keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl → 0.15.0.dev20240911134614__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (188) hide show
  1. keras_hub/api/__init__.py +1 -0
  2. keras_hub/api/bounding_box/__init__.py +36 -0
  3. keras_hub/api/layers/__init__.py +14 -0
  4. keras_hub/api/models/__init__.py +75 -31
  5. keras_hub/api/tokenizers/__init__.py +30 -0
  6. keras_hub/src/bounding_box/__init__.py +13 -0
  7. keras_hub/src/bounding_box/converters.py +529 -0
  8. keras_hub/src/bounding_box/formats.py +162 -0
  9. keras_hub/src/bounding_box/iou.py +263 -0
  10. keras_hub/src/bounding_box/to_dense.py +95 -0
  11. keras_hub/src/bounding_box/to_ragged.py +99 -0
  12. keras_hub/src/bounding_box/utils.py +194 -0
  13. keras_hub/src/bounding_box/validate_format.py +99 -0
  14. keras_hub/src/layers/preprocessing/audio_converter.py +121 -0
  15. keras_hub/src/layers/preprocessing/image_converter.py +130 -0
  16. keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +2 -0
  17. keras_hub/src/layers/preprocessing/multi_segment_packer.py +9 -8
  18. keras_hub/src/layers/preprocessing/preprocessing_layer.py +2 -29
  19. keras_hub/src/layers/preprocessing/random_deletion.py +33 -31
  20. keras_hub/src/layers/preprocessing/random_swap.py +33 -31
  21. keras_hub/src/layers/preprocessing/resizing_image_converter.py +101 -0
  22. keras_hub/src/layers/preprocessing/start_end_packer.py +3 -2
  23. keras_hub/src/models/albert/__init__.py +1 -2
  24. keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +6 -86
  25. keras_hub/src/models/albert/{albert_classifier.py → albert_text_classifier.py} +29 -10
  26. keras_hub/src/models/albert/{albert_preprocessor.py → albert_text_classifier_preprocessor.py} +14 -70
  27. keras_hub/src/models/albert/albert_tokenizer.py +17 -36
  28. keras_hub/src/models/backbone.py +12 -34
  29. keras_hub/src/models/bart/__init__.py +1 -2
  30. keras_hub/src/models/bart/bart_preprocessor.py +6 -18
  31. keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +21 -148
  32. keras_hub/src/models/bart/bart_tokenizer.py +12 -39
  33. keras_hub/src/models/bert/__init__.py +1 -5
  34. keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +6 -87
  35. keras_hub/src/models/bert/bert_presets.py +1 -4
  36. keras_hub/src/models/bert/{bert_classifier.py → bert_text_classifier.py} +12 -10
  37. keras_hub/src/models/bert/{bert_preprocessor.py → bert_text_classifier_preprocessor.py} +14 -70
  38. keras_hub/src/models/bert/bert_tokenizer.py +17 -35
  39. keras_hub/src/models/bloom/__init__.py +1 -2
  40. keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +6 -91
  41. keras_hub/src/models/bloom/bloom_preprocessor.py +5 -12
  42. keras_hub/src/models/bloom/bloom_tokenizer.py +12 -41
  43. keras_hub/src/models/causal_lm.py +10 -29
  44. keras_hub/src/models/causal_lm_preprocessor.py +195 -0
  45. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +54 -15
  46. keras_hub/src/models/deberta_v3/__init__.py +1 -4
  47. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +14 -77
  48. keras_hub/src/models/deberta_v3/{deberta_v3_classifier.py → deberta_v3_text_classifier.py} +11 -11
  49. keras_hub/src/models/deberta_v3/{deberta_v3_preprocessor.py → deberta_v3_text_classifier_preprocessor.py} +23 -64
  50. keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +30 -25
  51. keras_hub/src/models/densenet/densenet_backbone.py +46 -22
  52. keras_hub/src/models/distil_bert/__init__.py +1 -4
  53. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +14 -76
  54. keras_hub/src/models/distil_bert/{distil_bert_classifier.py → distil_bert_text_classifier.py} +12 -12
  55. keras_hub/src/models/distil_bert/{distil_bert_preprocessor.py → distil_bert_text_classifier_preprocessor.py} +23 -63
  56. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +19 -35
  57. keras_hub/src/models/efficientnet/__init__.py +13 -0
  58. keras_hub/src/models/efficientnet/efficientnet_backbone.py +569 -0
  59. keras_hub/src/models/efficientnet/fusedmbconv.py +229 -0
  60. keras_hub/src/models/efficientnet/mbconv.py +238 -0
  61. keras_hub/src/models/electra/__init__.py +1 -2
  62. keras_hub/src/models/electra/electra_preprocessor.py +6 -5
  63. keras_hub/src/models/electra/electra_tokenizer.py +17 -32
  64. keras_hub/src/models/f_net/__init__.py +1 -2
  65. keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +12 -78
  66. keras_hub/src/models/f_net/{f_net_classifier.py → f_net_text_classifier.py} +10 -8
  67. keras_hub/src/models/f_net/{f_net_preprocessor.py → f_net_text_classifier_preprocessor.py} +19 -63
  68. keras_hub/src/models/f_net/f_net_tokenizer.py +17 -35
  69. keras_hub/src/models/falcon/__init__.py +1 -2
  70. keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +6 -89
  71. keras_hub/src/models/falcon/falcon_preprocessor.py +5 -12
  72. keras_hub/src/models/falcon/falcon_tokenizer.py +12 -35
  73. keras_hub/src/models/gemma/__init__.py +1 -2
  74. keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +6 -90
  75. keras_hub/src/models/gemma/gemma_preprocessor.py +5 -12
  76. keras_hub/src/models/gemma/gemma_tokenizer.py +12 -23
  77. keras_hub/src/models/gpt2/__init__.py +1 -2
  78. keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +6 -89
  79. keras_hub/src/models/gpt2/gpt2_preprocessor.py +5 -12
  80. keras_hub/src/models/gpt2/gpt2_tokenizer.py +12 -34
  81. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +6 -91
  82. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +5 -12
  83. keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +12 -34
  84. keras_hub/src/models/image_classifier.py +0 -5
  85. keras_hub/src/models/image_classifier_preprocessor.py +83 -0
  86. keras_hub/src/models/llama/__init__.py +1 -2
  87. keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +6 -85
  88. keras_hub/src/models/llama/llama_preprocessor.py +5 -12
  89. keras_hub/src/models/llama/llama_tokenizer.py +12 -25
  90. keras_hub/src/models/llama3/__init__.py +1 -2
  91. keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +6 -89
  92. keras_hub/src/models/llama3/llama3_preprocessor.py +2 -0
  93. keras_hub/src/models/llama3/llama3_tokenizer.py +12 -33
  94. keras_hub/src/models/masked_lm.py +0 -2
  95. keras_hub/src/models/masked_lm_preprocessor.py +156 -0
  96. keras_hub/src/models/mistral/__init__.py +1 -2
  97. keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +6 -91
  98. keras_hub/src/models/mistral/mistral_preprocessor.py +5 -12
  99. keras_hub/src/models/mistral/mistral_tokenizer.py +12 -23
  100. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +2 -2
  101. keras_hub/src/models/mobilenet/__init__.py +13 -0
  102. keras_hub/src/models/mobilenet/mobilenet_backbone.py +530 -0
  103. keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +114 -0
  104. keras_hub/src/models/opt/__init__.py +1 -2
  105. keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +6 -93
  106. keras_hub/src/models/opt/opt_preprocessor.py +5 -12
  107. keras_hub/src/models/opt/opt_tokenizer.py +12 -41
  108. keras_hub/src/models/pali_gemma/__init__.py +1 -4
  109. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +28 -28
  110. keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +25 -0
  111. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +5 -5
  112. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +10 -2
  113. keras_hub/src/models/phi3/__init__.py +1 -2
  114. keras_hub/src/models/phi3/phi3_causal_lm.py +3 -9
  115. keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +6 -89
  116. keras_hub/src/models/phi3/phi3_preprocessor.py +5 -12
  117. keras_hub/src/models/phi3/phi3_tokenizer.py +12 -36
  118. keras_hub/src/models/preprocessor.py +76 -83
  119. keras_hub/src/models/resnet/__init__.py +6 -0
  120. keras_hub/src/models/resnet/resnet_backbone.py +387 -26
  121. keras_hub/src/models/resnet/resnet_image_classifier.py +7 -3
  122. keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +28 -0
  123. keras_hub/src/models/resnet/resnet_image_converter.py +23 -0
  124. keras_hub/src/models/resnet/resnet_presets.py +95 -0
  125. keras_hub/src/models/roberta/__init__.py +1 -2
  126. keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +22 -74
  127. keras_hub/src/models/roberta/{roberta_classifier.py → roberta_text_classifier.py} +11 -11
  128. keras_hub/src/models/roberta/{roberta_preprocessor.py → roberta_text_classifier_preprocessor.py} +21 -53
  129. keras_hub/src/models/roberta/roberta_tokenizer.py +13 -52
  130. keras_hub/src/models/seq_2_seq_lm_preprocessor.py +269 -0
  131. keras_hub/src/models/stable_diffusion_v3/__init__.py +13 -0
  132. keras_hub/src/models/stable_diffusion_v3/clip_encoder_block.py +103 -0
  133. keras_hub/src/models/stable_diffusion_v3/clip_preprocessor.py +93 -0
  134. keras_hub/src/models/stable_diffusion_v3/clip_text_encoder.py +149 -0
  135. keras_hub/src/models/stable_diffusion_v3/clip_tokenizer.py +167 -0
  136. keras_hub/src/models/stable_diffusion_v3/mmdit.py +427 -0
  137. keras_hub/src/models/stable_diffusion_v3/mmdit_block.py +317 -0
  138. keras_hub/src/models/stable_diffusion_v3/t5_xxl_preprocessor.py +74 -0
  139. keras_hub/src/models/stable_diffusion_v3/t5_xxl_text_encoder.py +155 -0
  140. keras_hub/src/models/stable_diffusion_v3/vae_attention.py +126 -0
  141. keras_hub/src/models/stable_diffusion_v3/vae_image_decoder.py +186 -0
  142. keras_hub/src/models/t5/__init__.py +1 -2
  143. keras_hub/src/models/t5/t5_tokenizer.py +13 -23
  144. keras_hub/src/models/task.py +71 -116
  145. keras_hub/src/models/{classifier.py → text_classifier.py} +8 -13
  146. keras_hub/src/models/text_classifier_preprocessor.py +138 -0
  147. keras_hub/src/models/whisper/__init__.py +1 -2
  148. keras_hub/src/models/whisper/{whisper_audio_feature_extractor.py → whisper_audio_converter.py} +20 -18
  149. keras_hub/src/models/whisper/whisper_backbone.py +0 -3
  150. keras_hub/src/models/whisper/whisper_presets.py +10 -10
  151. keras_hub/src/models/whisper/whisper_tokenizer.py +20 -16
  152. keras_hub/src/models/xlm_roberta/__init__.py +1 -4
  153. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +26 -72
  154. keras_hub/src/models/xlm_roberta/{xlm_roberta_classifier.py → xlm_roberta_text_classifier.py} +11 -11
  155. keras_hub/src/models/xlm_roberta/{xlm_roberta_preprocessor.py → xlm_roberta_text_classifier_preprocessor.py} +26 -53
  156. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +25 -10
  157. keras_hub/src/tests/test_case.py +25 -0
  158. keras_hub/src/tokenizers/byte_pair_tokenizer.py +29 -17
  159. keras_hub/src/tokenizers/byte_tokenizer.py +14 -15
  160. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +19 -7
  161. keras_hub/src/tokenizers/tokenizer.py +67 -32
  162. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +14 -15
  163. keras_hub/src/tokenizers/word_piece_tokenizer.py +33 -47
  164. keras_hub/src/utils/keras_utils.py +0 -50
  165. keras_hub/src/utils/preset_utils.py +238 -67
  166. keras_hub/src/utils/tensor_utils.py +187 -69
  167. keras_hub/src/utils/timm/convert_resnet.py +20 -16
  168. keras_hub/src/utils/timm/preset_loader.py +67 -0
  169. keras_hub/src/utils/transformers/convert_albert.py +193 -0
  170. keras_hub/src/utils/transformers/convert_bart.py +373 -0
  171. keras_hub/src/utils/transformers/convert_bert.py +7 -17
  172. keras_hub/src/utils/transformers/convert_distilbert.py +10 -20
  173. keras_hub/src/utils/transformers/convert_gemma.py +5 -19
  174. keras_hub/src/utils/transformers/convert_gpt2.py +5 -18
  175. keras_hub/src/utils/transformers/convert_llama3.py +7 -18
  176. keras_hub/src/utils/transformers/convert_mistral.py +129 -0
  177. keras_hub/src/utils/transformers/convert_pali_gemma.py +7 -29
  178. keras_hub/src/utils/transformers/preset_loader.py +77 -0
  179. keras_hub/src/utils/transformers/safetensor_utils.py +2 -2
  180. keras_hub/src/version_utils.py +1 -1
  181. {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.15.0.dev20240911134614.dist-info}/METADATA +1 -2
  182. keras_hub_nightly-0.15.0.dev20240911134614.dist-info/RECORD +338 -0
  183. {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.15.0.dev20240911134614.dist-info}/WHEEL +1 -1
  184. keras_hub/src/models/whisper/whisper_preprocessor.py +0 -326
  185. keras_hub/src/utils/timm/convert.py +0 -37
  186. keras_hub/src/utils/transformers/convert.py +0 -101
  187. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +0 -297
  188. {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.15.0.dev20240911134614.dist-info}/top_level.txt +0 -0
@@ -13,10 +13,16 @@
13
13
  # limitations under the License.
14
14
 
15
15
  from keras_hub.src.api_export import keras_hub_export
16
+ from keras_hub.src.models.gpt_neo_x.gpt_neo_x_backbone import GPTNeoXBackbone
16
17
  from keras_hub.src.tokenizers.byte_pair_tokenizer import BytePairTokenizer
17
18
 
18
19
 
19
- @keras_hub_export("keras_hub.models.GPTNeoXTokenizer")
20
+ @keras_hub_export(
21
+ [
22
+ "keras_hub.tokenizers.GPTNeoXTokenizer",
23
+ "keras_hub.models.GPTNeoXTokenizer",
24
+ ]
25
+ )
20
26
  class GPTNeoXTokenizer(BytePairTokenizer):
21
27
  """A GPTNeoX tokenizer using Byte-Pair Encoding subword segmentation.
22
28
 
@@ -26,8 +32,6 @@ class GPTNeoXTokenizer(BytePairTokenizer):
26
32
  models and provides a `from_preset()` method to automatically download
27
33
  a matching vocabulary for a GPTNeoX preset.
28
34
 
29
- This tokenizer does not provide truncation or padding of inputs.
30
-
31
35
  If input is a batch of strings (rank > 0), the layer will output a
32
36
  `tf.RaggedTensor` where the last dimension of the output is ragged.
33
37
 
@@ -43,6 +47,8 @@ class GPTNeoXTokenizer(BytePairTokenizer):
43
47
  merge entities separated by a space.
44
48
  """
45
49
 
50
+ backbone_cls = GPTNeoXBackbone
51
+
46
52
  def __init__(
47
53
  self,
48
54
  vocabulary=None,
@@ -50,39 +56,11 @@ class GPTNeoXTokenizer(BytePairTokenizer):
50
56
  **kwargs,
51
57
  ):
52
58
  # GPTNeoX uses the same start as end token, i.e., "<|endoftext|>".
53
- self.end_token = self.start_token = "<|endoftext|>"
54
-
59
+ self._add_special_token("<|endoftext|>", "end_token")
60
+ self._add_special_token("<|endoftext|>", "start_token")
61
+ self.pad_token_id = 0
55
62
  super().__init__(
56
63
  vocabulary=vocabulary,
57
64
  merges=merges,
58
- unsplittable_tokens=[self.end_token],
59
65
  **kwargs,
60
66
  )
61
-
62
- def set_vocabulary_and_merges(self, vocabulary, merges):
63
- super().set_vocabulary_and_merges(vocabulary, merges)
64
-
65
- if vocabulary is not None:
66
- # Check for necessary special tokens.
67
- if self.end_token not in self.get_vocabulary():
68
- raise ValueError(
69
- f"Cannot find token `'{self.end_token}'` in the provided "
70
- f"`vocabulary`. Please provide `'{self.end_token}'` in "
71
- "your `vocabulary` or use a pretrained `vocabulary` name."
72
- )
73
-
74
- self.end_token_id = self.token_to_id(self.end_token)
75
- self.start_token_id = self.end_token_id
76
- self.pad_token_id = 0
77
- else:
78
- self.end_token_id = None
79
- self.start_token_id = None
80
- self.pad_token_id = None
81
-
82
- def get_config(self):
83
- config = super().get_config()
84
- # In the constructor, we pass the list of special tokens to the
85
- # `unsplittable_tokens` arg of the superclass' constructor. Hence, we
86
- # delete it from the config here.
87
- del config["unsplittable_tokens"]
88
- return config
@@ -33,11 +33,6 @@ class ImageClassifier(Task):
33
33
  used to load a pre-trained config and weights.
34
34
  """
35
35
 
36
- def __init__(self, *args, **kwargs):
37
- super().__init__(*args, **kwargs)
38
- # Default compilation.
39
- self.compile()
40
-
41
36
  def compile(
42
37
  self,
43
38
  optimizer="auto",
@@ -0,0 +1,83 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import keras
15
+
16
+ from keras_hub.src.api_export import keras_hub_export
17
+ from keras_hub.src.models.preprocessor import Preprocessor
18
+ from keras_hub.src.utils.tensor_utils import preprocessing_function
19
+
20
+
21
+ @keras_hub_export("keras_hub.models.ImageClassifierPreprocessor")
22
+ class ImageClassifierPreprocessor(Preprocessor):
23
+ """Base class for image classification preprocessing layers.
24
+
25
+ `ImageClassifierPreprocessor` tasks wraps a
26
+ `keras_hub.layers.ImageConverter` to create a preprocessing layer for
27
+ image classification tasks. It is intended to be paired with a
28
+ `keras_hub.models.ImageClassifier` task.
29
+
30
+ All `ImageClassifierPreprocessor` take inputs three inputs, `x`, `y`, and
31
+ `sample_weight`. `x`, the first input, should always be included. It can
32
+ be a image or batch of images. See examples below. `y` and `sample_weight`
33
+ are optional inputs that will be passed through unaltered. Usually, `y` will
34
+ be the classification label, and `sample_weight` will not be provided.
35
+
36
+ The layer will output either `x`, an `(x, y)` tuple if labels were provided,
37
+ or an `(x, y, sample_weight)` tuple if labels and sample weight were
38
+ provided. `x` will be the input images after all model preprocessing has
39
+ been applied.
40
+
41
+ All `ImageClassifierPreprocessor` tasks include a `from_preset()`
42
+ constructor which can be used to load a pre-trained config and vocabularies.
43
+ You can call the `from_preset()` constructor directly on this base class, in
44
+ which case the correct class for your model will be automatically
45
+ instantiated.
46
+
47
+ Examples.
48
+ ```python
49
+ preprocessor = keras_hub.models.ImageClassifierPreprocessor.from_preset(
50
+ "resnet_50",
51
+ )
52
+
53
+ # Resize a single image for resnet 50.
54
+ x = np.ones((512, 512, 3))
55
+ x = preprocessor(x)
56
+
57
+ # Resize a labeled image.
58
+ x, y = np.ones((512, 512, 3)), 1
59
+ x, y = preprocessor(x, y)
60
+
61
+ # Resize a batch of labeled images.
62
+ x, y = [np.ones((512, 512, 3)), np.zeros((512, 512, 3))], [1, 0]
63
+ x, y = preprocessor(x, y)
64
+
65
+ # Use a `tf.data.Dataset`.
66
+ ds = tf.data.Dataset.from_tensor_slices((x, y)).batch(2)
67
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
68
+ ```
69
+ """
70
+
71
+ def __init__(
72
+ self,
73
+ image_converter=None,
74
+ **kwargs,
75
+ ):
76
+ super().__init__(**kwargs)
77
+ self.image_converter = image_converter
78
+
79
+ @preprocessing_function
80
+ def call(self, x, y=None, sample_weight=None):
81
+ if self.image_converter:
82
+ x = self.image_converter(x)
83
+ return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
@@ -14,7 +14,6 @@
14
14
 
15
15
  from keras_hub.src.models.llama.llama_backbone import LlamaBackbone
16
16
  from keras_hub.src.models.llama.llama_presets import backbone_presets
17
- from keras_hub.src.models.llama.llama_tokenizer import LlamaTokenizer
18
17
  from keras_hub.src.utils.preset_utils import register_presets
19
18
 
20
- register_presets(backbone_presets, (LlamaBackbone, LlamaTokenizer))
19
+ register_presets(backbone_presets, LlamaBackbone)
@@ -12,19 +12,15 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- import keras
16
- from absl import logging
17
15
 
18
16
  from keras_hub.src.api_export import keras_hub_export
19
- from keras_hub.src.models.llama.llama_preprocessor import LlamaPreprocessor
20
- from keras_hub.src.utils.keras_utils import (
21
- convert_inputs_to_list_of_tensor_segments,
22
- )
23
- from keras_hub.src.utils.tensor_utils import strip_to_ragged
17
+ from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
18
+ from keras_hub.src.models.llama.llama_backbone import LlamaBackbone
19
+ from keras_hub.src.models.llama.llama_tokenizer import LlamaTokenizer
24
20
 
25
21
 
26
22
  @keras_hub_export("keras_hub.models.LlamaCausalLMPreprocessor")
27
- class LlamaCausalLMPreprocessor(LlamaPreprocessor):
23
+ class LlamaCausalLMPreprocessor(CausalLMPreprocessor):
28
24
  """Llama Causal LM preprocessor.
29
25
 
30
26
  This preprocessing layer is meant for use with
@@ -91,80 +87,5 @@ class LlamaCausalLMPreprocessor(LlamaPreprocessor):
91
87
  ```
92
88
  """
93
89
 
94
- def call(
95
- self,
96
- x,
97
- y=None,
98
- sample_weight=None,
99
- sequence_length=None,
100
- ):
101
- if y is not None or sample_weight is not None:
102
- logging.warning(
103
- "`LlamaCausalLMPreprocessor` generates `y` and "
104
- "`sample_weight` based on your input data, but your data "
105
- "already contains `y` or `sample_weight`. Your `y` and "
106
- "`sample_weight` will be ignored."
107
- )
108
- sequence_length = sequence_length or self.sequence_length
109
-
110
- x = convert_inputs_to_list_of_tensor_segments(x)[0]
111
- x = self.tokenizer(x)
112
- # Pad with one extra token to account for the truncation below.
113
- token_ids, padding_mask = self.packer(
114
- x,
115
- sequence_length=sequence_length + 1,
116
- add_start_value=self.add_start_token,
117
- add_end_value=self.add_end_token,
118
- )
119
- # The last token does not have a next token, so we truncate it out.
120
- x = {
121
- "token_ids": token_ids[..., :-1],
122
- "padding_mask": padding_mask[..., :-1],
123
- }
124
- # Target `y` will be the next token.
125
- y, sample_weight = token_ids[..., 1:], padding_mask[..., 1:]
126
- return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
127
-
128
- def generate_preprocess(
129
- self,
130
- x,
131
- sequence_length=None,
132
- ):
133
- """Convert strings to integer token input for generation.
134
-
135
- Similar to calling the layer for training, this method takes in strings
136
- or tensor strings, tokenizes and packs the input, and computes a padding
137
- mask masking all inputs not filled in with a padded value.
138
-
139
- Unlike calling the layer for training, this method does not compute
140
- labels and will never append a `tokenizer.end_token_id` to the end of
141
- the sequence (as generation is expected to continue at the end of the
142
- inputted prompt).
143
- """
144
- if not self.built:
145
- self.build(None)
146
-
147
- x = convert_inputs_to_list_of_tensor_segments(x)[0]
148
- x = self.tokenizer(x)
149
- token_ids, padding_mask = self.packer(
150
- x, sequence_length=sequence_length, add_end_value=False
151
- )
152
- return {
153
- "token_ids": token_ids,
154
- "padding_mask": padding_mask,
155
- }
156
-
157
- def generate_postprocess(
158
- self,
159
- x,
160
- ):
161
- """Convert integer token output to strings for generation.
162
-
163
- This method reverses `generate_preprocess()`, by first removing all
164
- padding and start/end tokens, and then converting the integer sequence
165
- back to a string.
166
- """
167
- token_ids, padding_mask = x["token_ids"], x["padding_mask"]
168
- ids_to_strip = (self.tokenizer.end_token_id,)
169
- token_ids = strip_to_ragged(token_ids, padding_mask, ids_to_strip)
170
- return self.tokenizer.detokenize(token_ids)
90
+ backbone_cls = LlamaBackbone
91
+ tokenizer_cls = LlamaTokenizer
@@ -15,11 +15,10 @@ import keras
15
15
 
16
16
  from keras_hub.src.api_export import keras_hub_export
17
17
  from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
18
+ from keras_hub.src.models.llama.llama_backbone import LlamaBackbone
18
19
  from keras_hub.src.models.llama.llama_tokenizer import LlamaTokenizer
19
20
  from keras_hub.src.models.preprocessor import Preprocessor
20
- from keras_hub.src.utils.keras_utils import (
21
- convert_inputs_to_list_of_tensor_segments,
22
- )
21
+ from keras_hub.src.utils.tensor_utils import preprocessing_function
23
22
 
24
23
 
25
24
  @keras_hub_export("keras_hub.models.LlamaPreprocessor")
@@ -110,6 +109,7 @@ class LlamaPreprocessor(Preprocessor):
110
109
  ```
111
110
  """
112
111
 
112
+ backbone_cls = LlamaBackbone
113
113
  tokenizer_cls = LlamaTokenizer
114
114
 
115
115
  def __init__(
@@ -149,6 +149,7 @@ class LlamaPreprocessor(Preprocessor):
149
149
  )
150
150
  return config
151
151
 
152
+ @preprocessing_function
152
153
  def call(
153
154
  self,
154
155
  x,
@@ -156,17 +157,9 @@ class LlamaPreprocessor(Preprocessor):
156
157
  sample_weight=None,
157
158
  sequence_length=None,
158
159
  ):
159
- x = convert_inputs_to_list_of_tensor_segments(x)
160
- if len(x) != 1:
161
- raise ValueError(
162
- "Llama requires each input feature to contain only "
163
- f"one segment, but received {len(x)}. If you are using Llama"
164
- " for a multi-segment classification task, please refer to "
165
- "classification models like BERT or RoBERTa."
166
- )
167
160
  sequence_length = sequence_length or self.sequence_length
168
161
  token_ids, padding_mask = self.packer(
169
- self.tokenizer(x[0]),
162
+ self.tokenizer(x),
170
163
  sequence_length=sequence_length,
171
164
  add_start_value=self.add_start_token,
172
165
  add_end_value=self.add_end_token,
@@ -13,12 +13,18 @@
13
13
  # limitations under the License.
14
14
 
15
15
  from keras_hub.src.api_export import keras_hub_export
16
+ from keras_hub.src.models.llama.llama_backbone import LlamaBackbone
16
17
  from keras_hub.src.tokenizers.sentence_piece_tokenizer import (
17
18
  SentencePieceTokenizer,
18
19
  )
19
20
 
20
21
 
21
- @keras_hub_export("keras_hub.models.LlamaTokenizer")
22
+ @keras_hub_export(
23
+ [
24
+ "keras_hub.tokenizers.LlamaTokenizer",
25
+ "keras_hub.models.LlamaTokenizer",
26
+ ]
27
+ )
22
28
  class LlamaTokenizer(SentencePieceTokenizer):
23
29
  """Llama tokenizer layer based on SentencePiece.
24
30
 
@@ -28,10 +34,6 @@ class LlamaTokenizer(SentencePieceTokenizer):
28
34
  Llama models and provides a `from_preset()` method to automatically
29
35
  download a matching vocabulary for a Llama preset.
30
36
 
31
- This tokenizer does not provide truncation or padding of inputs. It can be
32
- combined with a `keras_hub.models.LlamaPreprocessor` layer for input
33
- packing.
34
-
35
37
  If input is a batch of strings (rank > 0), the layer will output a
36
38
  `tf.RaggedTensor` where the last dimension of the output is ragged.
37
39
 
@@ -60,25 +62,10 @@ class LlamaTokenizer(SentencePieceTokenizer):
60
62
  ```
61
63
  """
62
64
 
65
+ backbone_cls = LlamaBackbone
66
+
63
67
  def __init__(self, proto, **kwargs):
64
- self.start_token = "<s>"
65
- self.end_token = "</s>"
68
+ self._add_special_token("<s>", "start_token")
69
+ self._add_special_token("</s>", "end_token")
70
+ self.pad_token_id = 0
66
71
  super().__init__(proto=proto, **kwargs)
67
-
68
- def set_proto(self, proto):
69
- super().set_proto(proto)
70
- if proto is not None:
71
- for token in [self.start_token, self.end_token]:
72
- if token not in self.get_vocabulary():
73
- raise ValueError(
74
- f"Cannot find token `'{token}'` in the provided "
75
- f"`vocabulary`. Please provide `'{token}'` in your "
76
- "`vocabulary` or use a pretrained `vocabulary` name."
77
- )
78
- self.start_token_id = self.token_to_id(self.start_token)
79
- self.end_token_id = self.token_to_id(self.end_token)
80
- self.pad_token_id = 0
81
- else:
82
- self.start_token_id = None
83
- self.end_token_id = None
84
- self.pad_token_id = None
@@ -14,7 +14,6 @@
14
14
 
15
15
  from keras_hub.src.models.llama3.llama3_backbone import Llama3Backbone
16
16
  from keras_hub.src.models.llama3.llama3_presets import backbone_presets
17
- from keras_hub.src.models.llama3.llama3_tokenizer import Llama3Tokenizer
18
17
  from keras_hub.src.utils.preset_utils import register_presets
19
18
 
20
- register_presets(backbone_presets, (Llama3Backbone, Llama3Tokenizer))
19
+ register_presets(backbone_presets, Llama3Backbone)
@@ -12,19 +12,14 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- import keras
16
- from absl import logging
17
-
18
15
  from keras_hub.src.api_export import keras_hub_export
19
- from keras_hub.src.models.llama3.llama3_preprocessor import Llama3Preprocessor
20
- from keras_hub.src.utils.keras_utils import (
21
- convert_inputs_to_list_of_tensor_segments,
22
- )
23
- from keras_hub.src.utils.tensor_utils import strip_to_ragged
16
+ from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
17
+ from keras_hub.src.models.llama3.llama3_backbone import Llama3Backbone
18
+ from keras_hub.src.models.llama3.llama3_tokenizer import Llama3Tokenizer
24
19
 
25
20
 
26
21
  @keras_hub_export("keras_hub.models.Llama3CausalLMPreprocessor")
27
- class Llama3CausalLMPreprocessor(Llama3Preprocessor):
22
+ class Llama3CausalLMPreprocessor(CausalLMPreprocessor):
28
23
  """Llama 3 Causal LM preprocessor.
29
24
 
30
25
  This preprocessing layer is meant for use with
@@ -91,83 +86,5 @@ class Llama3CausalLMPreprocessor(Llama3Preprocessor):
91
86
  ```
92
87
  """
93
88
 
94
- def call(
95
- self,
96
- x,
97
- y=None,
98
- sample_weight=None,
99
- sequence_length=None,
100
- ):
101
- if y is not None or sample_weight is not None:
102
- logging.warning(
103
- "`Llama3CausalLMPreprocessor` generates `y` and "
104
- "`sample_weight` based on your input data, but your data "
105
- "already contains `y` or `sample_weight`. Your `y` and "
106
- "`sample_weight` will be ignored."
107
- )
108
- sequence_length = sequence_length or self.sequence_length
109
-
110
- x = convert_inputs_to_list_of_tensor_segments(x)[0]
111
- x = self.tokenizer(x)
112
- # Pad with one extra token to account for the truncation below.
113
- token_ids, padding_mask = self.packer(
114
- x,
115
- sequence_length=sequence_length + 1,
116
- add_start_value=self.add_start_token,
117
- add_end_value=self.add_end_token,
118
- )
119
- # The last token does not have a next token, so we truncate it out.
120
- x = {
121
- "token_ids": token_ids[..., :-1],
122
- "padding_mask": padding_mask[..., :-1],
123
- }
124
- # Target `y` will be the next token.
125
- y, sample_weight = token_ids[..., 1:], padding_mask[..., 1:]
126
- return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
127
-
128
- def generate_preprocess(
129
- self,
130
- x,
131
- sequence_length=None,
132
- ):
133
- """Convert strings to integer token input for generation.
134
-
135
- Similar to calling the layer for training, this method takes in strings
136
- or tensor strings, tokenizes and packs the input, and computes a padding
137
- mask masking all inputs not filled in with a padded value.
138
-
139
- Unlike calling the layer for training, this method does not compute
140
- labels and will never append a `tokenizer.end_token_id` to the end of
141
- the sequence (as generation is expected to continue at the end of the
142
- inputted prompt).
143
- """
144
- if not self.built:
145
- self.build(None)
146
-
147
- x = convert_inputs_to_list_of_tensor_segments(x)[0]
148
- x = self.tokenizer(x)
149
- token_ids, padding_mask = self.packer(
150
- x, sequence_length=sequence_length, add_end_value=False
151
- )
152
- return {
153
- "token_ids": token_ids,
154
- "padding_mask": padding_mask,
155
- }
156
-
157
- def generate_postprocess(
158
- self,
159
- x,
160
- ):
161
- """Convert integer token output to strings for generation.
162
-
163
- This method reverses `generate_preprocess()`, by first removing all
164
- padding and start/end tokens, and then converting the integer sequence
165
- back to a string.
166
- """
167
- token_ids, padding_mask = x["token_ids"], x["padding_mask"]
168
- ids_to_strip = (
169
- self.tokenizer.end_token_id,
170
- self.tokenizer.start_token_id,
171
- )
172
- token_ids = strip_to_ragged(token_ids, padding_mask, ids_to_strip)
173
- return self.tokenizer.detokenize(token_ids)
89
+ backbone_cls = Llama3Backbone
90
+ tokenizer_cls = Llama3Tokenizer
@@ -12,10 +12,12 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  from keras_hub.src.api_export import keras_hub_export
15
+ from keras_hub.src.models.llama3.llama3_backbone import Llama3Backbone
15
16
  from keras_hub.src.models.llama3.llama3_tokenizer import Llama3Tokenizer
16
17
  from keras_hub.src.models.llama.llama_preprocessor import LlamaPreprocessor
17
18
 
18
19
 
19
20
  @keras_hub_export("keras_hub.models.Llama3Preprocessor")
20
21
  class Llama3Preprocessor(LlamaPreprocessor):
22
+ backbone_cls = Llama3Backbone
21
23
  tokenizer_cls = Llama3Tokenizer
@@ -13,51 +13,30 @@
13
13
  # limitations under the License.
14
14
 
15
15
  from keras_hub.src.api_export import keras_hub_export
16
+ from keras_hub.src.models.llama3.llama3_backbone import Llama3Backbone
16
17
  from keras_hub.src.tokenizers.byte_pair_tokenizer import BytePairTokenizer
17
18
 
18
19
 
19
- @keras_hub_export("keras_hub.models.Llama3Tokenizer")
20
+ @keras_hub_export(
21
+ [
22
+ "keras_hub.tokenizers.Llama3Tokenizer",
23
+ "keras_hub.models.Llama3Tokenizer",
24
+ ]
25
+ )
20
26
  class Llama3Tokenizer(BytePairTokenizer):
27
+ backbone_cls = Llama3Backbone
28
+
21
29
  def __init__(
22
30
  self,
23
31
  vocabulary=None,
24
32
  merges=None,
25
33
  **kwargs,
26
34
  ):
27
- self.start_token = "<|begin_of_text|>"
28
- self.end_token = "<|end_of_text|>"
29
-
35
+ self._add_special_token("<|begin_of_text|>", "start_token")
36
+ self._add_special_token("<|end_of_text|>", "end_token")
37
+ self.pad_token_id = 0
30
38
  super().__init__(
31
39
  vocabulary=vocabulary,
32
40
  merges=merges,
33
- unsplittable_tokens=[self.start_token, self.end_token],
34
41
  **kwargs,
35
42
  )
36
-
37
- def set_vocabulary_and_merges(self, vocabulary, merges):
38
- super().set_vocabulary_and_merges(vocabulary, merges)
39
-
40
- if vocabulary is not None:
41
- # Check for necessary special tokens.
42
- if self.end_token not in self.get_vocabulary():
43
- raise ValueError(
44
- f"Cannot find token `'{self.end_token}'` in the provided "
45
- f"`vocabulary`. Please provide `'{self.end_token}'` in "
46
- "your `vocabulary` or use a pretrained `vocabulary` name."
47
- )
48
-
49
- self.start_token_id = self.token_to_id(self.start_token)
50
- self.end_token_id = self.token_to_id(self.end_token)
51
- self.pad_token_id = 0
52
- else:
53
- self.end_token_id = None
54
- self.start_token_id = None
55
- self.pad_token_id = None
56
-
57
- def get_config(self):
58
- config = super().get_config()
59
- # In the constructor, we pass the list of special tokens to the
60
- # `unsplittable_tokens` arg of the superclass' constructor. Hence, we
61
- # delete it from the config here.
62
- del config["unsplittable_tokens"]
63
- return config
@@ -45,8 +45,6 @@ class MaskedLM(Task):
45
45
 
46
46
  def __init__(self, *args, **kwargs):
47
47
  super().__init__(*args, **kwargs)
48
- # Default compilation.
49
- self.compile()
50
48
 
51
49
  def compile(
52
50
  self,