keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl → 0.16.0.dev2024092017__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/__init__.py +0 -6
- keras_hub/api/__init__.py +2 -0
- keras_hub/api/bounding_box/__init__.py +36 -0
- keras_hub/api/layers/__init__.py +14 -0
- keras_hub/api/models/__init__.py +97 -48
- keras_hub/api/tokenizers/__init__.py +30 -0
- keras_hub/api/utils/__init__.py +22 -0
- keras_hub/src/api_export.py +15 -9
- keras_hub/src/bounding_box/__init__.py +13 -0
- keras_hub/src/bounding_box/converters.py +529 -0
- keras_hub/src/bounding_box/formats.py +162 -0
- keras_hub/src/bounding_box/iou.py +263 -0
- keras_hub/src/bounding_box/to_dense.py +95 -0
- keras_hub/src/bounding_box/to_ragged.py +99 -0
- keras_hub/src/bounding_box/utils.py +194 -0
- keras_hub/src/bounding_box/validate_format.py +99 -0
- keras_hub/src/layers/preprocessing/audio_converter.py +121 -0
- keras_hub/src/layers/preprocessing/image_converter.py +130 -0
- keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +2 -0
- keras_hub/src/layers/preprocessing/multi_segment_packer.py +9 -8
- keras_hub/src/layers/preprocessing/preprocessing_layer.py +2 -29
- keras_hub/src/layers/preprocessing/random_deletion.py +33 -31
- keras_hub/src/layers/preprocessing/random_swap.py +33 -31
- keras_hub/src/layers/preprocessing/resizing_image_converter.py +101 -0
- keras_hub/src/layers/preprocessing/start_end_packer.py +3 -2
- keras_hub/src/models/albert/__init__.py +1 -2
- keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +6 -86
- keras_hub/src/models/albert/{albert_classifier.py → albert_text_classifier.py} +34 -10
- keras_hub/src/models/albert/{albert_preprocessor.py → albert_text_classifier_preprocessor.py} +14 -70
- keras_hub/src/models/albert/albert_tokenizer.py +17 -36
- keras_hub/src/models/backbone.py +12 -34
- keras_hub/src/models/bart/__init__.py +1 -2
- keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +21 -148
- keras_hub/src/models/bart/bart_tokenizer.py +12 -39
- keras_hub/src/models/bert/__init__.py +1 -5
- keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +6 -87
- keras_hub/src/models/bert/bert_presets.py +1 -4
- keras_hub/src/models/bert/{bert_classifier.py → bert_text_classifier.py} +19 -12
- keras_hub/src/models/bert/{bert_preprocessor.py → bert_text_classifier_preprocessor.py} +14 -70
- keras_hub/src/models/bert/bert_tokenizer.py +17 -35
- keras_hub/src/models/bloom/__init__.py +1 -2
- keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/bloom/bloom_tokenizer.py +12 -41
- keras_hub/src/models/causal_lm.py +10 -29
- keras_hub/src/models/causal_lm_preprocessor.py +195 -0
- keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +54 -15
- keras_hub/src/models/deberta_v3/__init__.py +1 -4
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +14 -77
- keras_hub/src/models/deberta_v3/{deberta_v3_classifier.py → deberta_v3_text_classifier.py} +16 -11
- keras_hub/src/models/deberta_v3/{deberta_v3_preprocessor.py → deberta_v3_text_classifier_preprocessor.py} +23 -64
- keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +30 -25
- keras_hub/src/models/densenet/densenet_backbone.py +46 -22
- keras_hub/src/models/distil_bert/__init__.py +1 -4
- keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +14 -76
- keras_hub/src/models/distil_bert/{distil_bert_classifier.py → distil_bert_text_classifier.py} +17 -12
- keras_hub/src/models/distil_bert/{distil_bert_preprocessor.py → distil_bert_text_classifier_preprocessor.py} +23 -63
- keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +19 -35
- keras_hub/src/models/efficientnet/__init__.py +13 -0
- keras_hub/src/models/efficientnet/efficientnet_backbone.py +569 -0
- keras_hub/src/models/efficientnet/fusedmbconv.py +229 -0
- keras_hub/src/models/efficientnet/mbconv.py +238 -0
- keras_hub/src/models/electra/__init__.py +1 -2
- keras_hub/src/models/electra/electra_tokenizer.py +17 -32
- keras_hub/src/models/f_net/__init__.py +1 -2
- keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +12 -78
- keras_hub/src/models/f_net/{f_net_classifier.py → f_net_text_classifier.py} +17 -10
- keras_hub/src/models/f_net/{f_net_preprocessor.py → f_net_text_classifier_preprocessor.py} +19 -63
- keras_hub/src/models/f_net/f_net_tokenizer.py +17 -35
- keras_hub/src/models/falcon/__init__.py +1 -2
- keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/falcon/falcon_tokenizer.py +12 -35
- keras_hub/src/models/gemma/__init__.py +1 -2
- keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +6 -90
- keras_hub/src/models/gemma/gemma_decoder_block.py +1 -1
- keras_hub/src/models/gemma/gemma_tokenizer.py +12 -23
- keras_hub/src/models/gpt2/__init__.py +1 -2
- keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/gpt2/gpt2_preprocessor.py +12 -90
- keras_hub/src/models/gpt2/gpt2_tokenizer.py +12 -34
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +12 -34
- keras_hub/src/models/image_classifier.py +0 -5
- keras_hub/src/models/image_classifier_preprocessor.py +83 -0
- keras_hub/src/models/llama/__init__.py +1 -2
- keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +6 -85
- keras_hub/src/models/llama/llama_tokenizer.py +12 -25
- keras_hub/src/models/llama3/__init__.py +1 -2
- keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/llama3/llama3_tokenizer.py +12 -33
- keras_hub/src/models/masked_lm.py +0 -2
- keras_hub/src/models/masked_lm_preprocessor.py +156 -0
- keras_hub/src/models/mistral/__init__.py +1 -2
- keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/mistral/mistral_tokenizer.py +12 -23
- keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +2 -2
- keras_hub/src/models/mobilenet/__init__.py +13 -0
- keras_hub/src/models/mobilenet/mobilenet_backbone.py +530 -0
- keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +114 -0
- keras_hub/src/models/opt/__init__.py +1 -2
- keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +6 -93
- keras_hub/src/models/opt/opt_tokenizer.py +12 -41
- keras_hub/src/models/pali_gemma/__init__.py +1 -4
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +28 -28
- keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +25 -0
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +5 -5
- keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +11 -3
- keras_hub/src/models/phi3/__init__.py +1 -2
- keras_hub/src/models/phi3/phi3_causal_lm.py +3 -9
- keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/phi3/phi3_tokenizer.py +12 -36
- keras_hub/src/models/preprocessor.py +72 -83
- keras_hub/src/models/resnet/__init__.py +6 -0
- keras_hub/src/models/resnet/resnet_backbone.py +390 -42
- keras_hub/src/models/resnet/resnet_image_classifier.py +33 -6
- keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +28 -0
- keras_hub/src/models/{llama3/llama3_preprocessor.py → resnet/resnet_image_converter.py} +7 -5
- keras_hub/src/models/resnet/resnet_presets.py +95 -0
- keras_hub/src/models/retinanet/__init__.py +13 -0
- keras_hub/src/models/retinanet/anchor_generator.py +175 -0
- keras_hub/src/models/retinanet/box_matcher.py +259 -0
- keras_hub/src/models/retinanet/non_max_supression.py +578 -0
- keras_hub/src/models/roberta/__init__.py +1 -2
- keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +22 -74
- keras_hub/src/models/roberta/{roberta_classifier.py → roberta_text_classifier.py} +16 -11
- keras_hub/src/models/roberta/{roberta_preprocessor.py → roberta_text_classifier_preprocessor.py} +21 -53
- keras_hub/src/models/roberta/roberta_tokenizer.py +13 -52
- keras_hub/src/models/seq_2_seq_lm_preprocessor.py +269 -0
- keras_hub/src/models/stable_diffusion_v3/__init__.py +13 -0
- keras_hub/src/models/stable_diffusion_v3/clip_encoder_block.py +103 -0
- keras_hub/src/models/stable_diffusion_v3/clip_preprocessor.py +93 -0
- keras_hub/src/models/stable_diffusion_v3/clip_text_encoder.py +149 -0
- keras_hub/src/models/stable_diffusion_v3/clip_tokenizer.py +167 -0
- keras_hub/src/models/stable_diffusion_v3/mmdit.py +427 -0
- keras_hub/src/models/stable_diffusion_v3/mmdit_block.py +317 -0
- keras_hub/src/models/stable_diffusion_v3/t5_xxl_preprocessor.py +74 -0
- keras_hub/src/models/stable_diffusion_v3/t5_xxl_text_encoder.py +155 -0
- keras_hub/src/models/stable_diffusion_v3/vae_attention.py +126 -0
- keras_hub/src/models/stable_diffusion_v3/vae_image_decoder.py +186 -0
- keras_hub/src/models/t5/__init__.py +1 -2
- keras_hub/src/models/t5/t5_tokenizer.py +13 -23
- keras_hub/src/models/task.py +71 -116
- keras_hub/src/models/{classifier.py → text_classifier.py} +19 -13
- keras_hub/src/models/text_classifier_preprocessor.py +138 -0
- keras_hub/src/models/whisper/__init__.py +1 -2
- keras_hub/src/models/whisper/{whisper_audio_feature_extractor.py → whisper_audio_converter.py} +20 -18
- keras_hub/src/models/whisper/whisper_backbone.py +0 -3
- keras_hub/src/models/whisper/whisper_presets.py +10 -10
- keras_hub/src/models/whisper/whisper_tokenizer.py +20 -16
- keras_hub/src/models/xlm_roberta/__init__.py +1 -4
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +26 -72
- keras_hub/src/models/xlm_roberta/{xlm_roberta_classifier.py → xlm_roberta_text_classifier.py} +16 -11
- keras_hub/src/models/xlm_roberta/{xlm_roberta_preprocessor.py → xlm_roberta_text_classifier_preprocessor.py} +26 -53
- keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +25 -10
- keras_hub/src/tests/test_case.py +46 -0
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +30 -17
- keras_hub/src/tokenizers/byte_tokenizer.py +14 -15
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +20 -7
- keras_hub/src/tokenizers/tokenizer.py +67 -32
- keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +14 -15
- keras_hub/src/tokenizers/word_piece_tokenizer.py +34 -47
- keras_hub/src/utils/imagenet/__init__.py +13 -0
- keras_hub/src/utils/imagenet/imagenet_utils.py +1067 -0
- keras_hub/src/utils/keras_utils.py +0 -50
- keras_hub/src/utils/preset_utils.py +230 -68
- keras_hub/src/utils/tensor_utils.py +187 -69
- keras_hub/src/utils/timm/convert_resnet.py +19 -16
- keras_hub/src/utils/timm/preset_loader.py +66 -0
- keras_hub/src/utils/transformers/convert_albert.py +193 -0
- keras_hub/src/utils/transformers/convert_bart.py +373 -0
- keras_hub/src/utils/transformers/convert_bert.py +7 -17
- keras_hub/src/utils/transformers/convert_distilbert.py +10 -20
- keras_hub/src/utils/transformers/convert_gemma.py +5 -19
- keras_hub/src/utils/transformers/convert_gpt2.py +5 -18
- keras_hub/src/utils/transformers/convert_llama3.py +7 -18
- keras_hub/src/utils/transformers/convert_mistral.py +129 -0
- keras_hub/src/utils/transformers/convert_pali_gemma.py +7 -29
- keras_hub/src/utils/transformers/preset_loader.py +77 -0
- keras_hub/src/utils/transformers/safetensor_utils.py +2 -2
- keras_hub/src/version_utils.py +1 -1
- keras_hub_nightly-0.16.0.dev2024092017.dist-info/METADATA +202 -0
- keras_hub_nightly-0.16.0.dev2024092017.dist-info/RECORD +334 -0
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/WHEEL +1 -1
- keras_hub/src/models/bart/bart_preprocessor.py +0 -276
- keras_hub/src/models/bloom/bloom_preprocessor.py +0 -185
- keras_hub/src/models/electra/electra_preprocessor.py +0 -154
- keras_hub/src/models/falcon/falcon_preprocessor.py +0 -187
- keras_hub/src/models/gemma/gemma_preprocessor.py +0 -191
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +0 -145
- keras_hub/src/models/llama/llama_preprocessor.py +0 -189
- keras_hub/src/models/mistral/mistral_preprocessor.py +0 -190
- keras_hub/src/models/opt/opt_preprocessor.py +0 -188
- keras_hub/src/models/phi3/phi3_preprocessor.py +0 -190
- keras_hub/src/models/whisper/whisper_preprocessor.py +0 -326
- keras_hub/src/utils/timm/convert.py +0 -37
- keras_hub/src/utils/transformers/convert.py +0 -101
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +0 -34
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +0 -297
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.16.0.dev2024092017.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,427 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
import math
|
15
|
+
|
16
|
+
import keras
|
17
|
+
from keras import layers
|
18
|
+
from keras import models
|
19
|
+
from keras import ops
|
20
|
+
|
21
|
+
from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
|
22
|
+
from keras_hub.src.models.stable_diffusion_v3.mmdit_block import MMDiTBlock
|
23
|
+
from keras_hub.src.utils.keras_utils import standardize_data_format
|
24
|
+
|
25
|
+
|
26
|
+
class PatchEmbedding(layers.Layer):
|
27
|
+
def __init__(self, patch_size, hidden_dim, data_format=None, **kwargs):
|
28
|
+
super().__init__(**kwargs)
|
29
|
+
self.patch_size = int(patch_size)
|
30
|
+
self.hidden_dim = int(hidden_dim)
|
31
|
+
data_format = standardize_data_format(data_format)
|
32
|
+
|
33
|
+
self.patch_embedding = layers.Conv2D(
|
34
|
+
hidden_dim,
|
35
|
+
kernel_size=patch_size,
|
36
|
+
strides=patch_size,
|
37
|
+
data_format=data_format,
|
38
|
+
dtype=self.dtype_policy,
|
39
|
+
name="patch_embedding",
|
40
|
+
)
|
41
|
+
|
42
|
+
def build(self, input_shape):
|
43
|
+
self.patch_embedding.build(input_shape)
|
44
|
+
|
45
|
+
def call(self, inputs):
|
46
|
+
x = self.patch_embedding(inputs)
|
47
|
+
x_shape = ops.shape(x)
|
48
|
+
x = ops.reshape(x, (x_shape[0], x_shape[1] * x_shape[2], x_shape[3]))
|
49
|
+
return x
|
50
|
+
|
51
|
+
def get_config(self):
|
52
|
+
config = super().get_config()
|
53
|
+
config.update(
|
54
|
+
{
|
55
|
+
"patch_size": self.patch_size,
|
56
|
+
"hidden_dim": self.hidden_dim,
|
57
|
+
}
|
58
|
+
)
|
59
|
+
return config
|
60
|
+
|
61
|
+
|
62
|
+
class AdjustablePositionEmbedding(PositionEmbedding):
|
63
|
+
def __init__(
|
64
|
+
self,
|
65
|
+
height,
|
66
|
+
width,
|
67
|
+
initializer="glorot_uniform",
|
68
|
+
**kwargs,
|
69
|
+
):
|
70
|
+
height = int(height)
|
71
|
+
width = int(width)
|
72
|
+
sequence_length = height * width
|
73
|
+
super().__init__(sequence_length, initializer, **kwargs)
|
74
|
+
self.height = height
|
75
|
+
self.width = width
|
76
|
+
|
77
|
+
def call(self, inputs, height=None, width=None):
|
78
|
+
height = height or self.height
|
79
|
+
width = width or self.width
|
80
|
+
shape = ops.shape(inputs)
|
81
|
+
feature_length = shape[-1]
|
82
|
+
top = ops.floor_divide(self.height - height, 2)
|
83
|
+
left = ops.floor_divide(self.width - width, 2)
|
84
|
+
position_embedding = ops.convert_to_tensor(self.position_embeddings)
|
85
|
+
position_embedding = ops.reshape(
|
86
|
+
position_embedding, (self.height, self.width, feature_length)
|
87
|
+
)
|
88
|
+
position_embedding = ops.slice(
|
89
|
+
position_embedding,
|
90
|
+
(top, left, 0),
|
91
|
+
(height, width, feature_length),
|
92
|
+
)
|
93
|
+
position_embedding = ops.reshape(
|
94
|
+
position_embedding, (height * width, feature_length)
|
95
|
+
)
|
96
|
+
position_embedding = ops.expand_dims(position_embedding, axis=0)
|
97
|
+
return position_embedding
|
98
|
+
|
99
|
+
def compute_output_shape(self, input_shape):
|
100
|
+
return input_shape
|
101
|
+
|
102
|
+
|
103
|
+
class TimestepEmbedding(layers.Layer):
|
104
|
+
def __init__(
|
105
|
+
self, embedding_dim, frequency_dim=256, max_period=10000, **kwargs
|
106
|
+
):
|
107
|
+
super().__init__(**kwargs)
|
108
|
+
self.embedding_dim = int(embedding_dim)
|
109
|
+
self.frequency_dim = int(frequency_dim)
|
110
|
+
self.max_period = float(max_period)
|
111
|
+
self.half_frequency_dim = self.frequency_dim // 2
|
112
|
+
|
113
|
+
self.mlp = models.Sequential(
|
114
|
+
[
|
115
|
+
layers.Dense(
|
116
|
+
embedding_dim, activation="silu", dtype=self.dtype_policy
|
117
|
+
),
|
118
|
+
layers.Dense(
|
119
|
+
embedding_dim, activation=None, dtype=self.dtype_policy
|
120
|
+
),
|
121
|
+
],
|
122
|
+
name="mlp",
|
123
|
+
)
|
124
|
+
|
125
|
+
def build(self, inputs_shape):
|
126
|
+
embedding_shape = list(inputs_shape)[1:]
|
127
|
+
embedding_shape.append(self.frequency_dim)
|
128
|
+
self.mlp.build(embedding_shape)
|
129
|
+
|
130
|
+
def _create_timestep_embedding(self, inputs):
|
131
|
+
compute_dtype = keras.backend.result_type(self.compute_dtype, "float32")
|
132
|
+
x = ops.cast(inputs, compute_dtype)
|
133
|
+
freqs = ops.exp(
|
134
|
+
ops.divide(
|
135
|
+
ops.multiply(
|
136
|
+
-math.log(self.max_period),
|
137
|
+
ops.arange(0, self.half_frequency_dim, dtype="float32"),
|
138
|
+
),
|
139
|
+
self.half_frequency_dim,
|
140
|
+
)
|
141
|
+
)
|
142
|
+
freqs = ops.cast(freqs, compute_dtype)
|
143
|
+
x = ops.multiply(x, ops.expand_dims(freqs, axis=0))
|
144
|
+
embedding = ops.concatenate([ops.cos(x), ops.sin(x)], axis=-1)
|
145
|
+
if self.frequency_dim % 2 != 0:
|
146
|
+
embedding = ops.pad(embedding, [[0, 0], [0, 1]])
|
147
|
+
return ops.cast(embedding, self.compute_dtype)
|
148
|
+
|
149
|
+
def call(self, inputs, training=None):
|
150
|
+
timestep_embedding = self._create_timestep_embedding(inputs)
|
151
|
+
return self.mlp(timestep_embedding, training=training)
|
152
|
+
|
153
|
+
def get_config(self):
|
154
|
+
config = super().get_config()
|
155
|
+
config.update(
|
156
|
+
{
|
157
|
+
"embedding_dim": self.embedding_dim,
|
158
|
+
"max_period": self.max_period,
|
159
|
+
}
|
160
|
+
)
|
161
|
+
return config
|
162
|
+
|
163
|
+
def compute_output_shape(self, inputs_shape):
|
164
|
+
output_shape = list(inputs_shape)[1:]
|
165
|
+
output_shape.append(self.embedding_dim)
|
166
|
+
return output_shape
|
167
|
+
|
168
|
+
|
169
|
+
class OutputLayer(layers.Layer):
|
170
|
+
def __init__(self, hidden_dim, output_dim, **kwargs):
|
171
|
+
super().__init__(**kwargs)
|
172
|
+
self.hidden_dim = hidden_dim
|
173
|
+
self.output_dim = output_dim
|
174
|
+
num_modulation = 2
|
175
|
+
|
176
|
+
self.adaptive_norm_modulation = models.Sequential(
|
177
|
+
[
|
178
|
+
layers.Activation("silu", dtype=self.dtype_policy),
|
179
|
+
layers.Dense(
|
180
|
+
num_modulation * hidden_dim, dtype=self.dtype_policy
|
181
|
+
),
|
182
|
+
],
|
183
|
+
name="adaptive_norm_modulation",
|
184
|
+
)
|
185
|
+
self.norm = layers.LayerNormalization(
|
186
|
+
epsilon=1e-6,
|
187
|
+
center=False,
|
188
|
+
scale=False,
|
189
|
+
dtype=self.dtype_policy,
|
190
|
+
name="norm",
|
191
|
+
)
|
192
|
+
self.output_dense = layers.Dense(
|
193
|
+
output_dim, # patch_size ** 2 * input_channels
|
194
|
+
use_bias=True,
|
195
|
+
dtype=self.dtype_policy,
|
196
|
+
name="output_dense",
|
197
|
+
)
|
198
|
+
|
199
|
+
def build(self, inputs_shape, timestep_embedding_shape):
|
200
|
+
self.adaptive_norm_modulation.build(timestep_embedding_shape)
|
201
|
+
self.norm.build(inputs_shape)
|
202
|
+
self.output_dense.build(inputs_shape)
|
203
|
+
|
204
|
+
def _modulate(self, inputs, shift, scale):
|
205
|
+
shift = ops.expand_dims(shift, axis=1)
|
206
|
+
scale = ops.expand_dims(scale, axis=1)
|
207
|
+
return ops.add(ops.multiply(inputs, ops.add(scale, 1.0)), shift)
|
208
|
+
|
209
|
+
def call(self, inputs, timestep_embedding, training=None):
|
210
|
+
x = inputs
|
211
|
+
modulation = self.adaptive_norm_modulation(
|
212
|
+
timestep_embedding, training=training
|
213
|
+
)
|
214
|
+
modulation = ops.reshape(modulation, (-1, 2, self.hidden_dim))
|
215
|
+
shift, scale = ops.unstack(modulation, 2, axis=1)
|
216
|
+
x = self._modulate(self.norm(x), shift, scale)
|
217
|
+
x = self.output_dense(x, training=training)
|
218
|
+
return x
|
219
|
+
|
220
|
+
def get_config(self):
|
221
|
+
config = super().get_config()
|
222
|
+
config.update(
|
223
|
+
{
|
224
|
+
"hidden_dim": self.hidden_dim,
|
225
|
+
"output_dim": self.output_dim,
|
226
|
+
}
|
227
|
+
)
|
228
|
+
return config
|
229
|
+
|
230
|
+
|
231
|
+
class Unpatch(layers.Layer):
|
232
|
+
def __init__(self, patch_size, output_dim, **kwargs):
|
233
|
+
super().__init__(**kwargs)
|
234
|
+
self.patch_size = int(patch_size)
|
235
|
+
self.output_dim = int(output_dim)
|
236
|
+
|
237
|
+
def call(self, inputs, height, width):
|
238
|
+
patch_size = self.patch_size
|
239
|
+
output_dim = self.output_dim
|
240
|
+
x = ops.reshape(
|
241
|
+
inputs,
|
242
|
+
(-1, height, width, patch_size, patch_size, output_dim),
|
243
|
+
)
|
244
|
+
# (b, h, w, p1, p2, o) -> (b, h, p1, w, p2, o)
|
245
|
+
x = ops.transpose(x, (0, 1, 3, 2, 4, 5))
|
246
|
+
return ops.reshape(
|
247
|
+
x,
|
248
|
+
(-1, height * patch_size, width * patch_size, output_dim),
|
249
|
+
)
|
250
|
+
|
251
|
+
def get_config(self):
|
252
|
+
config = super().get_config()
|
253
|
+
config.update(
|
254
|
+
{
|
255
|
+
"patch_size": self.patch_size,
|
256
|
+
"output_dim": self.output_dim,
|
257
|
+
}
|
258
|
+
)
|
259
|
+
return config
|
260
|
+
|
261
|
+
def compute_output_shape(self, inputs_shape):
|
262
|
+
inputs_shape = list(inputs_shape)
|
263
|
+
return [inputs_shape[0], None, None, self.output_dim]
|
264
|
+
|
265
|
+
|
266
|
+
class MMDiT(keras.Model):
|
267
|
+
def __init__(
|
268
|
+
self,
|
269
|
+
patch_size,
|
270
|
+
num_heads,
|
271
|
+
hidden_dim,
|
272
|
+
depth,
|
273
|
+
position_size,
|
274
|
+
output_dim,
|
275
|
+
mlp_ratio=4.0,
|
276
|
+
latent_shape=(64, 64, 16),
|
277
|
+
context_shape=(1024, 4096),
|
278
|
+
pooled_projection_shape=(2048,),
|
279
|
+
data_format=None,
|
280
|
+
dtype=None,
|
281
|
+
**kwargs,
|
282
|
+
):
|
283
|
+
if None in latent_shape:
|
284
|
+
raise ValueError(
|
285
|
+
"`latent_shape` must be fully specified. "
|
286
|
+
f"Received: latent_shape={latent_shape}"
|
287
|
+
)
|
288
|
+
image_height = latent_shape[0] // patch_size
|
289
|
+
image_width = latent_shape[1] // patch_size
|
290
|
+
output_dim_in_final = patch_size**2 * output_dim
|
291
|
+
data_format = standardize_data_format(data_format)
|
292
|
+
if data_format != "channels_last":
|
293
|
+
raise NotImplementedError(
|
294
|
+
"Currently only 'channels_last' is supported."
|
295
|
+
)
|
296
|
+
|
297
|
+
# === Layers ===
|
298
|
+
self.patch_embedding = PatchEmbedding(
|
299
|
+
patch_size,
|
300
|
+
hidden_dim,
|
301
|
+
data_format=data_format,
|
302
|
+
dtype=dtype,
|
303
|
+
name="patch_embedding",
|
304
|
+
)
|
305
|
+
self.position_embedding_add = layers.Add(
|
306
|
+
dtype=dtype, name="position_embedding_add"
|
307
|
+
)
|
308
|
+
self.position_embedding = AdjustablePositionEmbedding(
|
309
|
+
position_size, position_size, dtype=dtype, name="position_embedding"
|
310
|
+
)
|
311
|
+
self.context_embedding = layers.Dense(
|
312
|
+
hidden_dim,
|
313
|
+
dtype=dtype,
|
314
|
+
name="context_embedding",
|
315
|
+
)
|
316
|
+
self.vector_embedding = models.Sequential(
|
317
|
+
[
|
318
|
+
layers.Dense(hidden_dim, activation="silu", dtype=dtype),
|
319
|
+
layers.Dense(hidden_dim, activation=None, dtype=dtype),
|
320
|
+
],
|
321
|
+
name="vector_embedding",
|
322
|
+
)
|
323
|
+
self.vector_embedding_add = layers.Add(
|
324
|
+
dtype=dtype, name="vector_embedding_add"
|
325
|
+
)
|
326
|
+
self.timestep_embedding = TimestepEmbedding(
|
327
|
+
hidden_dim, dtype=dtype, name="timestep_embedding"
|
328
|
+
)
|
329
|
+
self.joint_blocks = [
|
330
|
+
MMDiTBlock(
|
331
|
+
num_heads,
|
332
|
+
hidden_dim,
|
333
|
+
mlp_ratio,
|
334
|
+
use_context_projection=not (i == depth - 1),
|
335
|
+
dtype=dtype,
|
336
|
+
name=f"joint_block_{i}",
|
337
|
+
)
|
338
|
+
for i in range(depth)
|
339
|
+
]
|
340
|
+
self.output_layer = OutputLayer(
|
341
|
+
hidden_dim, output_dim_in_final, dtype=dtype, name="output_layer"
|
342
|
+
)
|
343
|
+
self.unpatch = Unpatch(
|
344
|
+
patch_size, output_dim, dtype=dtype, name="unpatch"
|
345
|
+
)
|
346
|
+
|
347
|
+
# === Functional Model ===
|
348
|
+
latent_inputs = layers.Input(shape=latent_shape, name="latent")
|
349
|
+
context_inputs = layers.Input(shape=context_shape, name="context")
|
350
|
+
pooled_projection_inputs = layers.Input(
|
351
|
+
shape=pooled_projection_shape, name="pooled_projection"
|
352
|
+
)
|
353
|
+
timestep_inputs = layers.Input(shape=(1,), name="timestep")
|
354
|
+
|
355
|
+
# Embeddings.
|
356
|
+
x = self.patch_embedding(latent_inputs)
|
357
|
+
position_embedding = self.position_embedding(
|
358
|
+
x, height=image_height, width=image_width
|
359
|
+
)
|
360
|
+
x = self.position_embedding_add([x, position_embedding])
|
361
|
+
context = self.context_embedding(context_inputs)
|
362
|
+
pooled_projection = self.vector_embedding(pooled_projection_inputs)
|
363
|
+
timestep_embedding = self.timestep_embedding(timestep_inputs)
|
364
|
+
timestep_embedding = self.vector_embedding_add(
|
365
|
+
[timestep_embedding, pooled_projection]
|
366
|
+
)
|
367
|
+
|
368
|
+
# Blocks.
|
369
|
+
for block in self.joint_blocks:
|
370
|
+
if block.use_context_projection:
|
371
|
+
x, context = block(x, context, timestep_embedding)
|
372
|
+
else:
|
373
|
+
x = block(x, context, timestep_embedding)
|
374
|
+
|
375
|
+
# Output layer.
|
376
|
+
x = self.output_layer(x, timestep_embedding)
|
377
|
+
outputs = self.unpatch(x, height=image_height, width=image_width)
|
378
|
+
|
379
|
+
super().__init__(
|
380
|
+
inputs={
|
381
|
+
"latent": latent_inputs,
|
382
|
+
"context": context_inputs,
|
383
|
+
"pooled_projection": pooled_projection_inputs,
|
384
|
+
"timestep": timestep_inputs,
|
385
|
+
},
|
386
|
+
outputs=outputs,
|
387
|
+
**kwargs,
|
388
|
+
)
|
389
|
+
|
390
|
+
# === Config ===
|
391
|
+
self.patch_size = patch_size
|
392
|
+
self.num_heads = num_heads
|
393
|
+
self.hidden_dim = hidden_dim
|
394
|
+
self.depth = depth
|
395
|
+
self.position_size = position_size
|
396
|
+
self.output_dim = output_dim
|
397
|
+
self.mlp_ratio = mlp_ratio
|
398
|
+
self.latent_shape = latent_shape
|
399
|
+
self.context_shape = context_shape
|
400
|
+
self.pooled_projection_shape = pooled_projection_shape
|
401
|
+
|
402
|
+
if dtype is not None:
|
403
|
+
try:
|
404
|
+
self.dtype_policy = keras.dtype_policies.get(dtype)
|
405
|
+
# Before Keras 3.2, there is no `keras.dtype_policies.get`.
|
406
|
+
except AttributeError:
|
407
|
+
if isinstance(dtype, keras.DTypePolicy):
|
408
|
+
dtype = dtype.name
|
409
|
+
self.dtype_policy = keras.DTypePolicy(dtype)
|
410
|
+
|
411
|
+
def get_config(self):
|
412
|
+
config = super().get_config()
|
413
|
+
config.update(
|
414
|
+
{
|
415
|
+
"patch_size": self.patch_size,
|
416
|
+
"num_heads": self.num_heads,
|
417
|
+
"hidden_dim": self.hidden_dim,
|
418
|
+
"depth": self.depth,
|
419
|
+
"position_size": self.position_size,
|
420
|
+
"output_dim": self.output_dim,
|
421
|
+
"mlp_ratio": self.mlp_ratio,
|
422
|
+
"latent_shape": self.latent_shape,
|
423
|
+
"context_shape": self.context_shape,
|
424
|
+
"pooled_projection_shape": self.pooled_projection_shape,
|
425
|
+
}
|
426
|
+
)
|
427
|
+
return config
|