keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl → 0.16.0.dev2024092017__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (198) hide show
  1. keras_hub/__init__.py +0 -6
  2. keras_hub/api/__init__.py +2 -0
  3. keras_hub/api/bounding_box/__init__.py +36 -0
  4. keras_hub/api/layers/__init__.py +14 -0
  5. keras_hub/api/models/__init__.py +97 -48
  6. keras_hub/api/tokenizers/__init__.py +30 -0
  7. keras_hub/api/utils/__init__.py +22 -0
  8. keras_hub/src/api_export.py +15 -9
  9. keras_hub/src/bounding_box/__init__.py +13 -0
  10. keras_hub/src/bounding_box/converters.py +529 -0
  11. keras_hub/src/bounding_box/formats.py +162 -0
  12. keras_hub/src/bounding_box/iou.py +263 -0
  13. keras_hub/src/bounding_box/to_dense.py +95 -0
  14. keras_hub/src/bounding_box/to_ragged.py +99 -0
  15. keras_hub/src/bounding_box/utils.py +194 -0
  16. keras_hub/src/bounding_box/validate_format.py +99 -0
  17. keras_hub/src/layers/preprocessing/audio_converter.py +121 -0
  18. keras_hub/src/layers/preprocessing/image_converter.py +130 -0
  19. keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +2 -0
  20. keras_hub/src/layers/preprocessing/multi_segment_packer.py +9 -8
  21. keras_hub/src/layers/preprocessing/preprocessing_layer.py +2 -29
  22. keras_hub/src/layers/preprocessing/random_deletion.py +33 -31
  23. keras_hub/src/layers/preprocessing/random_swap.py +33 -31
  24. keras_hub/src/layers/preprocessing/resizing_image_converter.py +101 -0
  25. keras_hub/src/layers/preprocessing/start_end_packer.py +3 -2
  26. keras_hub/src/models/albert/__init__.py +1 -2
  27. keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +6 -86
  28. keras_hub/src/models/albert/{albert_classifier.py → albert_text_classifier.py} +34 -10
  29. keras_hub/src/models/albert/{albert_preprocessor.py → albert_text_classifier_preprocessor.py} +14 -70
  30. keras_hub/src/models/albert/albert_tokenizer.py +17 -36
  31. keras_hub/src/models/backbone.py +12 -34
  32. keras_hub/src/models/bart/__init__.py +1 -2
  33. keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +21 -148
  34. keras_hub/src/models/bart/bart_tokenizer.py +12 -39
  35. keras_hub/src/models/bert/__init__.py +1 -5
  36. keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +6 -87
  37. keras_hub/src/models/bert/bert_presets.py +1 -4
  38. keras_hub/src/models/bert/{bert_classifier.py → bert_text_classifier.py} +19 -12
  39. keras_hub/src/models/bert/{bert_preprocessor.py → bert_text_classifier_preprocessor.py} +14 -70
  40. keras_hub/src/models/bert/bert_tokenizer.py +17 -35
  41. keras_hub/src/models/bloom/__init__.py +1 -2
  42. keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +6 -91
  43. keras_hub/src/models/bloom/bloom_tokenizer.py +12 -41
  44. keras_hub/src/models/causal_lm.py +10 -29
  45. keras_hub/src/models/causal_lm_preprocessor.py +195 -0
  46. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +54 -15
  47. keras_hub/src/models/deberta_v3/__init__.py +1 -4
  48. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +14 -77
  49. keras_hub/src/models/deberta_v3/{deberta_v3_classifier.py → deberta_v3_text_classifier.py} +16 -11
  50. keras_hub/src/models/deberta_v3/{deberta_v3_preprocessor.py → deberta_v3_text_classifier_preprocessor.py} +23 -64
  51. keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +30 -25
  52. keras_hub/src/models/densenet/densenet_backbone.py +46 -22
  53. keras_hub/src/models/distil_bert/__init__.py +1 -4
  54. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +14 -76
  55. keras_hub/src/models/distil_bert/{distil_bert_classifier.py → distil_bert_text_classifier.py} +17 -12
  56. keras_hub/src/models/distil_bert/{distil_bert_preprocessor.py → distil_bert_text_classifier_preprocessor.py} +23 -63
  57. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +19 -35
  58. keras_hub/src/models/efficientnet/__init__.py +13 -0
  59. keras_hub/src/models/efficientnet/efficientnet_backbone.py +569 -0
  60. keras_hub/src/models/efficientnet/fusedmbconv.py +229 -0
  61. keras_hub/src/models/efficientnet/mbconv.py +238 -0
  62. keras_hub/src/models/electra/__init__.py +1 -2
  63. keras_hub/src/models/electra/electra_tokenizer.py +17 -32
  64. keras_hub/src/models/f_net/__init__.py +1 -2
  65. keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +12 -78
  66. keras_hub/src/models/f_net/{f_net_classifier.py → f_net_text_classifier.py} +17 -10
  67. keras_hub/src/models/f_net/{f_net_preprocessor.py → f_net_text_classifier_preprocessor.py} +19 -63
  68. keras_hub/src/models/f_net/f_net_tokenizer.py +17 -35
  69. keras_hub/src/models/falcon/__init__.py +1 -2
  70. keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +6 -89
  71. keras_hub/src/models/falcon/falcon_tokenizer.py +12 -35
  72. keras_hub/src/models/gemma/__init__.py +1 -2
  73. keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +6 -90
  74. keras_hub/src/models/gemma/gemma_decoder_block.py +1 -1
  75. keras_hub/src/models/gemma/gemma_tokenizer.py +12 -23
  76. keras_hub/src/models/gpt2/__init__.py +1 -2
  77. keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +6 -89
  78. keras_hub/src/models/gpt2/gpt2_preprocessor.py +12 -90
  79. keras_hub/src/models/gpt2/gpt2_tokenizer.py +12 -34
  80. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +6 -91
  81. keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +12 -34
  82. keras_hub/src/models/image_classifier.py +0 -5
  83. keras_hub/src/models/image_classifier_preprocessor.py +83 -0
  84. keras_hub/src/models/llama/__init__.py +1 -2
  85. keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +6 -85
  86. keras_hub/src/models/llama/llama_tokenizer.py +12 -25
  87. keras_hub/src/models/llama3/__init__.py +1 -2
  88. keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +6 -89
  89. keras_hub/src/models/llama3/llama3_tokenizer.py +12 -33
  90. keras_hub/src/models/masked_lm.py +0 -2
  91. keras_hub/src/models/masked_lm_preprocessor.py +156 -0
  92. keras_hub/src/models/mistral/__init__.py +1 -2
  93. keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +6 -91
  94. keras_hub/src/models/mistral/mistral_tokenizer.py +12 -23
  95. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +2 -2
  96. keras_hub/src/models/mobilenet/__init__.py +13 -0
  97. keras_hub/src/models/mobilenet/mobilenet_backbone.py +530 -0
  98. keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +114 -0
  99. keras_hub/src/models/opt/__init__.py +1 -2
  100. keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +6 -93
  101. keras_hub/src/models/opt/opt_tokenizer.py +12 -41
  102. keras_hub/src/models/pali_gemma/__init__.py +1 -4
  103. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +28 -28
  104. keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +25 -0
  105. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +5 -5
  106. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +11 -3
  107. keras_hub/src/models/phi3/__init__.py +1 -2
  108. keras_hub/src/models/phi3/phi3_causal_lm.py +3 -9
  109. keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +6 -89
  110. keras_hub/src/models/phi3/phi3_tokenizer.py +12 -36
  111. keras_hub/src/models/preprocessor.py +72 -83
  112. keras_hub/src/models/resnet/__init__.py +6 -0
  113. keras_hub/src/models/resnet/resnet_backbone.py +390 -42
  114. keras_hub/src/models/resnet/resnet_image_classifier.py +33 -6
  115. keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +28 -0
  116. keras_hub/src/models/{llama3/llama3_preprocessor.py → resnet/resnet_image_converter.py} +7 -5
  117. keras_hub/src/models/resnet/resnet_presets.py +95 -0
  118. keras_hub/src/models/retinanet/__init__.py +13 -0
  119. keras_hub/src/models/retinanet/anchor_generator.py +175 -0
  120. keras_hub/src/models/retinanet/box_matcher.py +259 -0
  121. keras_hub/src/models/retinanet/non_max_supression.py +578 -0
  122. keras_hub/src/models/roberta/__init__.py +1 -2
  123. keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +22 -74
  124. keras_hub/src/models/roberta/{roberta_classifier.py → roberta_text_classifier.py} +16 -11
  125. keras_hub/src/models/roberta/{roberta_preprocessor.py → roberta_text_classifier_preprocessor.py} +21 -53
  126. keras_hub/src/models/roberta/roberta_tokenizer.py +13 -52
  127. keras_hub/src/models/seq_2_seq_lm_preprocessor.py +269 -0
  128. keras_hub/src/models/stable_diffusion_v3/__init__.py +13 -0
  129. keras_hub/src/models/stable_diffusion_v3/clip_encoder_block.py +103 -0
  130. keras_hub/src/models/stable_diffusion_v3/clip_preprocessor.py +93 -0
  131. keras_hub/src/models/stable_diffusion_v3/clip_text_encoder.py +149 -0
  132. keras_hub/src/models/stable_diffusion_v3/clip_tokenizer.py +167 -0
  133. keras_hub/src/models/stable_diffusion_v3/mmdit.py +427 -0
  134. keras_hub/src/models/stable_diffusion_v3/mmdit_block.py +317 -0
  135. keras_hub/src/models/stable_diffusion_v3/t5_xxl_preprocessor.py +74 -0
  136. keras_hub/src/models/stable_diffusion_v3/t5_xxl_text_encoder.py +155 -0
  137. keras_hub/src/models/stable_diffusion_v3/vae_attention.py +126 -0
  138. keras_hub/src/models/stable_diffusion_v3/vae_image_decoder.py +186 -0
  139. keras_hub/src/models/t5/__init__.py +1 -2
  140. keras_hub/src/models/t5/t5_tokenizer.py +13 -23
  141. keras_hub/src/models/task.py +71 -116
  142. keras_hub/src/models/{classifier.py → text_classifier.py} +19 -13
  143. keras_hub/src/models/text_classifier_preprocessor.py +138 -0
  144. keras_hub/src/models/whisper/__init__.py +1 -2
  145. keras_hub/src/models/whisper/{whisper_audio_feature_extractor.py → whisper_audio_converter.py} +20 -18
  146. keras_hub/src/models/whisper/whisper_backbone.py +0 -3
  147. keras_hub/src/models/whisper/whisper_presets.py +10 -10
  148. keras_hub/src/models/whisper/whisper_tokenizer.py +20 -16
  149. keras_hub/src/models/xlm_roberta/__init__.py +1 -4
  150. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +26 -72
  151. keras_hub/src/models/xlm_roberta/{xlm_roberta_classifier.py → xlm_roberta_text_classifier.py} +16 -11
  152. keras_hub/src/models/xlm_roberta/{xlm_roberta_preprocessor.py → xlm_roberta_text_classifier_preprocessor.py} +26 -53
  153. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +25 -10
  154. keras_hub/src/tests/test_case.py +46 -0
  155. keras_hub/src/tokenizers/byte_pair_tokenizer.py +30 -17
  156. keras_hub/src/tokenizers/byte_tokenizer.py +14 -15
  157. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +20 -7
  158. keras_hub/src/tokenizers/tokenizer.py +67 -32
  159. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +14 -15
  160. keras_hub/src/tokenizers/word_piece_tokenizer.py +34 -47
  161. keras_hub/src/utils/imagenet/__init__.py +13 -0
  162. keras_hub/src/utils/imagenet/imagenet_utils.py +1067 -0
  163. keras_hub/src/utils/keras_utils.py +0 -50
  164. keras_hub/src/utils/preset_utils.py +230 -68
  165. keras_hub/src/utils/tensor_utils.py +187 -69
  166. keras_hub/src/utils/timm/convert_resnet.py +19 -16
  167. keras_hub/src/utils/timm/preset_loader.py +66 -0
  168. keras_hub/src/utils/transformers/convert_albert.py +193 -0
  169. keras_hub/src/utils/transformers/convert_bart.py +373 -0
  170. keras_hub/src/utils/transformers/convert_bert.py +7 -17
  171. keras_hub/src/utils/transformers/convert_distilbert.py +10 -20
  172. keras_hub/src/utils/transformers/convert_gemma.py +5 -19
  173. keras_hub/src/utils/transformers/convert_gpt2.py +5 -18
  174. keras_hub/src/utils/transformers/convert_llama3.py +7 -18
  175. keras_hub/src/utils/transformers/convert_mistral.py +129 -0
  176. keras_hub/src/utils/transformers/convert_pali_gemma.py +7 -29
  177. keras_hub/src/utils/transformers/preset_loader.py +77 -0
  178. keras_hub/src/utils/transformers/safetensor_utils.py +2 -2
  179. keras_hub/src/version_utils.py +1 -1
  180. keras_hub_nightly-0.16.0.dev2024092017.dist-info/METADATA +202 -0
  181. keras_hub_nightly-0.16.0.dev2024092017.dist-info/RECORD +334 -0
  182. {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/WHEEL +1 -1
  183. keras_hub/src/models/bart/bart_preprocessor.py +0 -276
  184. keras_hub/src/models/bloom/bloom_preprocessor.py +0 -185
  185. keras_hub/src/models/electra/electra_preprocessor.py +0 -154
  186. keras_hub/src/models/falcon/falcon_preprocessor.py +0 -187
  187. keras_hub/src/models/gemma/gemma_preprocessor.py +0 -191
  188. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +0 -145
  189. keras_hub/src/models/llama/llama_preprocessor.py +0 -189
  190. keras_hub/src/models/mistral/mistral_preprocessor.py +0 -190
  191. keras_hub/src/models/opt/opt_preprocessor.py +0 -188
  192. keras_hub/src/models/phi3/phi3_preprocessor.py +0 -190
  193. keras_hub/src/models/whisper/whisper_preprocessor.py +0 -326
  194. keras_hub/src/utils/timm/convert.py +0 -37
  195. keras_hub/src/utils/transformers/convert.py +0 -101
  196. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +0 -34
  197. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +0 -297
  198. {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,334 @@
1
+ keras_hub/__init__.py,sha256=La-s5SQDd0312puWDSbPJ2XYxFXtg0jsCdUa2LMY-Z8,1440
2
+ keras_hub/api/__init__.py,sha256=8EwhEBO-o-92lvGv6M5zOdkNL9Bd3xfutlfGNJ8QwBE,1109
3
+ keras_hub/api/bounding_box/__init__.py,sha256=LNSVZLB1WJ9hMg0wxt7HTfFFd9uAFviH9x9CnfJYzBA,1682
4
+ keras_hub/api/layers/__init__.py,sha256=4OlmzaQ0I8RuHp7Ot9580loeElsV4QeB2Lon8ZB_a1Q,2600
5
+ keras_hub/api/metrics/__init__.py,sha256=tgQfooPHzlq6w34RHfro6vO8IUITLTf-jU2IWEBxxUM,966
6
+ keras_hub/api/models/__init__.py,sha256=0BRVIXtv8DrIbE5n1JeAR_gVeF1_sG_zeMI0cR0rjBI,13396
7
+ keras_hub/api/samplers/__init__.py,sha256=l56H4y3h_HlRn_PpeMyZ6vC7228EH_BVFo4Caay-zQ8,1315
8
+ keras_hub/api/tokenizers/__init__.py,sha256=nzMwKmxkMCOiYB35BIgxHNveCM9WoYRp7ChhmVK8MIM,3042
9
+ keras_hub/api/utils/__init__.py,sha256=4IXDgmXqFzqrCK2MPgkih0Ye1s-8hrlBaUk-n5Kqwl4,800
10
+ keras_hub/src/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
11
+ keras_hub/src/api_export.py,sha256=agkICNX5rGcJy_Bj29vaNmhH3no9KqJBO-V3MaqR6HQ,2062
12
+ keras_hub/src/version_utils.py,sha256=vh5ESN52dm8BwVQf6-R6UvY3JMG3DW8LHanrErKekC8,806
13
+ keras_hub/src/bounding_box/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
14
+ keras_hub/src/bounding_box/converters.py,sha256=V2ti6xPpaBgeLKbTpCsHsABdYOYASerIKX9oWqeOjHo,18450
15
+ keras_hub/src/bounding_box/formats.py,sha256=5bbHO-n2ADsKIOBJDHMvIPCeNBaV1_mj-NVCgBKNiu8,4453
16
+ keras_hub/src/bounding_box/iou.py,sha256=eK5TlQxkvLvHIf5Pet-NdkepY_d322c5XknZjwH8TN8,9700
17
+ keras_hub/src/bounding_box/to_dense.py,sha256=Wu-3T7ICft06T8cuJwNQ_QlyywassMt_z8HA4OOM4TU,3361
18
+ keras_hub/src/bounding_box/to_ragged.py,sha256=mIeWbnQFDjJJIyYrX2S8OMvNiIlFeyvMJ_u8MW4XF8Y,3459
19
+ keras_hub/src/bounding_box/utils.py,sha256=XRD2UedumbvtV25XTpUm9el4pweP7dYLDkjN83X4Uv8,7026
20
+ keras_hub/src/bounding_box/validate_format.py,sha256=K_hR1cVGfjZ8ZKECKtx3BfAa_kMx5JUZP_vMSybcL0A,3640
21
+ keras_hub/src/layers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
22
+ keras_hub/src/layers/modeling/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
23
+ keras_hub/src/layers/modeling/alibi_bias.py,sha256=jr8ER2Azi0jARM1x9iXYju32vvXVbu6-TterH4OWWAY,4996
24
+ keras_hub/src/layers/modeling/cached_multi_head_attention.py,sha256=d1ymIJzeqcTwex09Qp9KmxSUwclp524yzMfO4QIDCQw,6186
25
+ keras_hub/src/layers/modeling/f_net_encoder.py,sha256=feSGkV-V1lGOcf1mUGG50yAv7gmtbFlR0769At20C5k,7427
26
+ keras_hub/src/layers/modeling/masked_lm_head.py,sha256=37ptV0CNt4n9FQSHHFmOWzLA3TsP-zAP8cKn4y1oVbI,9589
27
+ keras_hub/src/layers/modeling/position_embedding.py,sha256=Xampv16F6uF3K6ZSmZDav3IDwop5mpqRl2n_dd_hKRg,4436
28
+ keras_hub/src/layers/modeling/reversible_embedding.py,sha256=ijG5IqUTz2TdNSOc14PVttVeOSbhMXBlYkUYh-Qnoaw,12396
29
+ keras_hub/src/layers/modeling/rotary_embedding.py,sha256=LGQK-1QJaiE7SErXOh88osEMO7Aki9s_-wFIa_aBYOY,6640
30
+ keras_hub/src/layers/modeling/sine_position_encoding.py,sha256=8KNgPvOUlFoSffeOo5DA0TkGr6Aep-4QyKn26BqPDtA,4039
31
+ keras_hub/src/layers/modeling/token_and_position_embedding.py,sha256=D5AQm37i2EsL6Y2ORP_Jkot4Ky0ujTPgMSv4uyvadeo,5848
32
+ keras_hub/src/layers/modeling/transformer_decoder.py,sha256=CUqecS9Tthl2Nzh9BoKYxVEArnfiNQPJOigskGQitxc,21691
33
+ keras_hub/src/layers/modeling/transformer_encoder.py,sha256=PwwtGUxDFay-_QcOLevu6tcuDv40Au_ADM5KUhIl91s,10486
34
+ keras_hub/src/layers/modeling/transformer_layer_utils.py,sha256=qF9YfBWK7tt37UHDa4HbC7C6qjKIz85msGTpEYYgx2M,4073
35
+ keras_hub/src/layers/preprocessing/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
36
+ keras_hub/src/layers/preprocessing/audio_converter.py,sha256=8UUS2OpEgu_mTna5TYd80bmFskqXLfzyo4yVqpxsyx0,4871
37
+ keras_hub/src/layers/preprocessing/image_converter.py,sha256=6FOyuDipx-8sCB2ZxrE3sv-xDghoUION48NIL_TbPh0,5348
38
+ keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py,sha256=PP4j-f_bIvJbsdtEHV3vaguPRE49_GBMy0cNf4ZgUPk,8749
39
+ keras_hub/src/layers/preprocessing/multi_segment_packer.py,sha256=0se5fOIz-2fMt4ALvQXJ1gLxBGIaR3OdWzFFp_UDgl8,12654
40
+ keras_hub/src/layers/preprocessing/preprocessing_layer.py,sha256=5jFBScsNWuYyokPt8mUoyYeOkKH9ZS7MkeC3j-nxYHU,1273
41
+ keras_hub/src/layers/preprocessing/random_deletion.py,sha256=P4YkpDXgQnlXEgukk6V_iuIrRIQOOC9i8KMkpd7UDic,10349
42
+ keras_hub/src/layers/preprocessing/random_swap.py,sha256=Wu6pNuQ1l_5VRGlRxcomrWyEnqYfA4PcK-mHNuvSjr0,10090
43
+ keras_hub/src/layers/preprocessing/resizing_image_converter.py,sha256=xbDDbJUL2IJ7Zv-CWFH8qtNjvGDrsj4Kf2L3usohIC0,4282
44
+ keras_hub/src/layers/preprocessing/start_end_packer.py,sha256=3IvVoOE-0kovt_8o2w-uVYEPFhGg-tmv3cwuJQu7VPc,8560
45
+ keras_hub/src/metrics/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
46
+ keras_hub/src/metrics/bleu.py,sha256=r0vROmLVVNjc1d9fwJgc64lwmhEXHNaNT1ed1h7Y0E0,14259
47
+ keras_hub/src/metrics/edit_distance.py,sha256=M2V0ud3C10BJBOgpSccKE-9XD9qPwS2DfJfWkcD1UjY,6939
48
+ keras_hub/src/metrics/perplexity.py,sha256=ecgzTdF8NPeYUmFNps0ppaXQTz6TnfWqnqfvvbIuNa8,6725
49
+ keras_hub/src/metrics/rouge_base.py,sha256=7FqGEKzJruc8CDna2Zl5CZIbAARel0_dkP9hH558T7Q,6850
50
+ keras_hub/src/metrics/rouge_l.py,sha256=b12lw1pZbLb-GfWo2Z7T80EAb7OCw4rCsJFZi-seFd8,3315
51
+ keras_hub/src/metrics/rouge_n.py,sha256=1u4HAezeZAhtPKVMpMKe5NNIOc5Ct05jdLRa8dgEYYE,4206
52
+ keras_hub/src/models/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
53
+ keras_hub/src/models/backbone.py,sha256=uC785MLiwKw7zaXxM1y_-FXENIj4fWDrIqX89O-u47M,12075
54
+ keras_hub/src/models/causal_lm.py,sha256=2iijHG3E-R9oC-eSkgyr0a_XnRmAaRWnhVFYyrq3vZE,15377
55
+ keras_hub/src/models/causal_lm_preprocessor.py,sha256=VvHwIwnQyKzMDKTtW0CuWQ0faRn9cAEBwBPLwS_LgDI,7248
56
+ keras_hub/src/models/feature_pyramid_backbone.py,sha256=p4z7urzAAz0V6Q9WS57heaxWVLKW-11LoFKnXYxetUA,2832
57
+ keras_hub/src/models/image_classifier.py,sha256=72qxEL01DSKE-Ugg4tpZqkLQpYf15bPfpknBnbx_G8Q,3754
58
+ keras_hub/src/models/image_classifier_preprocessor.py,sha256=Az9596ow470lqCzYF0I-GUkHbVfWx4GiynvpwGws6f0,3199
59
+ keras_hub/src/models/masked_lm.py,sha256=x8jeqgYsKsgeVPAirVRPHDdT21FAhqJ45pb8mIPc410,4161
60
+ keras_hub/src/models/masked_lm_preprocessor.py,sha256=Z6mo0szZp5Kfn6LmtY7EjZWGxLdR4c75hfw97V310Kc,6241
61
+ keras_hub/src/models/preprocessor.py,sha256=PZruA4xHS_w0-9hWLD1iJ79aOQMP81aJPYXl5SpjXak,7174
62
+ keras_hub/src/models/seq_2_seq_lm.py,sha256=PmdgShThfg2VIYMviKsU11jD3KgBZnYZGZp9HXVO4LU,2449
63
+ keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=fQv-zg7vvIpy3ucCbIkiey8AGH7rEuhDpCilul2JjsE,10272
64
+ keras_hub/src/models/task.py,sha256=elkNVXUAbUskRprIBmTDiJkFheLo1mLTX9lppelHucc,14432
65
+ keras_hub/src/models/text_classifier.py,sha256=BhsLovKyIVslm4ibrzFqtxrqljyNehk1lTpQ-r3bq5k,4744
66
+ keras_hub/src/models/text_classifier_preprocessor.py,sha256=6Mkypx3UUj4gUmLlocaLZBc2Addk_pshKPWwy7wb788,5307
67
+ keras_hub/src/models/albert/__init__.py,sha256=RuIE1aGly5hA0OHBu_QA09XairoViM1kvS6K3kzVB3Q,843
68
+ keras_hub/src/models/albert/albert_backbone.py,sha256=MNurFI3ansonMPJi8gmRf0dXwMwE38C-DJzqdkuLs9o,10659
69
+ keras_hub/src/models/albert/albert_masked_lm.py,sha256=Y8N5HqQ3fUl4lUG4T_vbn_zI-Pink8oDFRKlxfGm6S8,4712
70
+ keras_hub/src/models/albert/albert_masked_lm_preprocessor.py,sha256=v85sOAogJ4u4kfN0oq8_oVFf9AoFmqY7E48Czbucb6Y,5061
71
+ keras_hub/src/models/albert/albert_presets.py,sha256=LLn1rJQXFPee2QCM6z4EnrkZBYw7qe3vmLn5XvDFfSA,2795
72
+ keras_hub/src/models/albert/albert_text_classifier.py,sha256=xWRu-JNfMSbtRL38yBWPOz1KA-BJAvVjL4FxntRnQ7A,7231
73
+ keras_hub/src/models/albert/albert_text_classifier_preprocessor.py,sha256=gy8BlsAhYSmkfn3CItViJT7MGDk-4b9MpnlZivKqa7g,6125
74
+ keras_hub/src/models/albert/albert_tokenizer.py,sha256=_PSU17dxw79NeINVYv_CA225aSE5lIHn09wxJJt7XM0,3570
75
+ keras_hub/src/models/bart/__init__.py,sha256=QniU0N7lU_FWZxGPyHqqOAeNOoBM0BEvuQVv_s9GH0E,831
76
+ keras_hub/src/models/bart/bart_backbone.py,sha256=4hCYeOZF8kYdO9-ev8OASYSdrqDApk2XHiSl9hue_VM,10286
77
+ keras_hub/src/models/bart/bart_presets.py,sha256=TvSPseluMhV233tlXiZAs_8ecOka-N4ZNSS_WPfP0vI,2736
78
+ keras_hub/src/models/bart/bart_seq_2_seq_lm.py,sha256=7Q-O23PjFz5BU5lGHUYUIRkv8kxnRGHkfV79JK-jcdg,19910
79
+ keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py,sha256=sR5SjoB4e3nuYgAMtuhM8s__6Ii3lCESUOdchGLXfEY,4960
80
+ keras_hub/src/models/bart/bart_tokenizer.py,sha256=ugMJIbnr15-xD1d6D3OBqKC1ci-ry14DWaXLXR8GEbE,3398
81
+ keras_hub/src/models/bert/__init__.py,sha256=NluxLMYegxQy8QznfukqS2HHMUu2vVaDfFeWDhGNK4s,831
82
+ keras_hub/src/models/bert/bert_backbone.py,sha256=mxnxa5cVfM9fNGnhblguSYcQh62nlRX_696_dI3dNH0,8655
83
+ keras_hub/src/models/bert/bert_masked_lm.py,sha256=6-sZP4anfiVWq_EwbfMbbz1bcZF1uP7lolCz_6O6rao,4631
84
+ keras_hub/src/models/bert/bert_masked_lm_preprocessor.py,sha256=wp80B97OTQMGgonsRhtnpiFBMmCFqbzZwPna6BMWlkc,5160
85
+ keras_hub/src/models/bert/bert_presets.py,sha256=4NmCoYQuX0j-G-6rPeHTpv7uV-1kIFmTb9cdjuCxnTI,5609
86
+ keras_hub/src/models/bert/bert_text_classifier.py,sha256=YIjJ4FTycOA6ZtJ0xwgcviz4tPa1YKc_bx5NWy29Ilc,6384
87
+ keras_hub/src/models/bert/bert_text_classifier_preprocessor.py,sha256=gVu-XE9doX7V5VYCVpWtpVv0ILWkv2umInF0wb4ehP8,5299
88
+ keras_hub/src/models/bert/bert_tokenizer.py,sha256=XP58gh3zxDQgrK5y5cVvuPwIO75U7l7Xopt5n79pUuU,3611
89
+ keras_hub/src/models/bloom/__init__.py,sha256=ck7AqlWlHHTslBEZCxa_ps-nOC-7hyEsu4uielO0SIU,837
90
+ keras_hub/src/models/bloom/bloom_attention.py,sha256=kqnwV3sfyZThjnzc52yDQg4op-2KZfhsXN2QJRM6erY,6659
91
+ keras_hub/src/models/bloom/bloom_backbone.py,sha256=i2Dc2FeYSPYVyKNc9XhfDTX6mV3P-P1gfrZUV_UeacM,6406
92
+ keras_hub/src/models/bloom/bloom_causal_lm.py,sha256=7uxEnEZFIlmZgHg7D-EArr459kka6ljWEUotPhSyi3U,11548
93
+ keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py,sha256=WVTWRUbQXUBlfC80JucV6ifcI5t6jjN5MtVsxNEYluk,3598
94
+ keras_hub/src/models/bloom/bloom_decoder.py,sha256=hSoeVnwRQvGbpVhYmf7-k8FB3Wg4auwZWdr2ubiNtxc,7157
95
+ keras_hub/src/models/bloom/bloom_presets.py,sha256=7GiGFPmcXd_UraNsWGQffpzjKDRF-7nqIoUsic78xf0,4696
96
+ keras_hub/src/models/bloom/bloom_tokenizer.py,sha256=ZMx8mHhw0D50zmmvYdmpg-Lk2GcvHz7pPlRpPlhS_2s,3161
97
+ keras_hub/src/models/csp_darknet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
98
+ keras_hub/src/models/csp_darknet/csp_darknet_backbone.py,sha256=Zc3liZuKV-lgAKSAGGKZzsYyFRQwMFMI1qIkUGVUMBM,14718
99
+ keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py,sha256=h74Q_VHaoSAkwBsDV-ZufN6fb9NFX2gDVk7AOvX-HUk,4388
100
+ keras_hub/src/models/deberta_v3/__init__.py,sha256=NCuHFWsgQl-Wer7w3xETvqFtF75AyKabjAYdOlyN34w,874
101
+ keras_hub/src/models/deberta_v3/deberta_v3_backbone.py,sha256=_J-PpSLubay58YO51BicDK0bF97aUeoC21ZQOt1O9r0,7831
102
+ keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py,sha256=urcktTsXN3kDWnppplnC8yISGx37qGW5HdwHSC7VDLE,4773
103
+ keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py,sha256=l-hcoKKQPz_VB-CJNq0oLxEd5hxLHb2DU9-TqE28Fz8,5552
104
+ keras_hub/src/models/deberta_v3/deberta_v3_presets.py,sha256=pDcdjJ7mIz8QdTxLxllmY7_9hsgCRdVlsYREKnHw5Ek,3300
105
+ keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py,sha256=lQla4R7UH5olF8xs5By6aKwpGtpoE3IPlovjrhB-hYQ,7825
106
+ keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py,sha256=z_PynLHhc2OFasaV1DMHEyyKEC4miK4KqWj1-2WAEOc,6561
107
+ keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py,sha256=NLLkMvotpPZUdRELaSRuJuVmiOGxwmnjmjuswa6NJdw,5574
108
+ keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py,sha256=Zt10UPxYsr_x8isO_OrXeaquWVJbcE49raM6_BkDdEs,9142
109
+ keras_hub/src/models/deberta_v3/disentangled_self_attention.py,sha256=MxpWy30h9JB8nlEk7V9_wETzP-tpv1Sd1Wiz_pHGpkI,13708
110
+ keras_hub/src/models/deberta_v3/relative_embedding.py,sha256=QT5MAnheJ1wSKFeN49pdnZzWkztz5K2oYYuNEtB_5xM,3472
111
+ keras_hub/src/models/densenet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
112
+ keras_hub/src/models/densenet/densenet_backbone.py,sha256=cMTTaI1WogaSjt8x8bpPMvApYp5NVmeHTfupUmZZ774,7661
113
+ keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=bmmkNNpxwkwfqI_ZMmoEATClmgmmkW6NO5tDK8BCt2Y,4336
114
+ keras_hub/src/models/distil_bert/__init__.py,sha256=EiJUA3y_b22rMacMbBD7jD0eBSzR-wbVtF73k2RsQow,889
115
+ keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=ZW2OgNlWXeRlfI5BrcJLYr4Oc2qNJZoDxjoL7-cGuIQ,7027
116
+ keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=1BFS1At_HYlLK21VWyhQPrPtActpmR52A8LJG2c6N8Y,4862
117
+ keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py,sha256=2vge8ivK7Fl8iFKm1Si2MMru9yKOo27J0UUsFRuAdOk,5816
118
+ keras_hub/src/models/distil_bert/distil_bert_presets.py,sha256=jrLwBwTaxofI5jTEV3UTPTeVePdzbJtVO9OclP-Mf4w,2312
119
+ keras_hub/src/models/distil_bert/distil_bert_text_classifier.py,sha256=Q-qGmyl6i2JUFZI59KUWzlzLTIRmYtgahFHo3pUE9g4,7324
120
+ keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py,sha256=sad3XpW2HfjG2iQ4JRm1tw2jp4pZCN4LYwF1mM4GUps,5480
121
+ keras_hub/src/models/distil_bert/distil_bert_tokenizer.py,sha256=VK7kZJEbsClp20uWVb6pj-WSUU5IMdRBk0jyUIM_RIg,3698
122
+ keras_hub/src/models/efficientnet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
123
+ keras_hub/src/models/efficientnet/efficientnet_backbone.py,sha256=krz5lgw5cPs2EyKArq99XnIfUeBVbkeq2PhPFADO04c,21841
124
+ keras_hub/src/models/efficientnet/fusedmbconv.py,sha256=_6aNQKL2XdVNgoAdKvvTh_NDkWeU66q98EFUOjEQ1UM,7933
125
+ keras_hub/src/models/efficientnet/mbconv.py,sha256=LNbEj7RpEZ0SqzEu-7ZpH1BKm6Ne2sXPckc5c2DMqUk,8212
126
+ keras_hub/src/models/electra/__init__.py,sha256=ixE5hAkfTFfErqbYVyIUKMT8MUz-u_175QXxEBIiGBU,849
127
+ keras_hub/src/models/electra/electra_backbone.py,sha256=nLKE67xffbyWSmHtSsR6SZQId2BJ03pjSACMx9fa6do,9590
128
+ keras_hub/src/models/electra/electra_presets.py,sha256=7UxPjVFmNM6jbzJxXlnNzYZCdrC9JIz39FWlHvG7ubM,3954
129
+ keras_hub/src/models/electra/electra_tokenizer.py,sha256=WjGhKVxtDMMcm-bMUNSvcR2z1O9nWeuMPWZQa9Dc2x0,3315
130
+ keras_hub/src/models/f_net/__init__.py,sha256=MrkNt4swYV-pWb4biE1ITcYxEwWxiKRwCukhbgNo_Lg,835
131
+ keras_hub/src/models/f_net/f_net_backbone.py,sha256=h1IqRGEHKKhDiFUnqhaM2Rxs2yk6r0u-kBZSjtyDip4,8877
132
+ keras_hub/src/models/f_net/f_net_masked_lm.py,sha256=GHdUf5PNUzT-YH9ZMf5FxmGx7NExFfTISnScf74zIKk,4565
133
+ keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py,sha256=rKh-a2EB2GfUX1osmDoBy6apzUdjiCKJc8CDxKQLlfI,5667
134
+ keras_hub/src/models/f_net/f_net_presets.py,sha256=IP_ImbHzZScyMJBeWWgGDXduAbjddwdFpGGwO5JQwIE,1640
135
+ keras_hub/src/models/f_net/f_net_text_classifier.py,sha256=p6zZehLEywEpIMqolHhZHna2V0RlSiMcSv0TCOCJVCQ,5456
136
+ keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py,sha256=zERq-1mayzI6FHMlwckHlruN406jswxu0jWq1i9VnE0,5408
137
+ keras_hub/src/models/f_net/f_net_tokenizer.py,sha256=kqjxe_G8_4mEXsICcJC2HSwvhtIfwdaq1Q8bTTqkZps,2872
138
+ keras_hub/src/models/falcon/__init__.py,sha256=Djjo5fD8XJTMQA8x5DOVbqzaHPsWos45BvxTuGuFvPE,843
139
+ keras_hub/src/models/falcon/falcon_attention.py,sha256=1U__Yfv0BcEm61zMsqHIGu6XZPkAcLbLCFEhSS5o0HQ,5082
140
+ keras_hub/src/models/falcon/falcon_backbone.py,sha256=fyV1ssWMSq87_Rt13kWpwiIpRRRlGm3qTKgCYvK991Q,6012
141
+ keras_hub/src/models/falcon/falcon_causal_lm.py,sha256=Fdh_36XpFiItwk9Gy_wxForY9LtoA8-OkosTU3VG3_E,11419
142
+ keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py,sha256=rGZ9kWVbb0NnncvgRoQ2BfcBCwIDBLIewCbeq7fuXzo,3619
143
+ keras_hub/src/models/falcon/falcon_presets.py,sha256=Ab6pydPHFSDK-3iuKPa8SI9Zfdf9iOcqBMhhCQlLUQo,1159
144
+ keras_hub/src/models/falcon/falcon_tokenizer.py,sha256=LHJI2hXGO9f83NVMjoM-irWa01KynCjVcmo-CPNPf8M,3141
145
+ keras_hub/src/models/falcon/falcon_transformer_decoder.py,sha256=uPtU0PC5XndPs6ak5mxAaGTmkQVlVrrEy_G4SwlkZ78,8710
146
+ keras_hub/src/models/gemma/__init__.py,sha256=pcIU4-Xl2vy3C8FGXNU8lNwcxTLblUbtZnRUG9UfKc4,837
147
+ keras_hub/src/models/gemma/gemma_attention.py,sha256=mKwcU_s0epJzRllxGVg-Bbc1CuC5a2hVgcRyESDrctQ,8902
148
+ keras_hub/src/models/gemma/gemma_backbone.py,sha256=RO9O_AhUlboUzBYxYFDFFdYBjaXaDifPB-Yz2idnYZ8,13501
149
+ keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=jOy_X0QR-olMfCPyFtmXRZSllWz3oy10JYwLzAPtXAg,17357
150
+ keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=uZdYAAMIeABh339U9qmSPVRxVXtU4Ko4nrih1nN0QX4,3498
151
+ keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=OgvSypSaKXNKatmua62HITyUzl79enh4x_sUZhBRItY,8173
152
+ keras_hub/src/models/gemma/gemma_presets.py,sha256=7N5dcMjMb4gOb9ysCLdVqLFDpvV3bETiB6Hq2XrdGWA,9867
153
+ keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=JZ3XDScSsAV9y8uM-uKrO-lyu3PNyXNynrJqVJQbJo0,3208
154
+ keras_hub/src/models/gemma/rms_normalization.py,sha256=27nA9BjNVkwI-icHISK57qJl8wxRdWGM5g4K_DzjAeI,1419
155
+ keras_hub/src/models/gpt2/__init__.py,sha256=Oy1WReI1aRiW_EU-TMdhs5Srr-KNaYOfXAxixFfK3WY,831
156
+ keras_hub/src/models/gpt2/gpt2_backbone.py,sha256=WK0mJ1CRGIE0jfc7A3toslt_cFcynyU2jczjUJVSazc,7548
157
+ keras_hub/src/models/gpt2/gpt2_causal_lm.py,sha256=88Dpewafe9lmLgkHNqxhk6TeLjX1uMx2Q2geU5xUPGY,17352
158
+ keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py,sha256=-TE1IBKuHwbLbD--UKUsJq18IjRJDCM8DjRShWl3KMA,3578
159
+ keras_hub/src/models/gpt2/gpt2_preprocessor.py,sha256=gLIndASgIBxKRYzFjclAhMUkrSFUtZEVFsPXUXpiIyU,3766
160
+ keras_hub/src/models/gpt2/gpt2_presets.py,sha256=v5OJ5A0oUfxJamPFOkhoQvsrcqmkhOH7fFzHiQroR-w,3020
161
+ keras_hub/src/models/gpt2/gpt2_tokenizer.py,sha256=Xq_Du7TiR6IntGZzsmj1rtNQq7yFa1U-E4Do95qsS68,3202
162
+ keras_hub/src/models/gpt_neo_x/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
163
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py,sha256=5dJ_yxqdAvhSmVAnkpfgRdFV8DQNribAkj6oqvlBCuY,9111
164
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py,sha256=OhsAHoR7lYRlu38jB3YRNdP5xn1YYDmEz6dEC3WI1ls,7094
165
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py,sha256=YO_fc5AcGYmaGC8z0Ehpws_SuUCcdtozyBlbcjVRn9s,8276
166
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=Ugl9p6q7Pts3x0tboH2ZpL79RmNPpeitSNszcs88Wmk,2543
167
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=vss1MngY_SQ2nSUjHsZkDDmpeASQOVscTb1-7jpTosM,10314
168
+ keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=b6uu6xlKVBUdBwsw5t2vP5OisXk5QJd4mvjiizPAds8,2577
169
+ keras_hub/src/models/llama/__init__.py,sha256=XBMAoTkyvCPk4ia7ODOy_AdxahE-BWon7wxXGv_bF-E,837
170
+ keras_hub/src/models/llama/llama_attention.py,sha256=m8DmMnYhl9zCXJFN_UGh7MHgyy8l3_FZcecAoKSJg8o,7779
171
+ keras_hub/src/models/llama/llama_backbone.py,sha256=4oOV6T7il43-_WNoxhgirXbhVCijBL4O2oog6IUR_B8,7184
172
+ keras_hub/src/models/llama/llama_causal_lm.py,sha256=i7o4vNO_tnY_hHD11V6mdkRJxkKIy1HM0mvrTYEd8oY,13694
173
+ keras_hub/src/models/llama/llama_causal_lm_preprocessor.py,sha256=PHABWx2GMAwbr676JMYLkKMsV6KCA_Ry8-8wv5gUw_c,3634
174
+ keras_hub/src/models/llama/llama_decoder.py,sha256=42Pc6lpwM6ycnYR2PW6CO3C8lyn6N7vop9KcAIow1II,9208
175
+ keras_hub/src/models/llama/llama_layernorm.py,sha256=VifoRNrwWmLimQ4cWbJpVCPSegkijpxFERZcoObtV9o,1635
176
+ keras_hub/src/models/llama/llama_presets.py,sha256=8ZaxSmDTRif8BMGKs8Ib3ijwspSIiV_arNzCwg5P5-U,3015
177
+ keras_hub/src/models/llama/llama_tokenizer.py,sha256=W80pMsE2cAl_DE5u2Bzig9GM0viPS4nWQaw4rfslvHY,2567
178
+ keras_hub/src/models/llama3/__init__.py,sha256=g2n4QAR2tpn5waeeFgpUV4xgW7tnwnZ1An_Mqg0D09M,843
179
+ keras_hub/src/models/llama3/llama3_backbone.py,sha256=VxX3cMpzra7m7TaG2W-gTllWE5Kvl8yOkES3GSUzXl8,3441
180
+ keras_hub/src/models/llama3/llama3_causal_lm.py,sha256=tSJQGbKY09bJMnLfjERrc_0qHFUd9Lp8kxMGJdtkJU8,2126
181
+ keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py,sha256=4VknKZdH8-_wVFj-dU6aJxkrHCPyLrICWehbFGroi3k,3650
182
+ keras_hub/src/models/llama3/llama3_presets.py,sha256=5v1MZ77mBMxU4tHGbO03jwHxKflUpjLj0RnCU8Ksa-U,2588
183
+ keras_hub/src/models/llama3/llama3_tokenizer.py,sha256=Q0EjX3MzxQzo94eEO1EXxfNsyhuQcvl2fX1JfZUSo0w,1375
184
+ keras_hub/src/models/mistral/__init__.py,sha256=EpGh-S5Q7iH9sGxbRi2yKM32_0eClKBt5ZL-2ME-oyo,849
185
+ keras_hub/src/models/mistral/mistral_attention.py,sha256=xivc90DwGIONxKPXm9wyt2UwbNKFYiLagUV3hoOypuM,8447
186
+ keras_hub/src/models/mistral/mistral_backbone.py,sha256=2Sp0rtBQKrSM2RvaCVX1ulHqNblzuAzxlH-LRvqdIWw,7831
187
+ keras_hub/src/models/mistral/mistral_causal_lm.py,sha256=Twx-kzVz0EP2losFCuS03G5J8LBE-BOswPLZ_PZxpd4,13671
188
+ keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py,sha256=Cpx2Sns2irEYp_LoTpkKecrZN3KmO8Cn9GnDLZI4AsU,3665
189
+ keras_hub/src/models/mistral/mistral_layer_norm.py,sha256=Nlo5iYrpOSYDdPODJuXpK5Wpl3INCSuoLzt4MM4ShYc,1648
190
+ keras_hub/src/models/mistral/mistral_presets.py,sha256=uF1Q4zllcV1upIlqmn3gxhVWzot6Olw9PSUi-qwU2cw,1914
191
+ keras_hub/src/models/mistral/mistral_tokenizer.py,sha256=pO7mpzYgRDFpIrsmLBL3zxkadrOE0xfFj30c2nHN42c,2591
192
+ keras_hub/src/models/mistral/mistral_transformer_decoder.py,sha256=6CdaZt1lQ9VcLz_OoYroqiqvsZfq9H5VGaWab25aCRI,10127
193
+ keras_hub/src/models/mix_transformer/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
194
+ keras_hub/src/models/mix_transformer/mix_transformer_backbone.py,sha256=TYcQCAMTZedirh2L4z8LrjfhmxR2CoImzIvVXFTiTMc,6833
195
+ keras_hub/src/models/mix_transformer/mix_transformer_classifier.py,sha256=QUTeq4f07nrCE-hIKoam_M6jJ6aM9l6s_At5sRTo0JY,4310
196
+ keras_hub/src/models/mix_transformer/mix_transformer_layers.py,sha256=Bi4lHMfiKgI-XOt21BBfKoK05uU3GcDJ3mQrGfCXb6Y,10123
197
+ keras_hub/src/models/mobilenet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
198
+ keras_hub/src/models/mobilenet/mobilenet_backbone.py,sha256=G02NFvx2xy2mbEBX6mtJzhPwygZDAhJ2TMk2ejAuLg0,19168
199
+ keras_hub/src/models/mobilenet/mobilenet_image_classifier.py,sha256=Oo3URtyqjfnmsyO9uncxOVHO9Giv607LBJ3UE8pWacU,3794
200
+ keras_hub/src/models/opt/__init__.py,sha256=DiiylcsbseSQ8te8KWZ6BTIaKYSzXHUPGBgFssFNGFY,825
201
+ keras_hub/src/models/opt/opt_backbone.py,sha256=cbm9I7d3QlGD8l2W1eK8esqc5gm77tpwxg4t9nC-FtA,6460
202
+ keras_hub/src/models/opt/opt_causal_lm.py,sha256=z6M8cQV-c8q7HmikNA9RuvsMMvQYF21-ZcC0nVGfnp8,11438
203
+ keras_hub/src/models/opt/opt_causal_lm_preprocessor.py,sha256=UzjIzQYtPfIjIyQ6PjnOHU2rstiy7J3uRuwnMnuXuRs,3687
204
+ keras_hub/src/models/opt/opt_presets.py,sha256=6sLgktbfdi8aEX4ntGL1y7uBvbrLUlSFSvU0Owg4GR4,2914
205
+ keras_hub/src/models/opt/opt_tokenizer.py,sha256=TG0tlJ3jryDKXPo8AruKyP51eCdKKjJWv1QtVHfbTOc,3144
206
+ keras_hub/src/models/pali_gemma/__init__.py,sha256=OFu-CQIlUlUox6tGkKvNePwc3ZkPGcmOVsBqcP-w5Fw,873
207
+ keras_hub/src/models/pali_gemma/pali_gemma_backbone.py,sha256=Bfl1TCdADD9yYiDiTK5nynUClWmTPYgVE8kxDjPBw0Y,11501
208
+ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py,sha256=PnE3sOEuwwMR8b7jcxclyAeBJyZJp9k6nprJn26RbSA,11782
209
+ keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py,sha256=dMCoGiYGMbye_6IFT_CD8VNgExA7GyBpTnbqXP47-K8,5399
210
+ keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py,sha256=fXLO4uHtWYTuEPmyN9q-F0AfnA1TAcq2Yl20pFpLt1s,5761
211
+ keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=Wm1A-HuOMxesAHFbEpP5ZkPbdDaVW5CTTwkyFpI-WdI,990
212
+ keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=cG5cV2bkiDJlKDiHX76BpnClsY5PcmLDezDg7emeiA4,2986
213
+ keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=7F1TQql3DEN517iVbNL60u6fQPimrGQvWBYh16ng8JU,3000
214
+ keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=JUfJuyobcEb60jp3sIxlq12gIH_qsn97h4hsecimipQ,19092
215
+ keras_hub/src/models/phi3/__init__.py,sha256=ENAOZhScWf9RbPmkiuICR5gr36ZMUn4AniLvJOrykj8,831
216
+ keras_hub/src/models/phi3/phi3_attention.py,sha256=BcYApteLjbrCzube7jHVagc0mMpDCReRyvsQhQcJzY8,9828
217
+ keras_hub/src/models/phi3/phi3_backbone.py,sha256=MvTE5bMmVpFHinZIEDBM1lfJFbgu4zg-0e-8_4hK-No,9470
218
+ keras_hub/src/models/phi3/phi3_causal_lm.py,sha256=E-7iZfaQ75R4kAS7Gmsho2-obwQM6oP76CL1YaWy0gM,8825
219
+ keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py,sha256=QsYrXZ2V3IlqBU-9zu0Ebf5EQZe8fnudVDp-ra0Enwg,3629
220
+ keras_hub/src/models/phi3/phi3_decoder.py,sha256=x2Bq_lhlPhImloTXDw5w1Cr73tRB8Ta9qpqS44z0EuE,10172
221
+ keras_hub/src/models/phi3/phi3_layernorm.py,sha256=r8Pqn9uHZSs3CbDbtjxED7cHtqj4a9TvQlGkzX5oxY8,1634
222
+ keras_hub/src/models/phi3/phi3_presets.py,sha256=S7_gIqPxU5FQAEnAE_68UrfGGSLOMvoVxL8SrMig0Ao,2195
223
+ keras_hub/src/models/phi3/phi3_rotary_embedding.py,sha256=QVJIgpOw6iMicGrsPdW8eF84vV_stf0Tqm2qBJdsKH0,5597
224
+ keras_hub/src/models/phi3/phi3_tokenizer.py,sha256=hlA-u2sTRYARDW3ABICPeiOYW1AJwr-5kvZk3EB5z7M,2577
225
+ keras_hub/src/models/resnet/__init__.py,sha256=41gttaQ7gt_ZaqDa_GKuMPfIk5c88-GrdC1h9fBUTXc,843
226
+ keras_hub/src/models/resnet/resnet_backbone.py,sha256=n9aKIpQcJCsAZrBiiN1vxUMHeQgYudRHdu_MsdRQZqw,33260
227
+ keras_hub/src/models/resnet/resnet_image_classifier.py,sha256=I-dmx0O_ES3m3W5D4ICCux5zzDMZ2cM0vYGM9CDi5AE,5395
228
+ keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py,sha256=Vrs9NBZRL5fgDXXY27GZJg5xMa5_wovi8A2z8kFl2nc,1129
229
+ keras_hub/src/models/resnet/resnet_image_converter.py,sha256=820drIU5Kkib7gC7T418mmrhsBHSkenfEiZ6-fkChv0,961
230
+ keras_hub/src/models/resnet/resnet_presets.py,sha256=DZoufeJyrVDL4aHSztQNzZj8Cb_OGX53Fn0Ze4RuZCI,3550
231
+ keras_hub/src/models/retinanet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
232
+ keras_hub/src/models/retinanet/anchor_generator.py,sha256=VQwgIAWh-6s28TU8MHFdl556U6h7rfF9B9iVI_zwI7c,7027
233
+ keras_hub/src/models/retinanet/box_matcher.py,sha256=SvGn_6d5sfjq522UaHpxVCE2S5Nwml_aj5yAKApTNE4,11420
234
+ keras_hub/src/models/retinanet/non_max_supression.py,sha256=5rDXA1Lk27T1TK3cwTrRIAbh8ceZLcbL4Koei96bBVQ,21522
235
+ keras_hub/src/models/roberta/__init__.py,sha256=P-9HOooyuSriDclHrf0YvdRy95bU08VPU7P8nBsy59U,849
236
+ keras_hub/src/models/roberta/roberta_backbone.py,sha256=KR3y11RpA4dvKmQ2HaRoWNTLGnLs6Lqx-HXYejQt4G8,6926
237
+ keras_hub/src/models/roberta/roberta_masked_lm.py,sha256=N0r6XEZAVMNgyTorFQzyT8EiEXtWO3R2PnL6s2P3YDQ,4763
238
+ keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py,sha256=hHoIHC-VRQN3hskTxlrBwDjKGeUqkm03IjV9IxTdPMQ,6437
239
+ keras_hub/src/models/roberta/roberta_presets.py,sha256=Ys5WnfBCzrRDLVLrAm412ojHY0yyj6KtSJWslN8re6g,1764
240
+ keras_hub/src/models/roberta/roberta_text_classifier.py,sha256=A4psd1Ef0ZSPMCsBpSLe5xmZqsFSn5XZ8gr_ekL9EoU,7268
241
+ keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py,sha256=xK0dGPi3nZ5mUoRtTSE8OhibQSaOvzkGELhPAJAB5sc,6579
242
+ keras_hub/src/models/roberta/roberta_tokenizer.py,sha256=RlKxa0eo7KYgRH5HSHrflna2LkB9pS6qjm2cr4DbuBg,3299
243
+ keras_hub/src/models/stable_diffusion_v3/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
244
+ keras_hub/src/models/stable_diffusion_v3/clip_encoder_block.py,sha256=6-bOVTGHCSniDYf616UhKmDHM239y8J5wdjZATXgxig,3556
245
+ keras_hub/src/models/stable_diffusion_v3/clip_preprocessor.py,sha256=90QYFvAlSk_F1HC80VG6IceVN0Q8paIHZQpbaG2pMec,3172
246
+ keras_hub/src/models/stable_diffusion_v3/clip_text_encoder.py,sha256=hVL3DaoYOTYd3bi0PUoKcMJTFxvsMwQ905uS7Ol__DU,5233
247
+ keras_hub/src/models/stable_diffusion_v3/clip_tokenizer.py,sha256=5CdplYY3L50tgEflJep2VjjVjlLz-JMmobGd6QnyI6I,6296
248
+ keras_hub/src/models/stable_diffusion_v3/mmdit.py,sha256=wlH6x9bS6gL3SsuiTpF541_2bwtrCOnUQIdPPavXCV0,14596
249
+ keras_hub/src/models/stable_diffusion_v3/mmdit_block.py,sha256=xY-iqzIHb_h_nzzuQKDbbjPi3738A8XlL3nIGc5Taas,10877
250
+ keras_hub/src/models/stable_diffusion_v3/t5_xxl_preprocessor.py,sha256=Liu6yg4ipCoisx0MGhJZvJTpOedl12NxxeBZtgrc0vs,2645
251
+ keras_hub/src/models/stable_diffusion_v3/t5_xxl_text_encoder.py,sha256=xiK82Z4ioTEpgJre8YQ_8GkrwFNsbyxYurmTUDCrweU,5735
252
+ keras_hub/src/models/stable_diffusion_v3/vae_attention.py,sha256=YQpVu4NaySi2pgczD-lru_jUYHg6YBxjDZvyclJ4T1s,4189
253
+ keras_hub/src/models/stable_diffusion_v3/vae_image_decoder.py,sha256=ww6s-h4YjNKdRhv9bv9Gx2UA1JYOjn54IDAWFtjLO1Y,5879
254
+ keras_hub/src/models/t5/__init__.py,sha256=1XZ5_R-qymPE1M1IyTqyNAW6_sWn8viJGXjqzB61sFw,819
255
+ keras_hub/src/models/t5/t5_backbone.py,sha256=y_gEISm9CxL_1goJLwR-moAxS-bzxNNcdL__w7e8Isw,10844
256
+ keras_hub/src/models/t5/t5_layer_norm.py,sha256=lVP_6IajHf8kX0APzGNdSZa-8IkkzsiLy5VcKOGhtkg,1216
257
+ keras_hub/src/models/t5/t5_multi_head_attention.py,sha256=ToRrHmJKiTJ2F8jF1HIgHCagme7MSxn9FIQGEXlH3Vo,12445
258
+ keras_hub/src/models/t5/t5_presets.py,sha256=2RT_NuJcqDdSeAsoSJXh5O_ax2H-s4YKTAoYErVPwPQ,3590
259
+ keras_hub/src/models/t5/t5_tokenizer.py,sha256=UnmZjiKhyb4AU7zALW3YAM_6_OGzYOVEGStBiw4ICvg,3103
260
+ keras_hub/src/models/t5/t5_transformer_layer.py,sha256=wnu108InkHH9YMmFNTbmgIqcrKQQUxeJ7S1dcjUfBSY,5933
261
+ keras_hub/src/models/vgg/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
262
+ keras_hub/src/models/vgg/vgg_backbone.py,sha256=dMXIGypDQdLztvbHz0JgSdTGXXAZj11vLxG5oHk4ZNw,5479
263
+ keras_hub/src/models/vgg/vgg_image_classifier.py,sha256=1bH6E46yHxN5tey2Mc62U3l4_5mTZ40U00bws-c6wqE,4106
264
+ keras_hub/src/models/vit_det/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
265
+ keras_hub/src/models/vit_det/vit_det_backbone.py,sha256=Tyw3xTOW1rlHV-copzotzpaoPLWU8nA-LtViUGGgSlw,8541
266
+ keras_hub/src/models/vit_det/vit_layers.py,sha256=JeUzOT2jmSOoJ_OiHOfLSkkCUZ5mlK5Mfd21DwudRCQ,20436
267
+ keras_hub/src/models/whisper/__init__.py,sha256=FI-xj6FwZDAAdCfKhOrE1_roQ8cXhD1gK4G6CLTvPQo,849
268
+ keras_hub/src/models/whisper/whisper_audio_converter.py,sha256=JqtA2kLUMFKZ4FrI8g2piEjahE-0-F3Yp4qQXS1cYf4,8973
269
+ keras_hub/src/models/whisper/whisper_backbone.py,sha256=Y0HVz-RqBHc-dtP4BVIHTfSTx7LZB7kjuJw-925oewQ,12101
270
+ keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py,sha256=LhFOdBaZio6o4B3GYsxljCftuw_XfhUgxdAhM5m_z5I,5533
271
+ keras_hub/src/models/whisper/whisper_decoder.py,sha256=yp6Qw7RfTMvlqBRCunsD_mtYX422JAGA7u6MdC8D9dE,5856
272
+ keras_hub/src/models/whisper/whisper_encoder.py,sha256=h2ailNfJlTqvbxIYWk2V2OJzbNGmiukzqgd6TbHxW0M,4316
273
+ keras_hub/src/models/whisper/whisper_presets.py,sha256=IM3XJtvC3veclEIpAPCzWn2tVDKbCg9IWTPT9p3mmAo,5754
274
+ keras_hub/src/models/whisper/whisper_tokenizer.py,sha256=Ii6B8X51j2ySYTOswVeZNl30tn53i_0bLBquUDfkuC0,6161
275
+ keras_hub/src/models/xlm_roberta/__init__.py,sha256=Ra4PvYYrKK4LHzq3nHmDOAOwW5Ka1k92RplTvQ1fti8,889
276
+ keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py,sha256=Msm1U2pJbrC3XfeCpSvmdC4RiIRa3-9yckvc3lSr4OM,3509
277
+ keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py,sha256=37_Qn1x-_TTHGG_29VlbQcRb41pAiTK-c88jlrt098s,4965
278
+ keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py,sha256=a5uVVbROS30hqh2AYmpz0Bo8HWfuwOXSS5pPoEQzJlE,6581
279
+ keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py,sha256=LsaoAJ8ddyTDCJ6JmVlVy00C4r8khZZOg3YmW3aY5YA,1762
280
+ keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py,sha256=XN4o9CVeCXiEBM2L1nHBksJXYQ643P9EY20FllvqpGo,7824
281
+ keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py,sha256=DFnJMgim_NJrzppWNSSUDi3sUASiKithFXCfamtsuZo,7112
282
+ keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py,sha256=8r5ATeJenQERGhjhw_gB6tvID256VHjH5ASTHSsd8mA,7361
283
+ keras_hub/src/models/xlnet/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
284
+ keras_hub/src/models/xlnet/relative_attention.py,sha256=MIJy19BvbMhWhV8KLAVaEzyRA9jpJ2iz1GuxDgMtdI4,18677
285
+ keras_hub/src/models/xlnet/xlnet_backbone.py,sha256=JgBYaXUPrCvvxHmOuZbWHWhpHfeBosSdE399Q6H7zg8,8397
286
+ keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py,sha256=mhyK8Rw-tX6hcEKXofP6UoNAukWgv0ehTAxanw5wTKM,4525
287
+ keras_hub/src/models/xlnet/xlnet_encoder.py,sha256=CvcWil-IvAOChljAJuWo0H8NdTuRwCDwzP926D2dkU8,13339
288
+ keras_hub/src/samplers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
289
+ keras_hub/src/samplers/beam_sampler.py,sha256=yd5ITvf4UUJsxgTo1eKjMHxxT6BtOd1QhMk07-0DpC4,7768
290
+ keras_hub/src/samplers/contrastive_sampler.py,sha256=NMzweeU-Imptfho_da4z2I8gbb7d9F9qqJ8OBw9_zkw,8908
291
+ keras_hub/src/samplers/greedy_sampler.py,sha256=AwOcFzcN9NxqDYLxENJTa0W-uKl_Sj_MdMafyy9FXY8,1544
292
+ keras_hub/src/samplers/random_sampler.py,sha256=oi7zE6QX1K7YbmioCtqQfJmfh_nGL7uE1ICxwfdtYNo,2295
293
+ keras_hub/src/samplers/sampler.py,sha256=PeqAV_dBB1TrkUeOLm4ABbv3LXu9B-IrsPoDjqVfjxM,8655
294
+ keras_hub/src/samplers/serialization.py,sha256=Z8u-nRdv7K1RPS_0rMYJwkunoFmI2xPCjZ61R8s3zUg,3356
295
+ keras_hub/src/samplers/top_k_sampler.py,sha256=xLexmP7FrW_W2657ObeJUgbeEox8AbB9uXIBKODVuKU,2836
296
+ keras_hub/src/samplers/top_p_sampler.py,sha256=Mx4Ytti2BsVh6uLPnBeNZ5znBjvXrnDndmbMlMAMRbk,3986
297
+ keras_hub/src/tests/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
298
+ keras_hub/src/tests/test_case.py,sha256=i8-jrXric88acmQTGIn0KCp157EsWZBCx88qHKyAjSM,25730
299
+ keras_hub/src/tokenizers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
300
+ keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=5VTFUGSQGd_NMwuQc9kBA5KU1rLcJpNYnRPl28NMFWo,24435
301
+ keras_hub/src/tokenizers/byte_tokenizer.py,sha256=ueijdnipIG7G4a_cals0y6t7oVm-dyEcSVY2JkX_5i4,11234
302
+ keras_hub/src/tokenizers/sentence_piece_tokenizer.py,sha256=nmYwaoK4yLaqp1c0JxXI4JZS3fmR4qIyuRnf2zExjmg,10148
303
+ keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py,sha256=0VZ-5QdvVKFp8_tSZiM8qROYhrrfrg-GCJ1BllXSd1g,5420
304
+ keras_hub/src/tokenizers/tokenizer.py,sha256=sySYL7Nym6N-NIXk1pu9zsgbfFIOGvPvNRy-R3kXlzA,10098
305
+ keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=z720-paGm8tV-rhs0B8QHD3P2syPKVdXMyQqLdSjTwM,14118
306
+ keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=AWFCHCxgRJ3_iHLxi1s9gTIjTrdtqvJAxqN1ugEXLvc,20529
307
+ keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=_W07w57ZHuqpAK7U8Qs4neFW4UEzhRdfyVy2oDs02d8,7136
308
+ keras_hub/src/utils/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
309
+ keras_hub/src/utils/keras_utils.py,sha256=r0ro8lBfqCgWT_S5dXMVuj_nQNxe_Dwsowrc1dSdHT0,2555
310
+ keras_hub/src/utils/pipeline_model.py,sha256=9GNlV8RBV18oFQUkXDCizyyBI8sYhB_7ejxI2dEPVdw,9610
311
+ keras_hub/src/utils/preset_utils.py,sha256=jMKJBYJO4AlT1DNis6kKTwDZ9P-JdfJC5PAU3e7ZFz0,29547
312
+ keras_hub/src/utils/python_utils.py,sha256=G5oCVQggmqgkgD1NXuBQEgNCFmDSevYv7bz-1cAVFAs,787
313
+ keras_hub/src/utils/tensor_utils.py,sha256=XpWORE8iUzHXv1E1akiYDep07ndZJRKvjsKVljMvtUU,11362
314
+ keras_hub/src/utils/imagenet/__init__.py,sha256=AK2s8L-VARI5OmlT6G3vtlKIVyjwLfgVwXfxzhhSCq4,585
315
+ keras_hub/src/utils/imagenet/imagenet_utils.py,sha256=0iHrAQbh5DCa9Dh7tJiQeJc7AGzNO7j0cFEWS2Of16w,39889
316
+ keras_hub/src/utils/timm/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
317
+ keras_hub/src/utils/timm/convert_resnet.py,sha256=hZNj_kpwSA9Jp3NRDHtCPzHFzRKKPnidKQUAoqcdENk,6810
318
+ keras_hub/src/utils/timm/preset_loader.py,sha256=EgS5xBP3sWYiTgKmOAMmj3b3kRWcPnsWLieReLHZ178,2928
319
+ keras_hub/src/utils/transformers/__init__.py,sha256=lY7spwqXeGX_75qOHiSCff7FPvFCvRamJMF5ua9OWCg,585
320
+ keras_hub/src/utils/transformers/convert_albert.py,sha256=7b9X1TLrWfHieoeX_K-EXTagkl4Rp9AfPjsPrwArBGY,8280
321
+ keras_hub/src/utils/transformers/convert_bart.py,sha256=RXmPf_XUZrUyqDaOV9T7qVNEP4rAVR44oK1aRZI0v78,14996
322
+ keras_hub/src/utils/transformers/convert_bert.py,sha256=yeQxwiTkI2QSqILI8eqBHe2WKbk6doYHCJpwKcupUNQ,6562
323
+ keras_hub/src/utils/transformers/convert_distilbert.py,sha256=WYDKtlHCvZdM3mAqJqab6rtwz8w5nB7o7KWqkcTxd1Q,7083
324
+ keras_hub/src/utils/transformers/convert_gemma.py,sha256=C6XMyKk7syA4gTq9Z9GvCAvuvkhbZEEpEQo2aEQ_8W0,7118
325
+ keras_hub/src/utils/transformers/convert_gpt2.py,sha256=ksPjQhZG58F0EeC9dcpCl-hgbLW_jj0R-1xBKYa8X4w,6288
326
+ keras_hub/src/utils/transformers/convert_llama3.py,sha256=a5Izn0g_iUes3KOWfIfjLRZvA7oC-XIbpmTN2i3wm4I,5035
327
+ keras_hub/src/utils/transformers/convert_mistral.py,sha256=4QStizMS6ESEPjSI-ls6jc3bCDzX44HPSDxUK_dExvw,5345
328
+ keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=BT5eX1QzbjCQCopbMstiejQQWQiB_N77bpD5FMUygEo,11234
329
+ keras_hub/src/utils/transformers/preset_loader.py,sha256=9x9hLhDh_6PAHG5gay5rVoEVyt-gXTQGrnprjMLKvCM,3294
330
+ keras_hub/src/utils/transformers/safetensor_utils.py,sha256=2O8lcCf9yIFt5xiRVOtF1ZkPb5pfhOfDJotBaanD9Zo,3547
331
+ keras_hub_nightly-0.16.0.dev2024092017.dist-info/METADATA,sha256=PSZLjVmxpfU4G_i52vw-twg4xESYRhyqicE-Ctk5mbA,7059
332
+ keras_hub_nightly-0.16.0.dev2024092017.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
333
+ keras_hub_nightly-0.16.0.dev2024092017.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
334
+ keras_hub_nightly-0.16.0.dev2024092017.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (73.0.1)
2
+ Generator: setuptools (75.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,276 +0,0 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- import keras
17
-
18
- from keras_hub.src.api_export import keras_hub_export
19
- from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
20
- from keras_hub.src.models.bart.bart_tokenizer import BartTokenizer
21
- from keras_hub.src.models.preprocessor import Preprocessor
22
- from keras_hub.src.utils.keras_utils import (
23
- convert_inputs_to_list_of_tensor_segments,
24
- )
25
-
26
-
27
- @keras_hub_export("keras_hub.models.BartPreprocessor")
28
- class BartPreprocessor(Preprocessor):
29
- """A BART preprocessing layer which tokenizes and packs inputs.
30
-
31
- This preprocessing layer will do three things:
32
-
33
- 1. Tokenize both encoder inputs and decoder inputs using the `tokenizer`.
34
- Both inputs can contain only one segment.
35
- 2. Add the appropriate special tokens - `"<s>"`, `"</s>"` and `"<pad>"`.
36
- 3. Construct a dictionary with keys `"encoder_token_ids"`,
37
- `"encoder_padding_mask"`, `"decoder_token_ids"`, `"decoder_padding_mask"`
38
- that can be passed directly to a BART model.
39
-
40
- Args:
41
- tokenizer: A `keras_hub.models.BartTokenizer` instance.
42
- encoder_sequence_length: The length of the packed encoder inputs.
43
- decoder_sequence_length: The length of the packed decoder inputs.
44
-
45
- Call arguments:
46
- x: A dictionary with `encoder_text` and `decoder_text` as its keys.
47
- Each value in the dictionary should be a tensor of single string
48
- sequences. Inputs may be batched or unbatched. Raw python inputs
49
- will be converted to tensors.
50
- y: Any label data. Will be passed through unaltered.
51
- sample_weight: Any label weight data. Will be passed through unaltered.
52
-
53
- Examples:
54
-
55
- Directly calling the layer on data.
56
- ```python
57
- preprocessor = keras_hub.models.BartPreprocessor.from_preset("bart_base_en")
58
-
59
- # Preprocess unbatched inputs.
60
- inputs = {
61
- "encoder_text": "The fox was sleeping.",
62
- "decoder_text": "The fox was awake."
63
- }
64
- preprocessor(inputs)
65
-
66
- # Preprocess batched inputs.
67
- inputs = {
68
- "encoder_text": ["The fox was sleeping.", "The lion was quiet."],
69
- "decoder_text": ["The fox was awake.", "The lion was roaring."]
70
- }
71
- preprocessor(inputs)
72
-
73
- # Custom vocabulary.
74
- vocab = {
75
- "<s>": 0,
76
- "<pad>": 1,
77
- "</s>": 2,
78
- "Ġafter": 5,
79
- "noon": 6,
80
- "Ġsun": 7,
81
- }
82
- merges = ["Ġ a", "Ġ s", "Ġ n", "e r", "n o", "o n", "Ġs u", "Ġa f", "no on"]
83
- merges += ["Ġsu n", "Ġaf t", "Ġaft er"]
84
-
85
- tokenizer = keras_hub.models.BartTokenizer(
86
- vocabulary=vocab,
87
- merges=merges,
88
- )
89
- preprocessor = keras_hub.models.BartPreprocessor(
90
- tokenizer=tokenizer,
91
- encoder_sequence_length=20,
92
- decoder_sequence_length=10,
93
- )
94
- inputs = {
95
- "encoder_text": "The fox was sleeping.",
96
- "decoder_text": "The fox was awake."
97
- }
98
- preprocessor(inputs)
99
- ```
100
-
101
- Mapping with `tf.data.Dataset`.
102
- ```python
103
- preprocessor = keras_hub.models.BartPreprocessor.from_preset("bart_base_en")
104
-
105
- # Map labeled single sentences.
106
- features = {
107
- "encoder_text": tf.constant(
108
- ["The fox was sleeping.", "The lion was quiet."]
109
- ),
110
- "decoder_text": tf.constant(
111
- ["The fox was awake.", "The lion was silent."]
112
- )
113
- }
114
- labels = tf.constant(["True", "False"])
115
- ds = tf.data.Dataset.from_tensor_slices((features, labels))
116
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
117
-
118
- # Map unlabeled single sentences.
119
- features = {
120
- "encoder_text": tf.constant(
121
- ["The fox was sleeping.", "The lion was quiet."]
122
- ),
123
- "decoder_text": tf.constant(
124
- ["The fox was awake.", "The lion was roaring."]
125
- )
126
- }
127
- ds = tf.data.Dataset.from_tensor_slices(features)
128
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
129
- ```
130
- """
131
-
132
- tokenizer_cls = BartTokenizer
133
-
134
- def __init__(
135
- self,
136
- tokenizer,
137
- encoder_sequence_length=1024,
138
- decoder_sequence_length=1024,
139
- **kwargs,
140
- ):
141
- super().__init__(**kwargs)
142
- self.tokenizer = tokenizer
143
- self.encoder_packer = None
144
- self.decoder_packer = None
145
- self.encoder_sequence_length = encoder_sequence_length
146
- self.decoder_sequence_length = decoder_sequence_length
147
-
148
- def build(self, input_shape):
149
- # Defer packer creation to `build()` so that we can be sure tokenizer
150
- # assets have loaded when restoring a saved model.
151
-
152
- # TODO: Use `MultiSegmentPacker` instead of `StartEndPacker` once we
153
- # want to move to multi-segment packing and have improved
154
- # `MultiSegmentPacker`'s performance.
155
- self.encoder_packer = StartEndPacker(
156
- start_value=self.tokenizer.start_token_id,
157
- end_value=self.tokenizer.end_token_id,
158
- pad_value=self.tokenizer.pad_token_id,
159
- sequence_length=self.encoder_sequence_length,
160
- return_padding_mask=True,
161
- )
162
-
163
- # The decoder is packed a bit differently; the format is as follows:
164
- # `[end_token_id, start_token_id, tokens..., end_token_id, padding...]`.
165
- self.decoder_packer = StartEndPacker(
166
- start_value=[
167
- self.tokenizer.end_token_id,
168
- self.tokenizer.start_token_id,
169
- ],
170
- end_value=self.tokenizer.end_token_id,
171
- pad_value=self.tokenizer.pad_token_id,
172
- sequence_length=self.decoder_sequence_length,
173
- return_padding_mask=True,
174
- )
175
- self.built = True
176
-
177
- def call(
178
- self,
179
- x,
180
- y=None,
181
- sample_weight=None,
182
- *,
183
- encoder_sequence_length=None,
184
- decoder_sequence_length=None,
185
- # `sequence_length` is an alias for `decoder_sequence_length`
186
- sequence_length=None,
187
- ):
188
- if not (
189
- isinstance(x, dict)
190
- and all(k in x for k in ("encoder_text", "decoder_text"))
191
- ):
192
- raise ValueError(
193
- '`x` must be a dictionary, containing the keys `"encoder_text"`'
194
- f' and `"decoder_text"`. Received x={x}.'
195
- )
196
-
197
- if encoder_sequence_length is None:
198
- encoder_sequence_length = self.encoder_sequence_length
199
- decoder_sequence_length = decoder_sequence_length or sequence_length
200
- if decoder_sequence_length is None:
201
- decoder_sequence_length = self.decoder_sequence_length
202
-
203
- encoder_text = x["encoder_text"]
204
- decoder_text = x["decoder_text"]
205
-
206
- encoder_text = convert_inputs_to_list_of_tensor_segments(encoder_text)
207
- decoder_text = convert_inputs_to_list_of_tensor_segments(decoder_text)
208
-
209
- if len(encoder_text) > 1 or len(decoder_text) > 1:
210
- raise ValueError(
211
- '`BARTPreprocessor` requires both `"encoder_text"` and '
212
- f'`"decoder_text"` to contain only one segment, but received '
213
- f"{len(encoder_text)} and {len(decoder_text)}, respectively."
214
- )
215
-
216
- encoder_inputs = self.tokenizer(encoder_text[0])
217
- encoder_token_ids, encoder_padding_mask = self.encoder_packer(
218
- encoder_inputs,
219
- sequence_length=encoder_sequence_length,
220
- )
221
-
222
- decoder_inputs = self.tokenizer(decoder_text[0])
223
- decoder_token_ids, decoder_padding_mask = self.decoder_packer(
224
- decoder_inputs,
225
- sequence_length=decoder_sequence_length,
226
- )
227
-
228
- x = {
229
- "encoder_token_ids": encoder_token_ids,
230
- "encoder_padding_mask": encoder_padding_mask,
231
- "decoder_token_ids": decoder_token_ids,
232
- "decoder_padding_mask": decoder_padding_mask,
233
- }
234
-
235
- return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
236
-
237
- def get_config(self):
238
- config = super().get_config()
239
- config.update(
240
- {
241
- "encoder_sequence_length": self.encoder_sequence_length,
242
- "decoder_sequence_length": self.decoder_sequence_length,
243
- }
244
- )
245
- return config
246
-
247
- @property
248
- def encoder_sequence_length(self):
249
- """The padded length of encoder input sequences."""
250
- return self._encoder_sequence_length
251
-
252
- @encoder_sequence_length.setter
253
- def encoder_sequence_length(self, value):
254
- self._encoder_sequence_length = value
255
- if self.encoder_packer is not None:
256
- self.encoder_packer.sequence_length = value
257
-
258
- @property
259
- def decoder_sequence_length(self):
260
- """The padded length of decoder input sequences."""
261
- return self._decoder_sequence_length
262
-
263
- @decoder_sequence_length.setter
264
- def decoder_sequence_length(self, value):
265
- self._decoder_sequence_length = value
266
- if self.decoder_packer is not None:
267
- self.decoder_packer.sequence_length = value
268
-
269
- @property
270
- def sequence_length(self):
271
- """Alias for `decoder_sequence_length`."""
272
- return self.decoder_sequence_length
273
-
274
- @sequence_length.setter
275
- def sequence_length(self, value):
276
- self.decoder_sequence_length = value