keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl → 0.15.0.dev20240911134614__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/api/__init__.py +1 -0
- keras_hub/api/bounding_box/__init__.py +36 -0
- keras_hub/api/layers/__init__.py +14 -0
- keras_hub/api/models/__init__.py +75 -31
- keras_hub/api/tokenizers/__init__.py +30 -0
- keras_hub/src/bounding_box/__init__.py +13 -0
- keras_hub/src/bounding_box/converters.py +529 -0
- keras_hub/src/bounding_box/formats.py +162 -0
- keras_hub/src/bounding_box/iou.py +263 -0
- keras_hub/src/bounding_box/to_dense.py +95 -0
- keras_hub/src/bounding_box/to_ragged.py +99 -0
- keras_hub/src/bounding_box/utils.py +194 -0
- keras_hub/src/bounding_box/validate_format.py +99 -0
- keras_hub/src/layers/preprocessing/audio_converter.py +121 -0
- keras_hub/src/layers/preprocessing/image_converter.py +130 -0
- keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +2 -0
- keras_hub/src/layers/preprocessing/multi_segment_packer.py +9 -8
- keras_hub/src/layers/preprocessing/preprocessing_layer.py +2 -29
- keras_hub/src/layers/preprocessing/random_deletion.py +33 -31
- keras_hub/src/layers/preprocessing/random_swap.py +33 -31
- keras_hub/src/layers/preprocessing/resizing_image_converter.py +101 -0
- keras_hub/src/layers/preprocessing/start_end_packer.py +3 -2
- keras_hub/src/models/albert/__init__.py +1 -2
- keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +6 -86
- keras_hub/src/models/albert/{albert_classifier.py → albert_text_classifier.py} +29 -10
- keras_hub/src/models/albert/{albert_preprocessor.py → albert_text_classifier_preprocessor.py} +14 -70
- keras_hub/src/models/albert/albert_tokenizer.py +17 -36
- keras_hub/src/models/backbone.py +12 -34
- keras_hub/src/models/bart/__init__.py +1 -2
- keras_hub/src/models/bart/bart_preprocessor.py +6 -18
- keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +21 -148
- keras_hub/src/models/bart/bart_tokenizer.py +12 -39
- keras_hub/src/models/bert/__init__.py +1 -5
- keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +6 -87
- keras_hub/src/models/bert/bert_presets.py +1 -4
- keras_hub/src/models/bert/{bert_classifier.py → bert_text_classifier.py} +12 -10
- keras_hub/src/models/bert/{bert_preprocessor.py → bert_text_classifier_preprocessor.py} +14 -70
- keras_hub/src/models/bert/bert_tokenizer.py +17 -35
- keras_hub/src/models/bloom/__init__.py +1 -2
- keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/bloom/bloom_preprocessor.py +5 -12
- keras_hub/src/models/bloom/bloom_tokenizer.py +12 -41
- keras_hub/src/models/causal_lm.py +10 -29
- keras_hub/src/models/causal_lm_preprocessor.py +195 -0
- keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +54 -15
- keras_hub/src/models/deberta_v3/__init__.py +1 -4
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +14 -77
- keras_hub/src/models/deberta_v3/{deberta_v3_classifier.py → deberta_v3_text_classifier.py} +11 -11
- keras_hub/src/models/deberta_v3/{deberta_v3_preprocessor.py → deberta_v3_text_classifier_preprocessor.py} +23 -64
- keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +30 -25
- keras_hub/src/models/densenet/densenet_backbone.py +46 -22
- keras_hub/src/models/distil_bert/__init__.py +1 -4
- keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +14 -76
- keras_hub/src/models/distil_bert/{distil_bert_classifier.py → distil_bert_text_classifier.py} +12 -12
- keras_hub/src/models/distil_bert/{distil_bert_preprocessor.py → distil_bert_text_classifier_preprocessor.py} +23 -63
- keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +19 -35
- keras_hub/src/models/efficientnet/__init__.py +13 -0
- keras_hub/src/models/efficientnet/efficientnet_backbone.py +569 -0
- keras_hub/src/models/efficientnet/fusedmbconv.py +229 -0
- keras_hub/src/models/efficientnet/mbconv.py +238 -0
- keras_hub/src/models/electra/__init__.py +1 -2
- keras_hub/src/models/electra/electra_preprocessor.py +6 -5
- keras_hub/src/models/electra/electra_tokenizer.py +17 -32
- keras_hub/src/models/f_net/__init__.py +1 -2
- keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +12 -78
- keras_hub/src/models/f_net/{f_net_classifier.py → f_net_text_classifier.py} +10 -8
- keras_hub/src/models/f_net/{f_net_preprocessor.py → f_net_text_classifier_preprocessor.py} +19 -63
- keras_hub/src/models/f_net/f_net_tokenizer.py +17 -35
- keras_hub/src/models/falcon/__init__.py +1 -2
- keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/falcon/falcon_preprocessor.py +5 -12
- keras_hub/src/models/falcon/falcon_tokenizer.py +12 -35
- keras_hub/src/models/gemma/__init__.py +1 -2
- keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +6 -90
- keras_hub/src/models/gemma/gemma_preprocessor.py +5 -12
- keras_hub/src/models/gemma/gemma_tokenizer.py +12 -23
- keras_hub/src/models/gpt2/__init__.py +1 -2
- keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/gpt2/gpt2_preprocessor.py +5 -12
- keras_hub/src/models/gpt2/gpt2_tokenizer.py +12 -34
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +5 -12
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +12 -34
- keras_hub/src/models/image_classifier.py +0 -5
- keras_hub/src/models/image_classifier_preprocessor.py +83 -0
- keras_hub/src/models/llama/__init__.py +1 -2
- keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +6 -85
- keras_hub/src/models/llama/llama_preprocessor.py +5 -12
- keras_hub/src/models/llama/llama_tokenizer.py +12 -25
- keras_hub/src/models/llama3/__init__.py +1 -2
- keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/llama3/llama3_preprocessor.py +2 -0
- keras_hub/src/models/llama3/llama3_tokenizer.py +12 -33
- keras_hub/src/models/masked_lm.py +0 -2
- keras_hub/src/models/masked_lm_preprocessor.py +156 -0
- keras_hub/src/models/mistral/__init__.py +1 -2
- keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/mistral/mistral_preprocessor.py +5 -12
- keras_hub/src/models/mistral/mistral_tokenizer.py +12 -23
- keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +2 -2
- keras_hub/src/models/mobilenet/__init__.py +13 -0
- keras_hub/src/models/mobilenet/mobilenet_backbone.py +530 -0
- keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +114 -0
- keras_hub/src/models/opt/__init__.py +1 -2
- keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +6 -93
- keras_hub/src/models/opt/opt_preprocessor.py +5 -12
- keras_hub/src/models/opt/opt_tokenizer.py +12 -41
- keras_hub/src/models/pali_gemma/__init__.py +1 -4
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +28 -28
- keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +25 -0
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +5 -5
- keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +10 -2
- keras_hub/src/models/phi3/__init__.py +1 -2
- keras_hub/src/models/phi3/phi3_causal_lm.py +3 -9
- keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/phi3/phi3_preprocessor.py +5 -12
- keras_hub/src/models/phi3/phi3_tokenizer.py +12 -36
- keras_hub/src/models/preprocessor.py +76 -83
- keras_hub/src/models/resnet/__init__.py +6 -0
- keras_hub/src/models/resnet/resnet_backbone.py +387 -26
- keras_hub/src/models/resnet/resnet_image_classifier.py +7 -3
- keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +28 -0
- keras_hub/src/models/resnet/resnet_image_converter.py +23 -0
- keras_hub/src/models/resnet/resnet_presets.py +95 -0
- keras_hub/src/models/roberta/__init__.py +1 -2
- keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +22 -74
- keras_hub/src/models/roberta/{roberta_classifier.py → roberta_text_classifier.py} +11 -11
- keras_hub/src/models/roberta/{roberta_preprocessor.py → roberta_text_classifier_preprocessor.py} +21 -53
- keras_hub/src/models/roberta/roberta_tokenizer.py +13 -52
- keras_hub/src/models/seq_2_seq_lm_preprocessor.py +269 -0
- keras_hub/src/models/stable_diffusion_v3/__init__.py +13 -0
- keras_hub/src/models/stable_diffusion_v3/clip_encoder_block.py +103 -0
- keras_hub/src/models/stable_diffusion_v3/clip_preprocessor.py +93 -0
- keras_hub/src/models/stable_diffusion_v3/clip_text_encoder.py +149 -0
- keras_hub/src/models/stable_diffusion_v3/clip_tokenizer.py +167 -0
- keras_hub/src/models/stable_diffusion_v3/mmdit.py +427 -0
- keras_hub/src/models/stable_diffusion_v3/mmdit_block.py +317 -0
- keras_hub/src/models/stable_diffusion_v3/t5_xxl_preprocessor.py +74 -0
- keras_hub/src/models/stable_diffusion_v3/t5_xxl_text_encoder.py +155 -0
- keras_hub/src/models/stable_diffusion_v3/vae_attention.py +126 -0
- keras_hub/src/models/stable_diffusion_v3/vae_image_decoder.py +186 -0
- keras_hub/src/models/t5/__init__.py +1 -2
- keras_hub/src/models/t5/t5_tokenizer.py +13 -23
- keras_hub/src/models/task.py +71 -116
- keras_hub/src/models/{classifier.py → text_classifier.py} +8 -13
- keras_hub/src/models/text_classifier_preprocessor.py +138 -0
- keras_hub/src/models/whisper/__init__.py +1 -2
- keras_hub/src/models/whisper/{whisper_audio_feature_extractor.py → whisper_audio_converter.py} +20 -18
- keras_hub/src/models/whisper/whisper_backbone.py +0 -3
- keras_hub/src/models/whisper/whisper_presets.py +10 -10
- keras_hub/src/models/whisper/whisper_tokenizer.py +20 -16
- keras_hub/src/models/xlm_roberta/__init__.py +1 -4
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +26 -72
- keras_hub/src/models/xlm_roberta/{xlm_roberta_classifier.py → xlm_roberta_text_classifier.py} +11 -11
- keras_hub/src/models/xlm_roberta/{xlm_roberta_preprocessor.py → xlm_roberta_text_classifier_preprocessor.py} +26 -53
- keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +25 -10
- keras_hub/src/tests/test_case.py +25 -0
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +29 -17
- keras_hub/src/tokenizers/byte_tokenizer.py +14 -15
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +19 -7
- keras_hub/src/tokenizers/tokenizer.py +67 -32
- keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +14 -15
- keras_hub/src/tokenizers/word_piece_tokenizer.py +33 -47
- keras_hub/src/utils/keras_utils.py +0 -50
- keras_hub/src/utils/preset_utils.py +238 -67
- keras_hub/src/utils/tensor_utils.py +187 -69
- keras_hub/src/utils/timm/convert_resnet.py +20 -16
- keras_hub/src/utils/timm/preset_loader.py +67 -0
- keras_hub/src/utils/transformers/convert_albert.py +193 -0
- keras_hub/src/utils/transformers/convert_bart.py +373 -0
- keras_hub/src/utils/transformers/convert_bert.py +7 -17
- keras_hub/src/utils/transformers/convert_distilbert.py +10 -20
- keras_hub/src/utils/transformers/convert_gemma.py +5 -19
- keras_hub/src/utils/transformers/convert_gpt2.py +5 -18
- keras_hub/src/utils/transformers/convert_llama3.py +7 -18
- keras_hub/src/utils/transformers/convert_mistral.py +129 -0
- keras_hub/src/utils/transformers/convert_pali_gemma.py +7 -29
- keras_hub/src/utils/transformers/preset_loader.py +77 -0
- keras_hub/src/utils/transformers/safetensor_utils.py +2 -2
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.15.0.dev20240911134614.dist-info}/METADATA +1 -2
- keras_hub_nightly-0.15.0.dev20240911134614.dist-info/RECORD +338 -0
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.15.0.dev20240911134614.dist-info}/WHEEL +1 -1
- keras_hub/src/models/whisper/whisper_preprocessor.py +0 -326
- keras_hub/src/utils/timm/convert.py +0 -37
- keras_hub/src/utils/transformers/convert.py +0 -101
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +0 -297
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.15.0.dev20240911134614.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,95 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
"""ResNet preset configurations."""
|
15
|
+
|
16
|
+
backbone_presets = {
|
17
|
+
"resnet_18": {
|
18
|
+
"metadata": {
|
19
|
+
"description": (
|
20
|
+
"18-layer ResNet model pre-trained on the ImageNet 1k dataset "
|
21
|
+
"at a 224x224 resolution."
|
22
|
+
),
|
23
|
+
"params": 11186112,
|
24
|
+
"official_name": "ResNet",
|
25
|
+
"path": "resnet",
|
26
|
+
"model_card": "https://arxiv.org/abs/2110.00476",
|
27
|
+
},
|
28
|
+
"kaggle_handle": "kaggle://kerashub/resnetv1/keras/resnet_18/1",
|
29
|
+
},
|
30
|
+
"resnet_50": {
|
31
|
+
"metadata": {
|
32
|
+
"description": (
|
33
|
+
"50-layer ResNet model pre-trained on the ImageNet 1k dataset "
|
34
|
+
"at a 224x224 resolution."
|
35
|
+
),
|
36
|
+
"params": 23561152,
|
37
|
+
"official_name": "ResNet",
|
38
|
+
"path": "resnet",
|
39
|
+
"model_card": "https://arxiv.org/abs/2110.00476",
|
40
|
+
},
|
41
|
+
"kaggle_handle": "kaggle://kerashub/resnetv1/keras/resnet_50/1",
|
42
|
+
},
|
43
|
+
"resnet_101": {
|
44
|
+
"metadata": {
|
45
|
+
"description": (
|
46
|
+
"101-layer ResNet model pre-trained on the ImageNet 1k dataset "
|
47
|
+
"at a 224x224 resolution."
|
48
|
+
),
|
49
|
+
"params": 42605504,
|
50
|
+
"official_name": "ResNet",
|
51
|
+
"path": "resnet",
|
52
|
+
"model_card": "https://arxiv.org/abs/2110.00476",
|
53
|
+
},
|
54
|
+
"kaggle_handle": "kaggle://kerashub/resnetv1/keras/resnet_101/1",
|
55
|
+
},
|
56
|
+
"resnet_152": {
|
57
|
+
"metadata": {
|
58
|
+
"description": (
|
59
|
+
"152-layer ResNet model pre-trained on the ImageNet 1k dataset "
|
60
|
+
"at a 224x224 resolution."
|
61
|
+
),
|
62
|
+
"params": 58295232,
|
63
|
+
"official_name": "ResNet",
|
64
|
+
"path": "resnet",
|
65
|
+
"model_card": "https://arxiv.org/abs/2110.00476",
|
66
|
+
},
|
67
|
+
"kaggle_handle": "kaggle://kerashub/resnetv1/keras/resnet_152/1",
|
68
|
+
},
|
69
|
+
"resnet_v2_50": {
|
70
|
+
"metadata": {
|
71
|
+
"description": (
|
72
|
+
"50-layer ResNetV2 model pre-trained on the ImageNet 1k "
|
73
|
+
"dataset at a 224x224 resolution."
|
74
|
+
),
|
75
|
+
"params": 23561152,
|
76
|
+
"official_name": "ResNet",
|
77
|
+
"path": "resnet",
|
78
|
+
"model_card": "https://arxiv.org/abs/2110.00476",
|
79
|
+
},
|
80
|
+
"kaggle_handle": "kaggle://kerashub/resnetv2/keras/resnet_v2_50/1",
|
81
|
+
},
|
82
|
+
"resnet_v2_101": {
|
83
|
+
"metadata": {
|
84
|
+
"description": (
|
85
|
+
"101-layer ResNetV2 model pre-trained on the ImageNet 1k "
|
86
|
+
"dataset at a 224x224 resolution."
|
87
|
+
),
|
88
|
+
"params": 42605504,
|
89
|
+
"official_name": "ResNet",
|
90
|
+
"path": "resnet",
|
91
|
+
"model_card": "https://arxiv.org/abs/2110.00476",
|
92
|
+
},
|
93
|
+
"kaggle_handle": "kaggle://kerashub/resnetv2/keras/resnet_v2_101/1",
|
94
|
+
},
|
95
|
+
}
|
@@ -14,7 +14,6 @@
|
|
14
14
|
|
15
15
|
from keras_hub.src.models.roberta.roberta_backbone import RobertaBackbone
|
16
16
|
from keras_hub.src.models.roberta.roberta_presets import backbone_presets
|
17
|
-
from keras_hub.src.models.roberta.roberta_tokenizer import RobertaTokenizer
|
18
17
|
from keras_hub.src.utils.preset_utils import register_presets
|
19
18
|
|
20
|
-
register_presets(backbone_presets,
|
19
|
+
register_presets(backbone_presets, RobertaBackbone)
|
@@ -13,19 +13,19 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
15
|
import keras
|
16
|
-
from absl import logging
|
17
16
|
|
18
17
|
from keras_hub.src.api_export import keras_hub_export
|
19
|
-
from keras_hub.src.layers.preprocessing.
|
20
|
-
|
21
|
-
)
|
22
|
-
from keras_hub.src.models.roberta.roberta_preprocessor import (
|
23
|
-
RobertaPreprocessor,
|
18
|
+
from keras_hub.src.layers.preprocessing.multi_segment_packer import (
|
19
|
+
MultiSegmentPacker,
|
24
20
|
)
|
21
|
+
from keras_hub.src.models.masked_lm_preprocessor import MaskedLMPreprocessor
|
22
|
+
from keras_hub.src.models.roberta.roberta_backbone import RobertaBackbone
|
23
|
+
from keras_hub.src.models.roberta.roberta_tokenizer import RobertaTokenizer
|
24
|
+
from keras_hub.src.utils.tensor_utils import preprocessing_function
|
25
25
|
|
26
26
|
|
27
27
|
@keras_hub_export("keras_hub.models.RobertaMaskedLMPreprocessor")
|
28
|
-
class RobertaMaskedLMPreprocessor(
|
28
|
+
class RobertaMaskedLMPreprocessor(MaskedLMPreprocessor):
|
29
29
|
"""RoBERTa preprocessing for the masked language modeling task.
|
30
30
|
|
31
31
|
This preprocessing layer will prepare inputs for a masked language modeling
|
@@ -122,77 +122,25 @@ class RobertaMaskedLMPreprocessor(RobertaPreprocessor):
|
|
122
122
|
```
|
123
123
|
"""
|
124
124
|
|
125
|
-
|
126
|
-
|
127
|
-
tokenizer,
|
128
|
-
sequence_length=512,
|
129
|
-
truncate="round_robin",
|
130
|
-
mask_selection_rate=0.15,
|
131
|
-
mask_selection_length=96,
|
132
|
-
mask_token_rate=0.8,
|
133
|
-
random_token_rate=0.1,
|
134
|
-
**kwargs,
|
135
|
-
):
|
136
|
-
super().__init__(
|
137
|
-
tokenizer,
|
138
|
-
sequence_length=sequence_length,
|
139
|
-
truncate=truncate,
|
140
|
-
**kwargs,
|
141
|
-
)
|
142
|
-
self.mask_selection_rate = mask_selection_rate
|
143
|
-
self.mask_selection_length = mask_selection_length
|
144
|
-
self.mask_token_rate = mask_token_rate
|
145
|
-
self.random_token_rate = random_token_rate
|
146
|
-
self.masker = None
|
125
|
+
backbone_cls = RobertaBackbone
|
126
|
+
tokenizer_cls = RobertaTokenizer
|
147
127
|
|
148
128
|
def build(self, input_shape):
|
149
129
|
super().build(input_shape)
|
150
|
-
#
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
mask_token_id=self.tokenizer.mask_token_id,
|
159
|
-
unselectable_token_ids=[
|
160
|
-
self.tokenizer.start_token_id,
|
161
|
-
self.tokenizer.end_token_id,
|
162
|
-
self.tokenizer.pad_token_id,
|
163
|
-
],
|
130
|
+
# Roberta is doubles up the sep token, so we override build.
|
131
|
+
self.packer = MultiSegmentPacker(
|
132
|
+
start_value=self.tokenizer.start_token_id,
|
133
|
+
end_value=self.tokenizer.end_token_id,
|
134
|
+
sep_value=[self.tokenizer.end_token_id] * 2,
|
135
|
+
pad_value=self.tokenizer.pad_token_id,
|
136
|
+
truncate=self.truncate,
|
137
|
+
sequence_length=self.sequence_length,
|
164
138
|
)
|
165
|
-
self.built = True
|
166
139
|
|
140
|
+
@preprocessing_function
|
167
141
|
def call(self, x, y=None, sample_weight=None):
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
"or `sample_weight`. Your `y` and `sample_weight` will be "
|
173
|
-
"ignored."
|
174
|
-
)
|
175
|
-
|
176
|
-
x = super().call(x)
|
177
|
-
token_ids, padding_mask = x["token_ids"], x["padding_mask"]
|
178
|
-
masker_outputs = self.masker(token_ids)
|
179
|
-
x = {
|
180
|
-
"token_ids": masker_outputs["token_ids"],
|
181
|
-
"padding_mask": padding_mask,
|
182
|
-
"mask_positions": masker_outputs["mask_positions"],
|
183
|
-
}
|
184
|
-
y = masker_outputs["mask_ids"]
|
185
|
-
sample_weight = masker_outputs["mask_weights"]
|
142
|
+
output = super().call(x, y=y, sample_weight=sample_weight)
|
143
|
+
x, y, sample_weight = keras.utils.unpack_x_y_sample_weight(output)
|
144
|
+
# Backbone has no segment ID input.
|
145
|
+
del x["segment_ids"]
|
186
146
|
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
187
|
-
|
188
|
-
def get_config(self):
|
189
|
-
config = super().get_config()
|
190
|
-
config.update(
|
191
|
-
{
|
192
|
-
"mask_selection_rate": self.mask_selection_rate,
|
193
|
-
"mask_selection_length": self.mask_selection_length,
|
194
|
-
"mask_token_rate": self.mask_token_rate,
|
195
|
-
"random_token_rate": self.random_token_rate,
|
196
|
-
}
|
197
|
-
)
|
198
|
-
return config
|
@@ -16,18 +16,18 @@
|
|
16
16
|
import keras
|
17
17
|
|
18
18
|
from keras_hub.src.api_export import keras_hub_export
|
19
|
-
from keras_hub.src.models.classifier import Classifier
|
20
19
|
from keras_hub.src.models.roberta.roberta_backbone import RobertaBackbone
|
21
20
|
from keras_hub.src.models.roberta.roberta_backbone import (
|
22
21
|
roberta_kernel_initializer,
|
23
22
|
)
|
24
|
-
from keras_hub.src.models.roberta.
|
25
|
-
|
23
|
+
from keras_hub.src.models.roberta.roberta_text_classifier_preprocessor import (
|
24
|
+
RobertaTextClassifierPreprocessor,
|
26
25
|
)
|
26
|
+
from keras_hub.src.models.text_classifier import TextClassifier
|
27
27
|
|
28
28
|
|
29
|
-
@keras_hub_export("keras_hub.models.
|
30
|
-
class
|
29
|
+
@keras_hub_export("keras_hub.models.RobertaTextClassifier")
|
30
|
+
class RobertaTextClassifier(TextClassifier):
|
31
31
|
"""An end-to-end RoBERTa model for classification tasks.
|
32
32
|
|
33
33
|
This model attaches a classification head to a
|
@@ -48,7 +48,7 @@ class RobertaClassifier(Classifier):
|
|
48
48
|
Args:
|
49
49
|
backbone: A `keras_hub.models.RobertaBackbone` instance.
|
50
50
|
num_classes: int. Number of classes to predict.
|
51
|
-
preprocessor: A `keras_hub.models.
|
51
|
+
preprocessor: A `keras_hub.models.RobertaTextClassifierPreprocessor` or `None`. If
|
52
52
|
`None`, this model will not apply preprocessing, and inputs should
|
53
53
|
be preprocessed before calling the model.
|
54
54
|
activation: Optional `str` or callable. The activation function to use
|
@@ -66,7 +66,7 @@ class RobertaClassifier(Classifier):
|
|
66
66
|
labels = [0, 3]
|
67
67
|
|
68
68
|
# Pretrained classifier.
|
69
|
-
classifier = keras_hub.models.
|
69
|
+
classifier = keras_hub.models.RobertaTextClassifier.from_preset(
|
70
70
|
"roberta_base_en",
|
71
71
|
num_classes=4,
|
72
72
|
)
|
@@ -94,7 +94,7 @@ class RobertaClassifier(Classifier):
|
|
94
94
|
labels = [0, 3]
|
95
95
|
|
96
96
|
# Pretrained classifier without preprocessing.
|
97
|
-
classifier = keras_hub.models.
|
97
|
+
classifier = keras_hub.models.RobertaTextClassifier.from_preset(
|
98
98
|
"roberta_base_en",
|
99
99
|
num_classes=4,
|
100
100
|
preprocessor=None,
|
@@ -115,7 +115,7 @@ class RobertaClassifier(Classifier):
|
|
115
115
|
vocabulary=vocab,
|
116
116
|
merges=merges
|
117
117
|
)
|
118
|
-
preprocessor = keras_hub.models.
|
118
|
+
preprocessor = keras_hub.models.RobertaTextClassifierPreprocessor(
|
119
119
|
tokenizer=tokenizer,
|
120
120
|
sequence_length=128,
|
121
121
|
)
|
@@ -127,7 +127,7 @@ class RobertaClassifier(Classifier):
|
|
127
127
|
intermediate_dim=512,
|
128
128
|
max_sequence_length=128
|
129
129
|
)
|
130
|
-
classifier = keras_hub.models.
|
130
|
+
classifier = keras_hub.models.RobertaTextClassifier(
|
131
131
|
backbone=backbone,
|
132
132
|
preprocessor=preprocessor,
|
133
133
|
num_classes=4,
|
@@ -137,7 +137,7 @@ class RobertaClassifier(Classifier):
|
|
137
137
|
"""
|
138
138
|
|
139
139
|
backbone_cls = RobertaBackbone
|
140
|
-
preprocessor_cls =
|
140
|
+
preprocessor_cls = RobertaTextClassifierPreprocessor
|
141
141
|
|
142
142
|
def __init__(
|
143
143
|
self,
|
keras_hub/src/models/roberta/{roberta_preprocessor.py → roberta_text_classifier_preprocessor.py}
RENAMED
@@ -12,22 +12,27 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
|
-
|
16
15
|
import keras
|
17
16
|
|
18
17
|
from keras_hub.src.api_export import keras_hub_export
|
19
18
|
from keras_hub.src.layers.preprocessing.multi_segment_packer import (
|
20
19
|
MultiSegmentPacker,
|
21
20
|
)
|
22
|
-
from keras_hub.src.models.
|
21
|
+
from keras_hub.src.models.roberta.roberta_backbone import RobertaBackbone
|
23
22
|
from keras_hub.src.models.roberta.roberta_tokenizer import RobertaTokenizer
|
24
|
-
from keras_hub.src.
|
25
|
-
|
23
|
+
from keras_hub.src.models.text_classifier_preprocessor import (
|
24
|
+
TextClassifierPreprocessor,
|
26
25
|
)
|
26
|
+
from keras_hub.src.utils.tensor_utils import preprocessing_function
|
27
27
|
|
28
28
|
|
29
|
-
@keras_hub_export(
|
30
|
-
|
29
|
+
@keras_hub_export(
|
30
|
+
[
|
31
|
+
"keras_hub.models.RobertaTextClassifierPreprocessor",
|
32
|
+
"keras_hub.models.RobertaPreprocessor",
|
33
|
+
]
|
34
|
+
)
|
35
|
+
class RobertaTextClassifierPreprocessor(TextClassifierPreprocessor):
|
31
36
|
"""A RoBERTa preprocessing layer which tokenizes and packs inputs.
|
32
37
|
|
33
38
|
This preprocessing layer will do three things:
|
@@ -71,7 +76,7 @@ class RobertaPreprocessor(Preprocessor):
|
|
71
76
|
|
72
77
|
Directly calling the layer on data.
|
73
78
|
```python
|
74
|
-
preprocessor = keras_hub.models.
|
79
|
+
preprocessor = keras_hub.models.TextClassifierPreprocessor.from_preset(
|
75
80
|
"roberta_base_en"
|
76
81
|
)
|
77
82
|
|
@@ -95,12 +100,12 @@ class RobertaPreprocessor(Preprocessor):
|
|
95
100
|
vocabulary=vocab,
|
96
101
|
merges=merges
|
97
102
|
)
|
98
|
-
preprocessor = keras_hub.models.
|
103
|
+
preprocessor = keras_hub.models.RobertaTextClassifierPreprocessor(tokenizer)
|
99
104
|
preprocessor("a quick fox")
|
100
105
|
```
|
101
106
|
Mapping with `tf.data.Dataset`.
|
102
107
|
```python
|
103
|
-
preprocessor = keras_hub.models.
|
108
|
+
preprocessor = keras_hub.models.TextClassifierPreprocessor.from_preset(
|
104
109
|
"roberta_base_en"
|
105
110
|
)
|
106
111
|
|
@@ -131,25 +136,11 @@ class RobertaPreprocessor(Preprocessor):
|
|
131
136
|
```
|
132
137
|
"""
|
133
138
|
|
139
|
+
backbone_cls = RobertaBackbone
|
134
140
|
tokenizer_cls = RobertaTokenizer
|
135
141
|
|
136
|
-
def __init__(
|
137
|
-
self,
|
138
|
-
tokenizer,
|
139
|
-
sequence_length=512,
|
140
|
-
truncate="round_robin",
|
141
|
-
**kwargs,
|
142
|
-
):
|
143
|
-
super().__init__(**kwargs)
|
144
|
-
|
145
|
-
self.tokenizer = tokenizer
|
146
|
-
self.packer = None
|
147
|
-
self.truncate = truncate
|
148
|
-
self.sequence_length = sequence_length
|
149
|
-
|
150
142
|
def build(self, input_shape):
|
151
|
-
#
|
152
|
-
# assets have loaded when restoring a saved model.
|
143
|
+
# Roberta is doubles up the sep token, so we override build.
|
153
144
|
self.packer = MultiSegmentPacker(
|
154
145
|
start_value=self.tokenizer.start_token_id,
|
155
146
|
end_value=self.tokenizer.end_token_id,
|
@@ -160,33 +151,10 @@ class RobertaPreprocessor(Preprocessor):
|
|
160
151
|
)
|
161
152
|
self.built = True
|
162
153
|
|
154
|
+
@preprocessing_function
|
163
155
|
def call(self, x, y=None, sample_weight=None):
|
164
|
-
|
165
|
-
x =
|
166
|
-
|
167
|
-
x
|
168
|
-
"token_ids": token_ids,
|
169
|
-
"padding_mask": token_ids != self.tokenizer.pad_token_id,
|
170
|
-
}
|
156
|
+
output = super().call(x, y=y, sample_weight=sample_weight)
|
157
|
+
x, y, sample_weight = keras.utils.unpack_x_y_sample_weight(output)
|
158
|
+
# Backbone has no segment ID input.
|
159
|
+
del x["segment_ids"]
|
171
160
|
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
172
|
-
|
173
|
-
def get_config(self):
|
174
|
-
config = super().get_config()
|
175
|
-
config.update(
|
176
|
-
{
|
177
|
-
"sequence_length": self.sequence_length,
|
178
|
-
"truncate": self.truncate,
|
179
|
-
}
|
180
|
-
)
|
181
|
-
return config
|
182
|
-
|
183
|
-
@property
|
184
|
-
def sequence_length(self):
|
185
|
-
"""The padded length of model input sequences."""
|
186
|
-
return self._sequence_length
|
187
|
-
|
188
|
-
@sequence_length.setter
|
189
|
-
def sequence_length(self, value):
|
190
|
-
self._sequence_length = value
|
191
|
-
if self.packer is not None:
|
192
|
-
self.packer.sequence_length = value
|
@@ -14,10 +14,16 @@
|
|
14
14
|
|
15
15
|
|
16
16
|
from keras_hub.src.api_export import keras_hub_export
|
17
|
+
from keras_hub.src.models.roberta.roberta_backbone import RobertaBackbone
|
17
18
|
from keras_hub.src.tokenizers.byte_pair_tokenizer import BytePairTokenizer
|
18
19
|
|
19
20
|
|
20
|
-
@keras_hub_export(
|
21
|
+
@keras_hub_export(
|
22
|
+
[
|
23
|
+
"keras_hub.tokenizers.RobertaTokenizer",
|
24
|
+
"keras_hub.models.RobertaTokenizer",
|
25
|
+
]
|
26
|
+
)
|
21
27
|
class RobertaTokenizer(BytePairTokenizer):
|
22
28
|
"""A RoBERTa tokenizer using Byte-Pair Encoding subword segmentation.
|
23
29
|
|
@@ -27,10 +33,6 @@ class RobertaTokenizer(BytePairTokenizer):
|
|
27
33
|
models and provides a `from_preset()` method to automatically download
|
28
34
|
a matching vocabulary for a RoBERTa preset.
|
29
35
|
|
30
|
-
This tokenizer does not provide truncation or padding of inputs. It can be
|
31
|
-
combined with a `keras_hub.models.RobertaPreprocessor` layer for input
|
32
|
-
packing.
|
33
|
-
|
34
36
|
If input is a batch of strings (rank > 0), the layer will output a
|
35
37
|
`tf.RaggedTensor` where the last dimension of the output is ragged.
|
36
38
|
|
@@ -72,61 +74,20 @@ class RobertaTokenizer(BytePairTokenizer):
|
|
72
74
|
```
|
73
75
|
"""
|
74
76
|
|
77
|
+
backbone_cls = RobertaBackbone
|
78
|
+
|
75
79
|
def __init__(
|
76
80
|
self,
|
77
81
|
vocabulary=None,
|
78
82
|
merges=None,
|
79
83
|
**kwargs,
|
80
84
|
):
|
81
|
-
self.
|
82
|
-
self.
|
83
|
-
self.
|
84
|
-
self.
|
85
|
-
|
85
|
+
self._add_special_token("<s>", "start_token")
|
86
|
+
self._add_special_token("</s>", "end_token")
|
87
|
+
self._add_special_token("<pad>", "pad_token")
|
88
|
+
self._add_special_token("<mask>", "mask_token")
|
86
89
|
super().__init__(
|
87
90
|
vocabulary=vocabulary,
|
88
91
|
merges=merges,
|
89
|
-
unsplittable_tokens=[
|
90
|
-
self.start_token,
|
91
|
-
self.pad_token,
|
92
|
-
self.end_token,
|
93
|
-
self.mask_token,
|
94
|
-
],
|
95
92
|
**kwargs,
|
96
93
|
)
|
97
|
-
|
98
|
-
def set_vocabulary_and_merges(self, vocabulary, merges):
|
99
|
-
super().set_vocabulary_and_merges(vocabulary, merges)
|
100
|
-
|
101
|
-
if vocabulary is not None:
|
102
|
-
# Check for necessary special tokens.
|
103
|
-
for token in [
|
104
|
-
self.start_token,
|
105
|
-
self.pad_token,
|
106
|
-
self.end_token,
|
107
|
-
self.mask_token,
|
108
|
-
]:
|
109
|
-
if token not in self.vocabulary:
|
110
|
-
raise ValueError(
|
111
|
-
f"Cannot find token `'{token}'` in the provided "
|
112
|
-
f"`vocabulary`. Please provide `'{token}'` in your "
|
113
|
-
"`vocabulary` or use a pretrained `vocabulary` name."
|
114
|
-
)
|
115
|
-
|
116
|
-
self.start_token_id = self.token_to_id(self.start_token)
|
117
|
-
self.pad_token_id = self.token_to_id(self.pad_token)
|
118
|
-
self.end_token_id = self.token_to_id(self.end_token)
|
119
|
-
self.mask_token_id = self.token_to_id(self.mask_token)
|
120
|
-
else:
|
121
|
-
self.start_token_id = None
|
122
|
-
self.pad_token_id = None
|
123
|
-
self.end_token_id = None
|
124
|
-
self.mask_token_id = None
|
125
|
-
|
126
|
-
def get_config(self):
|
127
|
-
config = super().get_config()
|
128
|
-
# In the constructor, we pass the list of special tokens to the
|
129
|
-
# `unsplittable_tokens` arg of the superclass' constructor. Hence, we
|
130
|
-
# delete it from the config here.
|
131
|
-
del config["unsplittable_tokens"]
|
132
|
-
return config
|