXCfamtsuZo,7112
|
282
|
+
keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py,sha256=8r5ATeJenQERGhjhw_gB6tvID256VHjH5ASTHSsd8mA,7361
|
283
|
+
keras_hub/src/models/xlnet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
284
|
+
keras_hub/src/models/xlnet/relative_attention.py,sha256=MIJy19BvbMhWhV8KLAVaEzyRA9jpJ2iz1GuxDgMtdI4,18677
|
285
|
+
keras_hub/src/models/xlnet/xlnet_backbone.py,sha256=JgBYaXUPrCvvxHmOuZbWHWhpHfeBosSdE399Q6H7zg8,8397
|
286
|
+
keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py,sha256=mhyK8Rw-tX6hcEKXofP6UoNAukWgv0ehTAxanw5wTKM,4525
|
287
|
+
keras_hub/src/models/xlnet/xlnet_encoder.py,sha256=CvcWil-IvAOChljAJuWo0H8NdTuRwCDwzP926D2dkU8,13339
|
288
|
+
keras_hub/src/samplers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
289
|
+
keras_hub/src/samplers/beam_sampler.py,sha256=yd5ITvf4UUJsxgTo1eKjMHxxT6BtOd1QhMk07-0DpC4,7768
|
290
|
+
keras_hub/src/samplers/contrastive_sampler.py,sha256=NMzweeU-Imptfho_da4z2I8gbb7d9F9qqJ8OBw9_zkw,8908
|
291
|
+
keras_hub/src/samplers/greedy_sampler.py,sha256=AwOcFzcN9NxqDYLxENJTa0W-uKl_Sj_MdMafyy9FXY8,1544
|
292
|
+
keras_hub/src/samplers/random_sampler.py,sha256=oi7zE6QX1K7YbmioCtqQfJmfh_nGL7uE1ICxwfdtYNo,2295
|
293
|
+
keras_hub/src/samplers/sampler.py,sha256=PeqAV_dBB1TrkUeOLm4ABbv3LXu9B-IrsPoDjqVfjxM,8655
|
294
|
+
keras_hub/src/samplers/serialization.py,sha256=Z8u-nRdv7K1RPS_0rMYJwkunoFmI2xPCjZ61R8s3zUg,3356
|
295
|
+
keras_hub/src/samplers/top_k_sampler.py,sha256=xLexmP7FrW_W2657ObeJUgbeEox8AbB9uXIBKODVuKU,2836
|
296
|
+
keras_hub/src/samplers/top_p_sampler.py,sha256=Mx4Ytti2BsVh6uLPnBeNZ5znBjvXrnDndmbMlMAMRbk,3986
|
297
|
+
keras_hub/src/tests/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
298
|
+
keras_hub/src/tests/test_case.py,sha256=i8-jrXric88acmQTGIn0KCp157EsWZBCx88qHKyAjSM,25730
|
299
|
+
keras_hub/src/tokenizers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
300
|
+
keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=5VTFUGSQGd_NMwuQc9kBA5KU1rLcJpNYnRPl28NMFWo,24435
|
301
|
+
keras_hub/src/tokenizers/byte_tokenizer.py,sha256=ueijdnipIG7G4a_cals0y6t7oVm-dyEcSVY2JkX_5i4,11234
|
302
|
+
keras_hub/src/tokenizers/sentence_piece_tokenizer.py,sha256=nmYwaoK4yLaqp1c0JxXI4JZS3fmR4qIyuRnf2zExjmg,10148
|
303
|
+
keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py,sha256=0VZ-5QdvVKFp8_tSZiM8qROYhrrfrg-GCJ1BllXSd1g,5420
|
304
|
+
keras_hub/src/tokenizers/tokenizer.py,sha256=sySYL7Nym6N-NIXk1pu9zsgbfFIOGvPvNRy-R3kXlzA,10098
|
305
|
+
keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=z720-paGm8tV-rhs0B8QHD3P2syPKVdXMyQqLdSjTwM,14118
|
306
|
+
keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=AWFCHCxgRJ3_iHLxi1s9gTIjTrdtqvJAxqN1ugEXLvc,20529
|
307
|
+
keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=_W07w57ZHuqpAK7U8Qs4neFW4UEzhRdfyVy2oDs02d8,7136
|
308
|
+
keras_hub/src/utils/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
309
|
+
keras_hub/src/utils/keras_utils.py,sha256=r0ro8lBfqCgWT_S5dXMVuj_nQNxe_Dwsowrc1dSdHT0,2555
|
310
|
+
keras_hub/src/utils/pipeline_model.py,sha256=9GNlV8RBV18oFQUkXDCizyyBI8sYhB_7ejxI2dEPVdw,9610
|
311
|
+
keras_hub/src/utils/preset_utils.py,sha256=jMKJBYJO4AlT1DNis6kKTwDZ9P-JdfJC5PAU3e7ZFz0,29547
|
312
|
+
keras_hub/src/utils/python_utils.py,sha256=G5oCVQggmqgkgD1NXuBQEgNCFmDSevYv7bz-1cAVFAs,787
|
313
|
+
keras_hub/src/utils/tensor_utils.py,sha256=XpWORE8iUzHXv1E1akiYDep07ndZJRKvjsKVljMvtUU,11362
|
314
|
+
keras_hub/src/utils/imagenet/__init__.py,sha256=AK2s8L-VARI5OmlT6G3vtlKIVyjwLfgVwXfxzhhSCq4,585
|
315
|
+
keras_hub/src/utils/imagenet/imagenet_utils.py,sha256=0iHrAQbh5DCa9Dh7tJiQeJc7AGzNO7j0cFEWS2Of16w,39889
|
316
|
+
keras_hub/src/utils/timm/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
317
|
+
keras_hub/src/utils/timm/convert_resnet.py,sha256=hZNj_kpwSA9Jp3NRDHtCPzHFzRKKPnidKQUAoqcdENk,6810
|
318
|
+
keras_hub/src/utils/timm/preset_loader.py,sha256=EgS5xBP3sWYiTgKmOAMmj3b3kRWcPnsWLieReLHZ178,2928
|
319
|
+
keras_hub/src/utils/transformers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
|
320
|
+
keras_hub/src/utils/transformers/convert_albert.py,sha256=7b9X1TLrWfHieoeX_K-EXTagkl4Rp9AfPjsPrwArBGY,8280
|
321
|
+
keras_hub/src/utils/transformers/convert_bart.py,sha256=RXmPf_XUZrUyqDaOV9T7qVNEP4rAVR44oK1aRZI0v78,14996
|
322
|
+
keras_hub/src/utils/transformers/convert_bert.py,sha256=yeQxwiTkI2QSqILI8eqBHe2WKbk6doYHCJpwKcupUNQ,6562
|
323
|
+
keras_hub/src/utils/transformers/convert_distilbert.py,sha256=WYDKtlHCvZdM3mAqJqab6rtwz8w5nB7o7KWqkcTxd1Q,7083
|
324
|
+
keras_hub/src/utils/transformers/convert_gemma.py,sha256=C6XMyKk7syA4gTq9Z9GvCAvuvkhbZEEpEQo2aEQ_8W0,7118
|
325
|
+
keras_hub/src/utils/transformers/convert_gpt2.py,sha256=ksPjQhZG58F0EeC9dcpCl-hgbLW_jj0R-1xBKYa8X4w,6288
|
326
|
+
keras_hub/src/utils/transformers/convert_llama3.py,sha256=a5Izn0g_iUes3KOWfIfjLRZvA7oC-XIbpmTN2i3wm4I,5035
|
327
|
+
keras_hub/src/utils/transformers/convert_mistral.py,sha256=4QStizMS6ESEPjSI-ls6jc3bCDzX44HPSDxUK_dExvw,5345
|
328
|
+
keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=BT5eX1QzbjCQCopbMstiejQQWQiB_N77bpD5FMUygEo,11234
|
329
|
+
keras_hub/src/utils/transformers/preset_loader.py,sha256=9x9hLhDh_6PAHG5gay5rVoEVyt-gXTQGrnprjMLKvCM,3294
|
330
|
+
keras_hub/src/utils/transformers/safetensor_utils.py,sha256=2O8lcCf9yIFt5xiRVOtF1ZkPb5pfhOfDJotBaanD9Zo,3547
|
331
|
+
keras_hub_nightly-0.16.0.dev2024092017.dist-info/METADATA,sha256=PSZLjVmxpfU4G_i52vw-twg4xESYRhyqicE-Ctk5mbA,7059
|
332
|
+
keras_hub_nightly-0.16.0.dev2024092017.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
333
|
+
keras_hub_nightly-0.16.0.dev2024092017.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
|
334
|
+
keras_hub_nightly-0.16.0.dev2024092017.dist-info/RECORD,,
|
@@ -1,276 +0,0 @@
|
|
1
|
-
# Copyright 2024 The KerasHub Authors
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
|
16
|
-
import keras
|
17
|
-
|
18
|
-
from keras_hub.src.api_export import keras_hub_export
|
19
|
-
from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
|
20
|
-
from keras_hub.src.models.bart.bart_tokenizer import BartTokenizer
|
21
|
-
from keras_hub.src.models.preprocessor import Preprocessor
|
22
|
-
from keras_hub.src.utils.keras_utils import (
|
23
|
-
convert_inputs_to_list_of_tensor_segments,
|
24
|
-
)
|
25
|
-
|
26
|
-
|
27
|
-
@keras_hub_export("keras_hub.models.BartPreprocessor")
|
28
|
-
class BartPreprocessor(Preprocessor):
|
29
|
-
"""A BART preprocessing layer which tokenizes and packs inputs.
|
30
|
-
|
31
|
-
This preprocessing layer will do three things:
|
32
|
-
|
33
|
-
1. Tokenize both encoder inputs and decoder inputs using the `tokenizer`.
|
34
|
-
Both inputs can contain only one segment.
|
35
|
-
2. Add the appropriate special tokens - `"<s>"`, `"</s>"` and `"<pad>"`.
|
36
|
-
3. Construct a dictionary with keys `"encoder_token_ids"`,
|
37
|
-
`"encoder_padding_mask"`, `"decoder_token_ids"`, `"decoder_padding_mask"`
|
38
|
-
that can be passed directly to a BART model.
|
39
|
-
|
40
|
-
Args:
|
41
|
-
tokenizer: A `keras_hub.models.BartTokenizer` instance.
|
42
|
-
encoder_sequence_length: The length of the packed encoder inputs.
|
43
|
-
decoder_sequence_length: The length of the packed decoder inputs.
|
44
|
-
|
45
|
-
Call arguments:
|
46
|
-
x: A dictionary with `encoder_text` and `decoder_text` as its keys.
|
47
|
-
Each value in the dictionary should be a tensor of single string
|
48
|
-
sequences. Inputs may be batched or unbatched. Raw python inputs
|
49
|
-
will be converted to tensors.
|
50
|
-
y: Any label data. Will be passed through unaltered.
|
51
|
-
sample_weight: Any label weight data. Will be passed through unaltered.
|
52
|
-
|
53
|
-
Examples:
|
54
|
-
|
55
|
-
Directly calling the layer on data.
|
56
|
-
```python
|
57
|
-
preprocessor = keras_hub.models.BartPreprocessor.from_preset("bart_base_en")
|
58
|
-
|
59
|
-
# Preprocess unbatched inputs.
|
60
|
-
inputs = {
|
61
|
-
"encoder_text": "The fox was sleeping.",
|
62
|
-
"decoder_text": "The fox was awake."
|
63
|
-
}
|
64
|
-
preprocessor(inputs)
|
65
|
-
|
66
|
-
# Preprocess batched inputs.
|
67
|
-
inputs = {
|
68
|
-
"encoder_text": ["The fox was sleeping.", "The lion was quiet."],
|
69
|
-
"decoder_text": ["The fox was awake.", "The lion was roaring."]
|
70
|
-
}
|
71
|
-
preprocessor(inputs)
|
72
|
-
|
73
|
-
# Custom vocabulary.
|
74
|
-
vocab = {
|
75
|
-
"<s>": 0,
|
76
|
-
"<pad>": 1,
|
77
|
-
"</s>": 2,
|
78
|
-
"Ġafter": 5,
|
79
|
-
"noon": 6,
|
80
|
-
"Ġsun": 7,
|
81
|
-
}
|
82
|
-
merges = ["Ġ a", "Ġ s", "Ġ n", "e r", "n o", "o n", "Ġs u", "Ġa f", "no on"]
|
83
|
-
merges += ["Ġsu n", "Ġaf t", "Ġaft er"]
|
84
|
-
|
85
|
-
tokenizer = keras_hub.models.BartTokenizer(
|
86
|
-
vocabulary=vocab,
|
87
|
-
merges=merges,
|
88
|
-
)
|
89
|
-
preprocessor = keras_hub.models.BartPreprocessor(
|
90
|
-
tokenizer=tokenizer,
|
91
|
-
encoder_sequence_length=20,
|
92
|
-
decoder_sequence_length=10,
|
93
|
-
)
|
94
|
-
inputs = {
|
95
|
-
"encoder_text": "The fox was sleeping.",
|
96
|
-
"decoder_text": "The fox was awake."
|
97
|
-
}
|
98
|
-
preprocessor(inputs)
|
99
|
-
```
|
100
|
-
|
101
|
-
Mapping with `tf.data.Dataset`.
|
102
|
-
```python
|
103
|
-
preprocessor = keras_hub.models.BartPreprocessor.from_preset("bart_base_en")
|
104
|
-
|
105
|
-
# Map labeled single sentences.
|
106
|
-
features = {
|
107
|
-
"encoder_text": tf.constant(
|
108
|
-
["The fox was sleeping.", "The lion was quiet."]
|
109
|
-
),
|
110
|
-
"decoder_text": tf.constant(
|
111
|
-
["The fox was awake.", "The lion was silent."]
|
112
|
-
)
|
113
|
-
}
|
114
|
-
labels = tf.constant(["True", "False"])
|
115
|
-
ds = tf.data.Dataset.from_tensor_slices((features, labels))
|
116
|
-
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
117
|
-
|
118
|
-
# Map unlabeled single sentences.
|
119
|
-
features = {
|
120
|
-
"encoder_text": tf.constant(
|
121
|
-
["The fox was sleeping.", "The lion was quiet."]
|
122
|
-
),
|
123
|
-
"decoder_text": tf.constant(
|
124
|
-
["The fox was awake.", "The lion was roaring."]
|
125
|
-
)
|
126
|
-
}
|
127
|
-
ds = tf.data.Dataset.from_tensor_slices(features)
|
128
|
-
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
129
|
-
```
|
130
|
-
"""
|
131
|
-
|
132
|
-
tokenizer_cls = BartTokenizer
|
133
|
-
|
134
|
-
def __init__(
|
135
|
-
self,
|
136
|
-
tokenizer,
|
137
|
-
encoder_sequence_length=1024,
|
138
|
-
decoder_sequence_length=1024,
|
139
|
-
**kwargs,
|
140
|
-
):
|
141
|
-
super().__init__(**kwargs)
|
142
|
-
self.tokenizer = tokenizer
|
143
|
-
self.encoder_packer = None
|
144
|
-
self.decoder_packer = None
|
145
|
-
self.encoder_sequence_length = encoder_sequence_length
|
146
|
-
self.decoder_sequence_length = decoder_sequence_length
|
147
|
-
|
148
|
-
def build(self, input_shape):
|
149
|
-
# Defer packer creation to `build()` so that we can be sure tokenizer
|
150
|
-
# assets have loaded when restoring a saved model.
|
151
|
-
|
152
|
-
# TODO: Use `MultiSegmentPacker` instead of `StartEndPacker` once we
|
153
|
-
# want to move to multi-segment packing and have improved
|
154
|
-
# `MultiSegmentPacker`'s performance.
|
155
|
-
self.encoder_packer = StartEndPacker(
|
156
|
-
start_value=self.tokenizer.start_token_id,
|
157
|
-
end_value=self.tokenizer.end_token_id,
|
158
|
-
pad_value=self.tokenizer.pad_token_id,
|
159
|
-
sequence_length=self.encoder_sequence_length,
|
160
|
-
return_padding_mask=True,
|
161
|
-
)
|
162
|
-
|
163
|
-
# The decoder is packed a bit differently; the format is as follows:
|
164
|
-
# `[end_token_id, start_token_id, tokens..., end_token_id, padding...]`.
|
165
|
-
self.decoder_packer = StartEndPacker(
|
166
|
-
start_value=[
|
167
|
-
self.tokenizer.end_token_id,
|
168
|
-
self.tokenizer.start_token_id,
|
169
|
-
],
|
170
|
-
end_value=self.tokenizer.end_token_id,
|
171
|
-
pad_value=self.tokenizer.pad_token_id,
|
172
|
-
sequence_length=self.decoder_sequence_length,
|
173
|
-
return_padding_mask=True,
|
174
|
-
)
|
175
|
-
self.built = True
|
176
|
-
|
177
|
-
def call(
|
178
|
-
self,
|
179
|
-
x,
|
180
|
-
y=None,
|
181
|
-
sample_weight=None,
|
182
|
-
*,
|
183
|
-
encoder_sequence_length=None,
|
184
|
-
decoder_sequence_length=None,
|
185
|
-
# `sequence_length` is an alias for `decoder_sequence_length`
|
186
|
-
sequence_length=None,
|
187
|
-
):
|
188
|
-
if not (
|
189
|
-
isinstance(x, dict)
|
190
|
-
and all(k in x for k in ("encoder_text", "decoder_text"))
|
191
|
-
):
|
192
|
-
raise ValueError(
|
193
|
-
'`x` must be a dictionary, containing the keys `"encoder_text"`'
|
194
|
-
f' and `"decoder_text"`. Received x={x}.'
|
195
|
-
)
|
196
|
-
|
197
|
-
if encoder_sequence_length is None:
|
198
|
-
encoder_sequence_length = self.encoder_sequence_length
|
199
|
-
decoder_sequence_length = decoder_sequence_length or sequence_length
|
200
|
-
if decoder_sequence_length is None:
|
201
|
-
decoder_sequence_length = self.decoder_sequence_length
|
202
|
-
|
203
|
-
encoder_text = x["encoder_text"]
|
204
|
-
decoder_text = x["decoder_text"]
|
205
|
-
|
206
|
-
encoder_text = convert_inputs_to_list_of_tensor_segments(encoder_text)
|
207
|
-
decoder_text = convert_inputs_to_list_of_tensor_segments(decoder_text)
|
208
|
-
|
209
|
-
if len(encoder_text) > 1 or len(decoder_text) > 1:
|
210
|
-
raise ValueError(
|
211
|
-
'`BARTPreprocessor` requires both `"encoder_text"` and '
|
212
|
-
f'`"decoder_text"` to contain only one segment, but received '
|
213
|
-
f"{len(encoder_text)} and {len(decoder_text)}, respectively."
|
214
|
-
)
|
215
|
-
|
216
|
-
encoder_inputs = self.tokenizer(encoder_text[0])
|
217
|
-
encoder_token_ids, encoder_padding_mask = self.encoder_packer(
|
218
|
-
encoder_inputs,
|
219
|
-
sequence_length=encoder_sequence_length,
|
220
|
-
)
|
221
|
-
|
222
|
-
decoder_inputs = self.tokenizer(decoder_text[0])
|
223
|
-
decoder_token_ids, decoder_padding_mask = self.decoder_packer(
|
224
|
-
decoder_inputs,
|
225
|
-
sequence_length=decoder_sequence_length,
|
226
|
-
)
|
227
|
-
|
228
|
-
x = {
|
229
|
-
"encoder_token_ids": encoder_token_ids,
|
230
|
-
"encoder_padding_mask": encoder_padding_mask,
|
231
|
-
"decoder_token_ids": decoder_token_ids,
|
232
|
-
"decoder_padding_mask": decoder_padding_mask,
|
233
|
-
}
|
234
|
-
|
235
|
-
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
236
|
-
|
237
|
-
def get_config(self):
|
238
|
-
config = super().get_config()
|
239
|
-
config.update(
|
240
|
-
{
|
241
|
-
"encoder_sequence_length": self.encoder_sequence_length,
|
242
|
-
"decoder_sequence_length": self.decoder_sequence_length,
|
243
|
-
}
|
244
|
-
)
|
245
|
-
return config
|
246
|
-
|
247
|
-
@property
|
248
|
-
def encoder_sequence_length(self):
|
249
|
-
"""The padded length of encoder input sequences."""
|
250
|
-
return self._encoder_sequence_length
|
251
|
-
|
252
|
-
@encoder_sequence_length.setter
|
253
|
-
def encoder_sequence_length(self, value):
|
254
|
-
self._encoder_sequence_length = value
|
255
|
-
if self.encoder_packer is not None:
|
256
|
-
self.encoder_packer.sequence_length = value
|
257
|
-
|
258
|
-
@property
|
259
|
-
def decoder_sequence_length(self):
|
260
|
-
"""The padded length of decoder input sequences."""
|
261
|
-
return self._decoder_sequence_length
|
262
|
-
|
263
|
-
@decoder_sequence_length.setter
|
264
|
-
def decoder_sequence_length(self, value):
|
265
|
-
self._decoder_sequence_length = value
|
266
|
-
if self.decoder_packer is not None:
|
267
|
-
self.decoder_packer.sequence_length = value
|
268
|
-
|
269
|
-
@property
|
270
|
-
def sequence_length(self):
|
271
|
-
"""Alias for `decoder_sequence_length`."""
|
272
|
-
return self.decoder_sequence_length
|
273
|
-
|
274
|
-
@sequence_length.setter
|
275
|
-
def sequence_length(self, value):
|
276
|
-
self.decoder_sequence_length = value
|