keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl → 0.16.0.dev2024092017__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (198) hide show
  1. keras_hub/__init__.py +0 -6
  2. keras_hub/api/__init__.py +2 -0
  3. keras_hub/api/bounding_box/__init__.py +36 -0
  4. keras_hub/api/layers/__init__.py +14 -0
  5. keras_hub/api/models/__init__.py +97 -48
  6. keras_hub/api/tokenizers/__init__.py +30 -0
  7. keras_hub/api/utils/__init__.py +22 -0
  8. keras_hub/src/api_export.py +15 -9
  9. keras_hub/src/bounding_box/__init__.py +13 -0
  10. keras_hub/src/bounding_box/converters.py +529 -0
  11. keras_hub/src/bounding_box/formats.py +162 -0
  12. keras_hub/src/bounding_box/iou.py +263 -0
  13. keras_hub/src/bounding_box/to_dense.py +95 -0
  14. keras_hub/src/bounding_box/to_ragged.py +99 -0
  15. keras_hub/src/bounding_box/utils.py +194 -0
  16. keras_hub/src/bounding_box/validate_format.py +99 -0
  17. keras_hub/src/layers/preprocessing/audio_converter.py +121 -0
  18. keras_hub/src/layers/preprocessing/image_converter.py +130 -0
  19. keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +2 -0
  20. keras_hub/src/layers/preprocessing/multi_segment_packer.py +9 -8
  21. keras_hub/src/layers/preprocessing/preprocessing_layer.py +2 -29
  22. keras_hub/src/layers/preprocessing/random_deletion.py +33 -31
  23. keras_hub/src/layers/preprocessing/random_swap.py +33 -31
  24. keras_hub/src/layers/preprocessing/resizing_image_converter.py +101 -0
  25. keras_hub/src/layers/preprocessing/start_end_packer.py +3 -2
  26. keras_hub/src/models/albert/__init__.py +1 -2
  27. keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +6 -86
  28. keras_hub/src/models/albert/{albert_classifier.py → albert_text_classifier.py} +34 -10
  29. keras_hub/src/models/albert/{albert_preprocessor.py → albert_text_classifier_preprocessor.py} +14 -70
  30. keras_hub/src/models/albert/albert_tokenizer.py +17 -36
  31. keras_hub/src/models/backbone.py +12 -34
  32. keras_hub/src/models/bart/__init__.py +1 -2
  33. keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +21 -148
  34. keras_hub/src/models/bart/bart_tokenizer.py +12 -39
  35. keras_hub/src/models/bert/__init__.py +1 -5
  36. keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +6 -87
  37. keras_hub/src/models/bert/bert_presets.py +1 -4
  38. keras_hub/src/models/bert/{bert_classifier.py → bert_text_classifier.py} +19 -12
  39. keras_hub/src/models/bert/{bert_preprocessor.py → bert_text_classifier_preprocessor.py} +14 -70
  40. keras_hub/src/models/bert/bert_tokenizer.py +17 -35
  41. keras_hub/src/models/bloom/__init__.py +1 -2
  42. keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +6 -91
  43. keras_hub/src/models/bloom/bloom_tokenizer.py +12 -41
  44. keras_hub/src/models/causal_lm.py +10 -29
  45. keras_hub/src/models/causal_lm_preprocessor.py +195 -0
  46. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +54 -15
  47. keras_hub/src/models/deberta_v3/__init__.py +1 -4
  48. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +14 -77
  49. keras_hub/src/models/deberta_v3/{deberta_v3_classifier.py → deberta_v3_text_classifier.py} +16 -11
  50. keras_hub/src/models/deberta_v3/{deberta_v3_preprocessor.py → deberta_v3_text_classifier_preprocessor.py} +23 -64
  51. keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +30 -25
  52. keras_hub/src/models/densenet/densenet_backbone.py +46 -22
  53. keras_hub/src/models/distil_bert/__init__.py +1 -4
  54. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +14 -76
  55. keras_hub/src/models/distil_bert/{distil_bert_classifier.py → distil_bert_text_classifier.py} +17 -12
  56. keras_hub/src/models/distil_bert/{distil_bert_preprocessor.py → distil_bert_text_classifier_preprocessor.py} +23 -63
  57. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +19 -35
  58. keras_hub/src/models/efficientnet/__init__.py +13 -0
  59. keras_hub/src/models/efficientnet/efficientnet_backbone.py +569 -0
  60. keras_hub/src/models/efficientnet/fusedmbconv.py +229 -0
  61. keras_hub/src/models/efficientnet/mbconv.py +238 -0
  62. keras_hub/src/models/electra/__init__.py +1 -2
  63. keras_hub/src/models/electra/electra_tokenizer.py +17 -32
  64. keras_hub/src/models/f_net/__init__.py +1 -2
  65. keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +12 -78
  66. keras_hub/src/models/f_net/{f_net_classifier.py → f_net_text_classifier.py} +17 -10
  67. keras_hub/src/models/f_net/{f_net_preprocessor.py → f_net_text_classifier_preprocessor.py} +19 -63
  68. keras_hub/src/models/f_net/f_net_tokenizer.py +17 -35
  69. keras_hub/src/models/falcon/__init__.py +1 -2
  70. keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +6 -89
  71. keras_hub/src/models/falcon/falcon_tokenizer.py +12 -35
  72. keras_hub/src/models/gemma/__init__.py +1 -2
  73. keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +6 -90
  74. keras_hub/src/models/gemma/gemma_decoder_block.py +1 -1
  75. keras_hub/src/models/gemma/gemma_tokenizer.py +12 -23
  76. keras_hub/src/models/gpt2/__init__.py +1 -2
  77. keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +6 -89
  78. keras_hub/src/models/gpt2/gpt2_preprocessor.py +12 -90
  79. keras_hub/src/models/gpt2/gpt2_tokenizer.py +12 -34
  80. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +6 -91
  81. keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +12 -34
  82. keras_hub/src/models/image_classifier.py +0 -5
  83. keras_hub/src/models/image_classifier_preprocessor.py +83 -0
  84. keras_hub/src/models/llama/__init__.py +1 -2
  85. keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +6 -85
  86. keras_hub/src/models/llama/llama_tokenizer.py +12 -25
  87. keras_hub/src/models/llama3/__init__.py +1 -2
  88. keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +6 -89
  89. keras_hub/src/models/llama3/llama3_tokenizer.py +12 -33
  90. keras_hub/src/models/masked_lm.py +0 -2
  91. keras_hub/src/models/masked_lm_preprocessor.py +156 -0
  92. keras_hub/src/models/mistral/__init__.py +1 -2
  93. keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +6 -91
  94. keras_hub/src/models/mistral/mistral_tokenizer.py +12 -23
  95. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +2 -2
  96. keras_hub/src/models/mobilenet/__init__.py +13 -0
  97. keras_hub/src/models/mobilenet/mobilenet_backbone.py +530 -0
  98. keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +114 -0
  99. keras_hub/src/models/opt/__init__.py +1 -2
  100. keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +6 -93
  101. keras_hub/src/models/opt/opt_tokenizer.py +12 -41
  102. keras_hub/src/models/pali_gemma/__init__.py +1 -4
  103. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +28 -28
  104. keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +25 -0
  105. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +5 -5
  106. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +11 -3
  107. keras_hub/src/models/phi3/__init__.py +1 -2
  108. keras_hub/src/models/phi3/phi3_causal_lm.py +3 -9
  109. keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +6 -89
  110. keras_hub/src/models/phi3/phi3_tokenizer.py +12 -36
  111. keras_hub/src/models/preprocessor.py +72 -83
  112. keras_hub/src/models/resnet/__init__.py +6 -0
  113. keras_hub/src/models/resnet/resnet_backbone.py +390 -42
  114. keras_hub/src/models/resnet/resnet_image_classifier.py +33 -6
  115. keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +28 -0
  116. keras_hub/src/models/{llama3/llama3_preprocessor.py → resnet/resnet_image_converter.py} +7 -5
  117. keras_hub/src/models/resnet/resnet_presets.py +95 -0
  118. keras_hub/src/models/retinanet/__init__.py +13 -0
  119. keras_hub/src/models/retinanet/anchor_generator.py +175 -0
  120. keras_hub/src/models/retinanet/box_matcher.py +259 -0
  121. keras_hub/src/models/retinanet/non_max_supression.py +578 -0
  122. keras_hub/src/models/roberta/__init__.py +1 -2
  123. keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +22 -74
  124. keras_hub/src/models/roberta/{roberta_classifier.py → roberta_text_classifier.py} +16 -11
  125. keras_hub/src/models/roberta/{roberta_preprocessor.py → roberta_text_classifier_preprocessor.py} +21 -53
  126. keras_hub/src/models/roberta/roberta_tokenizer.py +13 -52
  127. keras_hub/src/models/seq_2_seq_lm_preprocessor.py +269 -0
  128. keras_hub/src/models/stable_diffusion_v3/__init__.py +13 -0
  129. keras_hub/src/models/stable_diffusion_v3/clip_encoder_block.py +103 -0
  130. keras_hub/src/models/stable_diffusion_v3/clip_preprocessor.py +93 -0
  131. keras_hub/src/models/stable_diffusion_v3/clip_text_encoder.py +149 -0
  132. keras_hub/src/models/stable_diffusion_v3/clip_tokenizer.py +167 -0
  133. keras_hub/src/models/stable_diffusion_v3/mmdit.py +427 -0
  134. keras_hub/src/models/stable_diffusion_v3/mmdit_block.py +317 -0
  135. keras_hub/src/models/stable_diffusion_v3/t5_xxl_preprocessor.py +74 -0
  136. keras_hub/src/models/stable_diffusion_v3/t5_xxl_text_encoder.py +155 -0
  137. keras_hub/src/models/stable_diffusion_v3/vae_attention.py +126 -0
  138. keras_hub/src/models/stable_diffusion_v3/vae_image_decoder.py +186 -0
  139. keras_hub/src/models/t5/__init__.py +1 -2
  140. keras_hub/src/models/t5/t5_tokenizer.py +13 -23
  141. keras_hub/src/models/task.py +71 -116
  142. keras_hub/src/models/{classifier.py → text_classifier.py} +19 -13
  143. keras_hub/src/models/text_classifier_preprocessor.py +138 -0
  144. keras_hub/src/models/whisper/__init__.py +1 -2
  145. keras_hub/src/models/whisper/{whisper_audio_feature_extractor.py → whisper_audio_converter.py} +20 -18
  146. keras_hub/src/models/whisper/whisper_backbone.py +0 -3
  147. keras_hub/src/models/whisper/whisper_presets.py +10 -10
  148. keras_hub/src/models/whisper/whisper_tokenizer.py +20 -16
  149. keras_hub/src/models/xlm_roberta/__init__.py +1 -4
  150. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +26 -72
  151. keras_hub/src/models/xlm_roberta/{xlm_roberta_classifier.py → xlm_roberta_text_classifier.py} +16 -11
  152. keras_hub/src/models/xlm_roberta/{xlm_roberta_preprocessor.py → xlm_roberta_text_classifier_preprocessor.py} +26 -53
  153. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +25 -10
  154. keras_hub/src/tests/test_case.py +46 -0
  155. keras_hub/src/tokenizers/byte_pair_tokenizer.py +30 -17
  156. keras_hub/src/tokenizers/byte_tokenizer.py +14 -15
  157. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +20 -7
  158. keras_hub/src/tokenizers/tokenizer.py +67 -32
  159. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +14 -15
  160. keras_hub/src/tokenizers/word_piece_tokenizer.py +34 -47
  161. keras_hub/src/utils/imagenet/__init__.py +13 -0
  162. keras_hub/src/utils/imagenet/imagenet_utils.py +1067 -0
  163. keras_hub/src/utils/keras_utils.py +0 -50
  164. keras_hub/src/utils/preset_utils.py +230 -68
  165. keras_hub/src/utils/tensor_utils.py +187 -69
  166. keras_hub/src/utils/timm/convert_resnet.py +19 -16
  167. keras_hub/src/utils/timm/preset_loader.py +66 -0
  168. keras_hub/src/utils/transformers/convert_albert.py +193 -0
  169. keras_hub/src/utils/transformers/convert_bart.py +373 -0
  170. keras_hub/src/utils/transformers/convert_bert.py +7 -17
  171. keras_hub/src/utils/transformers/convert_distilbert.py +10 -20
  172. keras_hub/src/utils/transformers/convert_gemma.py +5 -19
  173. keras_hub/src/utils/transformers/convert_gpt2.py +5 -18
  174. keras_hub/src/utils/transformers/convert_llama3.py +7 -18
  175. keras_hub/src/utils/transformers/convert_mistral.py +129 -0
  176. keras_hub/src/utils/transformers/convert_pali_gemma.py +7 -29
  177. keras_hub/src/utils/transformers/preset_loader.py +77 -0
  178. keras_hub/src/utils/transformers/safetensor_utils.py +2 -2
  179. keras_hub/src/version_utils.py +1 -1
  180. keras_hub_nightly-0.16.0.dev2024092017.dist-info/METADATA +202 -0
  181. keras_hub_nightly-0.16.0.dev2024092017.dist-info/RECORD +334 -0
  182. {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/WHEEL +1 -1
  183. keras_hub/src/models/bart/bart_preprocessor.py +0 -276
  184. keras_hub/src/models/bloom/bloom_preprocessor.py +0 -185
  185. keras_hub/src/models/electra/electra_preprocessor.py +0 -154
  186. keras_hub/src/models/falcon/falcon_preprocessor.py +0 -187
  187. keras_hub/src/models/gemma/gemma_preprocessor.py +0 -191
  188. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +0 -145
  189. keras_hub/src/models/llama/llama_preprocessor.py +0 -189
  190. keras_hub/src/models/mistral/mistral_preprocessor.py +0 -190
  191. keras_hub/src/models/opt/opt_preprocessor.py +0 -188
  192. keras_hub/src/models/phi3/phi3_preprocessor.py +0 -190
  193. keras_hub/src/models/whisper/whisper_preprocessor.py +0 -326
  194. keras_hub/src/utils/timm/convert.py +0 -37
  195. keras_hub/src/utils/transformers/convert.py +0 -101
  196. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +0 -34
  197. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +0 -297
  198. {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/top_level.txt +0 -0
@@ -12,19 +12,14 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- import keras
16
- from absl import logging
17
-
18
15
  from keras_hub.src.api_export import keras_hub_export
19
- from keras_hub.src.models.gpt2.gpt2_preprocessor import GPT2Preprocessor
20
- from keras_hub.src.utils.keras_utils import (
21
- convert_inputs_to_list_of_tensor_segments,
22
- )
23
- from keras_hub.src.utils.tensor_utils import strip_to_ragged
16
+ from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
17
+ from keras_hub.src.models.gpt2.gpt2_backbone import GPT2Backbone
18
+ from keras_hub.src.models.gpt2.gpt2_tokenizer import GPT2Tokenizer
24
19
 
25
20
 
26
21
  @keras_hub_export("keras_hub.models.GPT2CausalLMPreprocessor")
27
- class GPT2CausalLMPreprocessor(GPT2Preprocessor):
22
+ class GPT2CausalLMPreprocessor(CausalLMPreprocessor):
28
23
  """GPT2 Causal LM preprocessor.
29
24
 
30
25
  This preprocessing layer is meant for use with
@@ -91,83 +86,5 @@ class GPT2CausalLMPreprocessor(GPT2Preprocessor):
91
86
  ```
92
87
  """
93
88
 
94
- def call(
95
- self,
96
- x,
97
- y=None,
98
- sample_weight=None,
99
- sequence_length=None,
100
- ):
101
- if y is not None or sample_weight is not None:
102
- logging.warning(
103
- "`GPT2CausalLMPreprocessor` generates `y` and `sample_weight` "
104
- "based on your input data, but your data already contains `y` "
105
- "or `sample_weight`. Your `y` and `sample_weight` will be "
106
- "ignored."
107
- )
108
- sequence_length = sequence_length or self.sequence_length
109
-
110
- x = convert_inputs_to_list_of_tensor_segments(x)[0]
111
- x = self.tokenizer(x)
112
- # Pad with one extra token to account for the truncation below.
113
- token_ids, padding_mask = self.packer(
114
- x,
115
- sequence_length=sequence_length + 1,
116
- add_start_value=self.add_start_token,
117
- add_end_value=self.add_end_token,
118
- )
119
- # The last token does not have a next token, so we truncate it out.
120
- x = {
121
- "token_ids": token_ids[..., :-1],
122
- "padding_mask": padding_mask[..., :-1],
123
- }
124
- # Target `y` will be the next token.
125
- y, sample_weight = token_ids[..., 1:], padding_mask[..., 1:]
126
- return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
127
-
128
- def generate_preprocess(
129
- self,
130
- x,
131
- sequence_length=None,
132
- ):
133
- """Convert strings to integer token input for generation.
134
-
135
- Similar to calling the layer for training, this method takes in strings
136
- or tensor strings, tokenizes and packs the input, and computes a padding
137
- mask masking all inputs not filled in with a padded value.
138
-
139
- Unlike calling the layer for training, this method does not compute
140
- labels and will never append a `tokenizer.end_token_id` to the end of
141
- the sequence (as generation is expected to continue at the end of the
142
- inputted prompt).
143
- """
144
- if not self.built:
145
- self.build(None)
146
-
147
- x = convert_inputs_to_list_of_tensor_segments(x)[0]
148
- x = self.tokenizer(x)
149
- token_ids, padding_mask = self.packer(
150
- x, sequence_length=sequence_length, add_end_value=False
151
- )
152
- return {
153
- "token_ids": token_ids,
154
- "padding_mask": padding_mask,
155
- }
156
-
157
- def generate_postprocess(
158
- self,
159
- x,
160
- ):
161
- """Convert integer token output to strings for generation.
162
-
163
- This method reverses `generate_preprocess()`, by first removing all
164
- padding and start/end tokens, and then converting the integer sequence
165
- back to a string.
166
- """
167
- if not self.built:
168
- self.build(None)
169
-
170
- token_ids, padding_mask = x["token_ids"], x["padding_mask"]
171
- ids_to_strip = (self.tokenizer.end_token_id,)
172
- token_ids = strip_to_ragged(token_ids, padding_mask, ids_to_strip)
173
- return self.tokenizer.detokenize(token_ids)
89
+ backbone_cls = GPT2Backbone
90
+ tokenizer_cls = GPT2Tokenizer
@@ -17,96 +17,23 @@ import keras
17
17
 
18
18
  from keras_hub.src.api_export import keras_hub_export
19
19
  from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
20
+ from keras_hub.src.models.gpt2.gpt2_backbone import GPT2Backbone
20
21
  from keras_hub.src.models.gpt2.gpt2_tokenizer import GPT2Tokenizer
21
22
  from keras_hub.src.models.preprocessor import Preprocessor
22
- from keras_hub.src.utils.keras_utils import (
23
- convert_inputs_to_list_of_tensor_segments,
24
- )
23
+ from keras_hub.src.utils.tensor_utils import preprocessing_function
25
24
 
26
25
 
27
26
  @keras_hub_export("keras_hub.models.GPT2Preprocessor")
28
27
  class GPT2Preprocessor(Preprocessor):
29
- """GPT2 preprocessing layer which tokenizes and packs inputs.
28
+ """Legacy preprocessing layer for GPT2.
30
29
 
31
- This preprocessing layer will do 2 things:
32
-
33
- - Tokenize the inputs using the `tokenizer`.
34
- - Construct a dictionary with keys `"token_ids"`, `"padding_mask"`, that can
35
- be passed directly to a `keras_hub.models.GPT2Backbone`.
36
-
37
- This layer can be used directly with `tf.data.Dataset.map` to preprocess
38
- string data in the `(x, y, sample_weight)` format used by
39
- `keras.Model.fit`.
40
-
41
- The call method of this layer accepts three arguments, `x`, `y`, and
42
- `sample_weight`. `x` can be a python string or tensor representing a single
43
- segment, a list of python strings representing a batch of single segments,
44
- or a list of tensors representing multiple segments to be packed together.
45
- `y` and `sample_weight` are both optional, can have any format, and will be
46
- passed through unaltered.
47
-
48
- `GPT2Preprocessor` forces the input to have only one segment, as GPT2 is
49
- mainly used for generation tasks. For tasks having multi-segment inputs
50
- like "glue/mnli", please use a model designed for classification purposes
51
- such as BERT or RoBERTa.
52
-
53
- Args:
54
- tokenizer: A `keras_hub.models.GPT2Tokenizer` instance.
55
- sequence_length: The length of the packed inputs.
56
- add_start_token: If `True`, the preprocessor will prepend the tokenizer
57
- start token to each input sequence.
58
- add_end_token: If `True`, the preprocessor will append the tokenizer
59
- end token to each input sequence.
60
-
61
- Call arguments:
62
- x: A string, `tf.Tensor` or list of python strings.
63
- y: Any label data. Will be passed through unaltered.
64
- sample_weight: Any label weight data. Will be passed through unaltered.
65
- sequence_length: Pass to override the configured `sequence_length` of
66
- the layer.
67
-
68
- Examples:
69
-
70
- Directly calling the layer on data.
71
- ```python
72
- preprocessor = keras_hub.models.GPT2Preprocessor.from_preset("gpt2_base_en")
73
-
74
- # Tokenize and pack a single sentence.
75
- preprocessor("The quick brown fox jumped.")
76
-
77
- # Tokenize a batch of single sentences.
78
- preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
79
-
80
- # Custom vocabulary.
81
- features = ["a quick fox.", "a fox quick."]
82
- vocab = {"<|endoftext|>": 0, "a": 4, "Ġquick": 5, "Ġfox": 6}
83
- merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
84
- merges += ["Ġ f", "o x", "Ġf ox"]
85
- tokenizer = keras_hub.models.GPT2Tokenizer(
86
- vocabulary=vocab,
87
- merges=merges,
88
- )
89
- preprocessor = keras_hub.models.GPT2Preprocessor(tokenizer=tokenizer)
90
- preprocessor("The quick brown fox jumped.")
91
- ```
92
-
93
- Mapping with `tf.data.Dataset`.
94
- ```python
95
- preprocessor = keras_hub.models.GPT2Preprocessor.from_preset("gpt2_base_en")
96
-
97
- text = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
98
- label = tf.constant([1, 1])
99
-
100
- # Map labeled single sentences.
101
- ds = tf.data.Dataset.from_tensor_slices((text, label))
102
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
103
-
104
- # Map unlabeled single sentences.
105
- ds = tf.data.Dataset.from_tensor_slices(text)
106
- ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
107
- ```
30
+ This layer should not be used in new code! All preprocessing layers pair
31
+ directly with a task. E.g. `BertClassifier` and
32
+ `BertClassifierPreprocessor`. Either use `GPT2CausalLMPreprocessor` or
33
+ wrap `GPT2Tokenizer` into a custom preprocessing layer or function.
108
34
  """
109
35
 
36
+ backbone_cls = GPT2Backbone
110
37
  tokenizer_cls = GPT2Tokenizer
111
38
 
112
39
  def __init__(
@@ -117,6 +44,8 @@ class GPT2Preprocessor(Preprocessor):
117
44
  add_end_token=True,
118
45
  **kwargs,
119
46
  ):
47
+ # TODO: this class has some usage, but barely any, and is no longer
48
+ # documented. We should consider dropping it.
120
49
  super().__init__(**kwargs)
121
50
  self.tokenizer = tokenizer
122
51
  self.packer = None
@@ -136,6 +65,7 @@ class GPT2Preprocessor(Preprocessor):
136
65
  )
137
66
  self.built = True
138
67
 
68
+ @preprocessing_function
139
69
  def call(
140
70
  self,
141
71
  x,
@@ -143,17 +73,9 @@ class GPT2Preprocessor(Preprocessor):
143
73
  sample_weight=None,
144
74
  sequence_length=None,
145
75
  ):
146
- x = convert_inputs_to_list_of_tensor_segments(x)
147
- if len(x) != 1:
148
- raise ValueError(
149
- "GPT2 requires each input feature to contain only "
150
- f"one segment, but received {len(x)}. If you are using GPT2 "
151
- "for a multi-segment classification task, please refer to "
152
- "classification models like BERT or RoBERTa."
153
- )
154
76
  sequence_length = sequence_length or self.sequence_length
155
77
  token_ids, padding_mask = self.packer(
156
- self.tokenizer(x[0]),
78
+ self.tokenizer(x),
157
79
  sequence_length=sequence_length,
158
80
  add_start_value=self.add_start_token,
159
81
  add_end_value=self.add_end_token,
@@ -14,10 +14,16 @@
14
14
 
15
15
 
16
16
  from keras_hub.src.api_export import keras_hub_export
17
+ from keras_hub.src.models.gpt2.gpt2_backbone import GPT2Backbone
17
18
  from keras_hub.src.tokenizers.byte_pair_tokenizer import BytePairTokenizer
18
19
 
19
20
 
20
- @keras_hub_export("keras_hub.models.GPT2Tokenizer")
21
+ @keras_hub_export(
22
+ [
23
+ "keras_hub.tokenizers.GPT2Tokenizer",
24
+ "keras_hub.models.GPT2Tokenizer",
25
+ ]
26
+ )
21
27
  class GPT2Tokenizer(BytePairTokenizer):
22
28
  """A GPT-2 tokenizer using Byte-Pair Encoding subword segmentation.
23
29
 
@@ -27,8 +33,6 @@ class GPT2Tokenizer(BytePairTokenizer):
27
33
  models and provides a `from_preset()` method to automatically download
28
34
  a matching vocabulary for a GPT-2 preset.
29
35
 
30
- This tokenizer does not provide truncation or padding of inputs.
31
-
32
36
  If input is a batch of strings (rank > 0), the layer will output a
33
37
  `tf.RaggedTensor` where the last dimension of the output is ragged.
34
38
 
@@ -65,6 +69,8 @@ class GPT2Tokenizer(BytePairTokenizer):
65
69
  ```
66
70
  """
67
71
 
72
+ backbone_cls = GPT2Backbone
73
+
68
74
  def __init__(
69
75
  self,
70
76
  vocabulary=None,
@@ -72,39 +78,11 @@ class GPT2Tokenizer(BytePairTokenizer):
72
78
  **kwargs,
73
79
  ):
74
80
  # GPT2 uses the same start as end token, i.e., "<|endoftext|>".
75
- self.end_token = self.start_token = "<|endoftext|>"
76
-
81
+ self._add_special_token("<|endoftext|>", "end_token")
82
+ self._add_special_token("<|endoftext|>", "start_token")
83
+ self.pad_token_id = 0
77
84
  super().__init__(
78
85
  vocabulary=vocabulary,
79
86
  merges=merges,
80
- unsplittable_tokens=[self.end_token],
81
87
  **kwargs,
82
88
  )
83
-
84
- def set_vocabulary_and_merges(self, vocabulary, merges):
85
- super().set_vocabulary_and_merges(vocabulary, merges)
86
-
87
- if vocabulary is not None:
88
- # Check for necessary special tokens.
89
- if self.end_token not in self.get_vocabulary():
90
- raise ValueError(
91
- f"Cannot find token `'{self.end_token}'` in the provided "
92
- f"`vocabulary`. Please provide `'{self.end_token}'` in "
93
- "your `vocabulary` or use a pretrained `vocabulary` name."
94
- )
95
-
96
- self.end_token_id = self.token_to_id(self.end_token)
97
- self.start_token_id = self.end_token_id
98
- self.pad_token_id = 0
99
- else:
100
- self.end_token_id = None
101
- self.start_token_id = None
102
- self.pad_token_id = None
103
-
104
- def get_config(self):
105
- config = super().get_config()
106
- # In the constructor, we pass the list of special tokens to the
107
- # `unsplittable_tokens` arg of the superclass' constructor. Hence, we
108
- # delete it from the config here.
109
- del config["unsplittable_tokens"]
110
- return config
@@ -12,21 +12,14 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- import keras
16
- from absl import logging
17
-
18
15
  from keras_hub.src.api_export import keras_hub_export
19
- from keras_hub.src.models.gpt_neo_x.gpt_neo_x_preprocessor import (
20
- GPTNeoXPreprocessor,
21
- )
22
- from keras_hub.src.utils.keras_utils import (
23
- convert_inputs_to_list_of_tensor_segments,
24
- )
25
- from keras_hub.src.utils.tensor_utils import strip_to_ragged
16
+ from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
17
+ from keras_hub.src.models.gpt_neo_x.gpt_neo_x_backbone import GPTNeoXBackbone
18
+ from keras_hub.src.models.gpt_neo_x.gpt_neo_x_tokenizer import GPTNeoXTokenizer
26
19
 
27
20
 
28
21
  @keras_hub_export("keras_hub.models.GPTNeoXCausalLMPreprocessor")
29
- class GPTNeoXCausalLMPreprocessor(GPTNeoXPreprocessor):
22
+ class GPTNeoXCausalLMPreprocessor(CausalLMPreprocessor):
30
23
  """GPT-NeoX Causal LM preprocessor.
31
24
 
32
25
  This preprocessing layer is meant for use with
@@ -59,83 +52,5 @@ class GPTNeoXCausalLMPreprocessor(GPTNeoXPreprocessor):
59
52
 
60
53
  """
61
54
 
62
- def call(
63
- self,
64
- x,
65
- y=None,
66
- sample_weight=None,
67
- sequence_length=None,
68
- ):
69
- if y is not None or sample_weight is not None:
70
- logging.warning(
71
- "`GPTNeoXCausalLMPreprocessor` generates `y` and `sample_weight` "
72
- "based on your input data, but your data already contains `y` "
73
- "or `sample_weight`. Your `y` and `sample_weight` will be "
74
- "ignored."
75
- )
76
- sequence_length = sequence_length or self.sequence_length
77
-
78
- x = convert_inputs_to_list_of_tensor_segments(x)[0]
79
- x = self.tokenizer(x)
80
- # Pad with one extra token to account for the truncation below.
81
- token_ids, padding_mask = self.packer(
82
- x,
83
- sequence_length=sequence_length + 1,
84
- add_start_value=self.add_start_token,
85
- add_end_value=self.add_end_token,
86
- )
87
- # The last token does not have a next token, so we truncate it out.
88
- x = {
89
- "token_ids": token_ids[..., :-1],
90
- "padding_mask": padding_mask[..., :-1],
91
- }
92
- # Target `y` will be the next token.
93
- y, sample_weight = token_ids[..., 1:], padding_mask[..., 1:]
94
- return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
95
-
96
- def generate_preprocess(
97
- self,
98
- x,
99
- sequence_length=None,
100
- ):
101
- """Convert strings to integer token input for generation.
102
-
103
- Similar to calling the layer for training, this method takes in strings
104
- or tensor strings, tokenizes and packs the input, and computes a padding
105
- mask masking all inputs not filled in with a padded value.
106
-
107
- Unlike calling the layer for training, this method does not compute
108
- labels and will never append a `tokenizer.end_token_id` to the end of
109
- the sequence (as generation is expected to continue at the end of the
110
- inputted prompt).
111
- """
112
- if not self.built:
113
- self.build(None)
114
-
115
- x = convert_inputs_to_list_of_tensor_segments(x)[0]
116
- x = self.tokenizer(x)
117
- token_ids, padding_mask = self.packer(
118
- x, sequence_length=sequence_length, add_end_value=False
119
- )
120
- return {
121
- "token_ids": token_ids,
122
- "padding_mask": padding_mask,
123
- }
124
-
125
- def generate_postprocess(
126
- self,
127
- x,
128
- ):
129
- """Convert integer token output to strings for generation.
130
-
131
- This method reverses `generate_preprocess()`, by first removing all
132
- padding and start/end tokens, and then converting the integer sequence
133
- back to a string.
134
- """
135
- if not self.built:
136
- self.build(None)
137
-
138
- token_ids, padding_mask = x["token_ids"], x["padding_mask"]
139
- ids_to_strip = (self.tokenizer.end_token_id,)
140
- token_ids = strip_to_ragged(token_ids, padding_mask, ids_to_strip)
141
- return self.tokenizer.detokenize(token_ids)
55
+ backbone_cls = GPTNeoXBackbone
56
+ tokenizer_cls = GPTNeoXTokenizer
@@ -13,10 +13,16 @@
13
13
  # limitations under the License.
14
14
 
15
15
  from keras_hub.src.api_export import keras_hub_export
16
+ from keras_hub.src.models.gpt_neo_x.gpt_neo_x_backbone import GPTNeoXBackbone
16
17
  from keras_hub.src.tokenizers.byte_pair_tokenizer import BytePairTokenizer
17
18
 
18
19
 
19
- @keras_hub_export("keras_hub.models.GPTNeoXTokenizer")
20
+ @keras_hub_export(
21
+ [
22
+ "keras_hub.tokenizers.GPTNeoXTokenizer",
23
+ "keras_hub.models.GPTNeoXTokenizer",
24
+ ]
25
+ )
20
26
  class GPTNeoXTokenizer(BytePairTokenizer):
21
27
  """A GPTNeoX tokenizer using Byte-Pair Encoding subword segmentation.
22
28
 
@@ -26,8 +32,6 @@ class GPTNeoXTokenizer(BytePairTokenizer):
26
32
  models and provides a `from_preset()` method to automatically download
27
33
  a matching vocabulary for a GPTNeoX preset.
28
34
 
29
- This tokenizer does not provide truncation or padding of inputs.
30
-
31
35
  If input is a batch of strings (rank > 0), the layer will output a
32
36
  `tf.RaggedTensor` where the last dimension of the output is ragged.
33
37
 
@@ -43,6 +47,8 @@ class GPTNeoXTokenizer(BytePairTokenizer):
43
47
  merge entities separated by a space.
44
48
  """
45
49
 
50
+ backbone_cls = GPTNeoXBackbone
51
+
46
52
  def __init__(
47
53
  self,
48
54
  vocabulary=None,
@@ -50,39 +56,11 @@ class GPTNeoXTokenizer(BytePairTokenizer):
50
56
  **kwargs,
51
57
  ):
52
58
  # GPTNeoX uses the same start as end token, i.e., "<|endoftext|>".
53
- self.end_token = self.start_token = "<|endoftext|>"
54
-
59
+ self._add_special_token("<|endoftext|>", "end_token")
60
+ self._add_special_token("<|endoftext|>", "start_token")
61
+ self.pad_token_id = 0
55
62
  super().__init__(
56
63
  vocabulary=vocabulary,
57
64
  merges=merges,
58
- unsplittable_tokens=[self.end_token],
59
65
  **kwargs,
60
66
  )
61
-
62
- def set_vocabulary_and_merges(self, vocabulary, merges):
63
- super().set_vocabulary_and_merges(vocabulary, merges)
64
-
65
- if vocabulary is not None:
66
- # Check for necessary special tokens.
67
- if self.end_token not in self.get_vocabulary():
68
- raise ValueError(
69
- f"Cannot find token `'{self.end_token}'` in the provided "
70
- f"`vocabulary`. Please provide `'{self.end_token}'` in "
71
- "your `vocabulary` or use a pretrained `vocabulary` name."
72
- )
73
-
74
- self.end_token_id = self.token_to_id(self.end_token)
75
- self.start_token_id = self.end_token_id
76
- self.pad_token_id = 0
77
- else:
78
- self.end_token_id = None
79
- self.start_token_id = None
80
- self.pad_token_id = None
81
-
82
- def get_config(self):
83
- config = super().get_config()
84
- # In the constructor, we pass the list of special tokens to the
85
- # `unsplittable_tokens` arg of the superclass' constructor. Hence, we
86
- # delete it from the config here.
87
- del config["unsplittable_tokens"]
88
- return config
@@ -33,11 +33,6 @@ class ImageClassifier(Task):
33
33
  used to load a pre-trained config and weights.
34
34
  """
35
35
 
36
- def __init__(self, *args, **kwargs):
37
- super().__init__(*args, **kwargs)
38
- # Default compilation.
39
- self.compile()
40
-
41
36
  def compile(
42
37
  self,
43
38
  optimizer="auto",
@@ -0,0 +1,83 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import keras
15
+
16
+ from keras_hub.src.api_export import keras_hub_export
17
+ from keras_hub.src.models.preprocessor import Preprocessor
18
+ from keras_hub.src.utils.tensor_utils import preprocessing_function
19
+
20
+
21
+ @keras_hub_export("keras_hub.models.ImageClassifierPreprocessor")
22
+ class ImageClassifierPreprocessor(Preprocessor):
23
+ """Base class for image classification preprocessing layers.
24
+
25
+ `ImageClassifierPreprocessor` tasks wraps a
26
+ `keras_hub.layers.ImageConverter` to create a preprocessing layer for
27
+ image classification tasks. It is intended to be paired with a
28
+ `keras_hub.models.ImageClassifier` task.
29
+
30
+ All `ImageClassifierPreprocessor` take inputs three inputs, `x`, `y`, and
31
+ `sample_weight`. `x`, the first input, should always be included. It can
32
+ be a image or batch of images. See examples below. `y` and `sample_weight`
33
+ are optional inputs that will be passed through unaltered. Usually, `y` will
34
+ be the classification label, and `sample_weight` will not be provided.
35
+
36
+ The layer will output either `x`, an `(x, y)` tuple if labels were provided,
37
+ or an `(x, y, sample_weight)` tuple if labels and sample weight were
38
+ provided. `x` will be the input images after all model preprocessing has
39
+ been applied.
40
+
41
+ All `ImageClassifierPreprocessor` tasks include a `from_preset()`
42
+ constructor which can be used to load a pre-trained config and vocabularies.
43
+ You can call the `from_preset()` constructor directly on this base class, in
44
+ which case the correct class for your model will be automatically
45
+ instantiated.
46
+
47
+ Examples.
48
+ ```python
49
+ preprocessor = keras_hub.models.ImageClassifierPreprocessor.from_preset(
50
+ "resnet_50",
51
+ )
52
+
53
+ # Resize a single image for resnet 50.
54
+ x = np.ones((512, 512, 3))
55
+ x = preprocessor(x)
56
+
57
+ # Resize a labeled image.
58
+ x, y = np.ones((512, 512, 3)), 1
59
+ x, y = preprocessor(x, y)
60
+
61
+ # Resize a batch of labeled images.
62
+ x, y = [np.ones((512, 512, 3)), np.zeros((512, 512, 3))], [1, 0]
63
+ x, y = preprocessor(x, y)
64
+
65
+ # Use a `tf.data.Dataset`.
66
+ ds = tf.data.Dataset.from_tensor_slices((x, y)).batch(2)
67
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
68
+ ```
69
+ """
70
+
71
+ def __init__(
72
+ self,
73
+ image_converter=None,
74
+ **kwargs,
75
+ ):
76
+ super().__init__(**kwargs)
77
+ self.image_converter = image_converter
78
+
79
+ @preprocessing_function
80
+ def call(self, x, y=None, sample_weight=None):
81
+ if self.image_converter:
82
+ x = self.image_converter(x)
83
+ return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
@@ -14,7 +14,6 @@
14
14
 
15
15
  from keras_hub.src.models.llama.llama_backbone import LlamaBackbone
16
16
  from keras_hub.src.models.llama.llama_presets import backbone_presets
17
- from keras_hub.src.models.llama.llama_tokenizer import LlamaTokenizer
18
17
  from keras_hub.src.utils.preset_utils import register_presets
19
18
 
20
- register_presets(backbone_presets, (LlamaBackbone, LlamaTokenizer))
19
+ register_presets(backbone_presets, LlamaBackbone)