keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl → 0.15.0.dev20240911134614__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/api/__init__.py +1 -0
- keras_hub/api/bounding_box/__init__.py +36 -0
- keras_hub/api/layers/__init__.py +14 -0
- keras_hub/api/models/__init__.py +75 -31
- keras_hub/api/tokenizers/__init__.py +30 -0
- keras_hub/src/bounding_box/__init__.py +13 -0
- keras_hub/src/bounding_box/converters.py +529 -0
- keras_hub/src/bounding_box/formats.py +162 -0
- keras_hub/src/bounding_box/iou.py +263 -0
- keras_hub/src/bounding_box/to_dense.py +95 -0
- keras_hub/src/bounding_box/to_ragged.py +99 -0
- keras_hub/src/bounding_box/utils.py +194 -0
- keras_hub/src/bounding_box/validate_format.py +99 -0
- keras_hub/src/layers/preprocessing/audio_converter.py +121 -0
- keras_hub/src/layers/preprocessing/image_converter.py +130 -0
- keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +2 -0
- keras_hub/src/layers/preprocessing/multi_segment_packer.py +9 -8
- keras_hub/src/layers/preprocessing/preprocessing_layer.py +2 -29
- keras_hub/src/layers/preprocessing/random_deletion.py +33 -31
- keras_hub/src/layers/preprocessing/random_swap.py +33 -31
- keras_hub/src/layers/preprocessing/resizing_image_converter.py +101 -0
- keras_hub/src/layers/preprocessing/start_end_packer.py +3 -2
- keras_hub/src/models/albert/__init__.py +1 -2
- keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +6 -86
- keras_hub/src/models/albert/{albert_classifier.py → albert_text_classifier.py} +29 -10
- keras_hub/src/models/albert/{albert_preprocessor.py → albert_text_classifier_preprocessor.py} +14 -70
- keras_hub/src/models/albert/albert_tokenizer.py +17 -36
- keras_hub/src/models/backbone.py +12 -34
- keras_hub/src/models/bart/__init__.py +1 -2
- keras_hub/src/models/bart/bart_preprocessor.py +6 -18
- keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +21 -148
- keras_hub/src/models/bart/bart_tokenizer.py +12 -39
- keras_hub/src/models/bert/__init__.py +1 -5
- keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +6 -87
- keras_hub/src/models/bert/bert_presets.py +1 -4
- keras_hub/src/models/bert/{bert_classifier.py → bert_text_classifier.py} +12 -10
- keras_hub/src/models/bert/{bert_preprocessor.py → bert_text_classifier_preprocessor.py} +14 -70
- keras_hub/src/models/bert/bert_tokenizer.py +17 -35
- keras_hub/src/models/bloom/__init__.py +1 -2
- keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/bloom/bloom_preprocessor.py +5 -12
- keras_hub/src/models/bloom/bloom_tokenizer.py +12 -41
- keras_hub/src/models/causal_lm.py +10 -29
- keras_hub/src/models/causal_lm_preprocessor.py +195 -0
- keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +54 -15
- keras_hub/src/models/deberta_v3/__init__.py +1 -4
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +14 -77
- keras_hub/src/models/deberta_v3/{deberta_v3_classifier.py → deberta_v3_text_classifier.py} +11 -11
- keras_hub/src/models/deberta_v3/{deberta_v3_preprocessor.py → deberta_v3_text_classifier_preprocessor.py} +23 -64
- keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +30 -25
- keras_hub/src/models/densenet/densenet_backbone.py +46 -22
- keras_hub/src/models/distil_bert/__init__.py +1 -4
- keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +14 -76
- keras_hub/src/models/distil_bert/{distil_bert_classifier.py → distil_bert_text_classifier.py} +12 -12
- keras_hub/src/models/distil_bert/{distil_bert_preprocessor.py → distil_bert_text_classifier_preprocessor.py} +23 -63
- keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +19 -35
- keras_hub/src/models/efficientnet/__init__.py +13 -0
- keras_hub/src/models/efficientnet/efficientnet_backbone.py +569 -0
- keras_hub/src/models/efficientnet/fusedmbconv.py +229 -0
- keras_hub/src/models/efficientnet/mbconv.py +238 -0
- keras_hub/src/models/electra/__init__.py +1 -2
- keras_hub/src/models/electra/electra_preprocessor.py +6 -5
- keras_hub/src/models/electra/electra_tokenizer.py +17 -32
- keras_hub/src/models/f_net/__init__.py +1 -2
- keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +12 -78
- keras_hub/src/models/f_net/{f_net_classifier.py → f_net_text_classifier.py} +10 -8
- keras_hub/src/models/f_net/{f_net_preprocessor.py → f_net_text_classifier_preprocessor.py} +19 -63
- keras_hub/src/models/f_net/f_net_tokenizer.py +17 -35
- keras_hub/src/models/falcon/__init__.py +1 -2
- keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/falcon/falcon_preprocessor.py +5 -12
- keras_hub/src/models/falcon/falcon_tokenizer.py +12 -35
- keras_hub/src/models/gemma/__init__.py +1 -2
- keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +6 -90
- keras_hub/src/models/gemma/gemma_preprocessor.py +5 -12
- keras_hub/src/models/gemma/gemma_tokenizer.py +12 -23
- keras_hub/src/models/gpt2/__init__.py +1 -2
- keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/gpt2/gpt2_preprocessor.py +5 -12
- keras_hub/src/models/gpt2/gpt2_tokenizer.py +12 -34
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +5 -12
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +12 -34
- keras_hub/src/models/image_classifier.py +0 -5
- keras_hub/src/models/image_classifier_preprocessor.py +83 -0
- keras_hub/src/models/llama/__init__.py +1 -2
- keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +6 -85
- keras_hub/src/models/llama/llama_preprocessor.py +5 -12
- keras_hub/src/models/llama/llama_tokenizer.py +12 -25
- keras_hub/src/models/llama3/__init__.py +1 -2
- keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/llama3/llama3_preprocessor.py +2 -0
- keras_hub/src/models/llama3/llama3_tokenizer.py +12 -33
- keras_hub/src/models/masked_lm.py +0 -2
- keras_hub/src/models/masked_lm_preprocessor.py +156 -0
- keras_hub/src/models/mistral/__init__.py +1 -2
- keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/mistral/mistral_preprocessor.py +5 -12
- keras_hub/src/models/mistral/mistral_tokenizer.py +12 -23
- keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +2 -2
- keras_hub/src/models/mobilenet/__init__.py +13 -0
- keras_hub/src/models/mobilenet/mobilenet_backbone.py +530 -0
- keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +114 -0
- keras_hub/src/models/opt/__init__.py +1 -2
- keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +6 -93
- keras_hub/src/models/opt/opt_preprocessor.py +5 -12
- keras_hub/src/models/opt/opt_tokenizer.py +12 -41
- keras_hub/src/models/pali_gemma/__init__.py +1 -4
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +28 -28
- keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +25 -0
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +5 -5
- keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +10 -2
- keras_hub/src/models/phi3/__init__.py +1 -2
- keras_hub/src/models/phi3/phi3_causal_lm.py +3 -9
- keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/phi3/phi3_preprocessor.py +5 -12
- keras_hub/src/models/phi3/phi3_tokenizer.py +12 -36
- keras_hub/src/models/preprocessor.py +76 -83
- keras_hub/src/models/resnet/__init__.py +6 -0
- keras_hub/src/models/resnet/resnet_backbone.py +387 -26
- keras_hub/src/models/resnet/resnet_image_classifier.py +7 -3
- keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +28 -0
- keras_hub/src/models/resnet/resnet_image_converter.py +23 -0
- keras_hub/src/models/resnet/resnet_presets.py +95 -0
- keras_hub/src/models/roberta/__init__.py +1 -2
- keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +22 -74
- keras_hub/src/models/roberta/{roberta_classifier.py → roberta_text_classifier.py} +11 -11
- keras_hub/src/models/roberta/{roberta_preprocessor.py → roberta_text_classifier_preprocessor.py} +21 -53
- keras_hub/src/models/roberta/roberta_tokenizer.py +13 -52
- keras_hub/src/models/seq_2_seq_lm_preprocessor.py +269 -0
- keras_hub/src/models/stable_diffusion_v3/__init__.py +13 -0
- keras_hub/src/models/stable_diffusion_v3/clip_encoder_block.py +103 -0
- keras_hub/src/models/stable_diffusion_v3/clip_preprocessor.py +93 -0
- keras_hub/src/models/stable_diffusion_v3/clip_text_encoder.py +149 -0
- keras_hub/src/models/stable_diffusion_v3/clip_tokenizer.py +167 -0
- keras_hub/src/models/stable_diffusion_v3/mmdit.py +427 -0
- keras_hub/src/models/stable_diffusion_v3/mmdit_block.py +317 -0
- keras_hub/src/models/stable_diffusion_v3/t5_xxl_preprocessor.py +74 -0
- keras_hub/src/models/stable_diffusion_v3/t5_xxl_text_encoder.py +155 -0
- keras_hub/src/models/stable_diffusion_v3/vae_attention.py +126 -0
- keras_hub/src/models/stable_diffusion_v3/vae_image_decoder.py +186 -0
- keras_hub/src/models/t5/__init__.py +1 -2
- keras_hub/src/models/t5/t5_tokenizer.py +13 -23
- keras_hub/src/models/task.py +71 -116
- keras_hub/src/models/{classifier.py → text_classifier.py} +8 -13
- keras_hub/src/models/text_classifier_preprocessor.py +138 -0
- keras_hub/src/models/whisper/__init__.py +1 -2
- keras_hub/src/models/whisper/{whisper_audio_feature_extractor.py → whisper_audio_converter.py} +20 -18
- keras_hub/src/models/whisper/whisper_backbone.py +0 -3
- keras_hub/src/models/whisper/whisper_presets.py +10 -10
- keras_hub/src/models/whisper/whisper_tokenizer.py +20 -16
- keras_hub/src/models/xlm_roberta/__init__.py +1 -4
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +26 -72
- keras_hub/src/models/xlm_roberta/{xlm_roberta_classifier.py → xlm_roberta_text_classifier.py} +11 -11
- keras_hub/src/models/xlm_roberta/{xlm_roberta_preprocessor.py → xlm_roberta_text_classifier_preprocessor.py} +26 -53
- keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +25 -10
- keras_hub/src/tests/test_case.py +25 -0
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +29 -17
- keras_hub/src/tokenizers/byte_tokenizer.py +14 -15
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +19 -7
- keras_hub/src/tokenizers/tokenizer.py +67 -32
- keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +14 -15
- keras_hub/src/tokenizers/word_piece_tokenizer.py +33 -47
- keras_hub/src/utils/keras_utils.py +0 -50
- keras_hub/src/utils/preset_utils.py +238 -67
- keras_hub/src/utils/tensor_utils.py +187 -69
- keras_hub/src/utils/timm/convert_resnet.py +20 -16
- keras_hub/src/utils/timm/preset_loader.py +67 -0
- keras_hub/src/utils/transformers/convert_albert.py +193 -0
- keras_hub/src/utils/transformers/convert_bart.py +373 -0
- keras_hub/src/utils/transformers/convert_bert.py +7 -17
- keras_hub/src/utils/transformers/convert_distilbert.py +10 -20
- keras_hub/src/utils/transformers/convert_gemma.py +5 -19
- keras_hub/src/utils/transformers/convert_gpt2.py +5 -18
- keras_hub/src/utils/transformers/convert_llama3.py +7 -18
- keras_hub/src/utils/transformers/convert_mistral.py +129 -0
- keras_hub/src/utils/transformers/convert_pali_gemma.py +7 -29
- keras_hub/src/utils/transformers/preset_loader.py +77 -0
- keras_hub/src/utils/transformers/safetensor_utils.py +2 -2
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.15.0.dev20240911134614.dist-info}/METADATA +1 -2
- keras_hub_nightly-0.15.0.dev20240911134614.dist-info/RECORD +338 -0
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.15.0.dev20240911134614.dist-info}/WHEEL +1 -1
- keras_hub/src/models/whisper/whisper_preprocessor.py +0 -326
- keras_hub/src/utils/timm/convert.py +0 -37
- keras_hub/src/utils/transformers/convert.py +0 -101
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +0 -297
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.15.0.dev20240911134614.dist-info}/top_level.txt +0 -0
@@ -13,10 +13,16 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
15
|
from keras_hub.src.api_export import keras_hub_export
|
16
|
+
from keras_hub.src.models.gpt_neo_x.gpt_neo_x_backbone import GPTNeoXBackbone
|
16
17
|
from keras_hub.src.tokenizers.byte_pair_tokenizer import BytePairTokenizer
|
17
18
|
|
18
19
|
|
19
|
-
@keras_hub_export(
|
20
|
+
@keras_hub_export(
|
21
|
+
[
|
22
|
+
"keras_hub.tokenizers.GPTNeoXTokenizer",
|
23
|
+
"keras_hub.models.GPTNeoXTokenizer",
|
24
|
+
]
|
25
|
+
)
|
20
26
|
class GPTNeoXTokenizer(BytePairTokenizer):
|
21
27
|
"""A GPTNeoX tokenizer using Byte-Pair Encoding subword segmentation.
|
22
28
|
|
@@ -26,8 +32,6 @@ class GPTNeoXTokenizer(BytePairTokenizer):
|
|
26
32
|
models and provides a `from_preset()` method to automatically download
|
27
33
|
a matching vocabulary for a GPTNeoX preset.
|
28
34
|
|
29
|
-
This tokenizer does not provide truncation or padding of inputs.
|
30
|
-
|
31
35
|
If input is a batch of strings (rank > 0), the layer will output a
|
32
36
|
`tf.RaggedTensor` where the last dimension of the output is ragged.
|
33
37
|
|
@@ -43,6 +47,8 @@ class GPTNeoXTokenizer(BytePairTokenizer):
|
|
43
47
|
merge entities separated by a space.
|
44
48
|
"""
|
45
49
|
|
50
|
+
backbone_cls = GPTNeoXBackbone
|
51
|
+
|
46
52
|
def __init__(
|
47
53
|
self,
|
48
54
|
vocabulary=None,
|
@@ -50,39 +56,11 @@ class GPTNeoXTokenizer(BytePairTokenizer):
|
|
50
56
|
**kwargs,
|
51
57
|
):
|
52
58
|
# GPTNeoX uses the same start as end token, i.e., "<|endoftext|>".
|
53
|
-
self.
|
54
|
-
|
59
|
+
self._add_special_token("<|endoftext|>", "end_token")
|
60
|
+
self._add_special_token("<|endoftext|>", "start_token")
|
61
|
+
self.pad_token_id = 0
|
55
62
|
super().__init__(
|
56
63
|
vocabulary=vocabulary,
|
57
64
|
merges=merges,
|
58
|
-
unsplittable_tokens=[self.end_token],
|
59
65
|
**kwargs,
|
60
66
|
)
|
61
|
-
|
62
|
-
def set_vocabulary_and_merges(self, vocabulary, merges):
|
63
|
-
super().set_vocabulary_and_merges(vocabulary, merges)
|
64
|
-
|
65
|
-
if vocabulary is not None:
|
66
|
-
# Check for necessary special tokens.
|
67
|
-
if self.end_token not in self.get_vocabulary():
|
68
|
-
raise ValueError(
|
69
|
-
f"Cannot find token `'{self.end_token}'` in the provided "
|
70
|
-
f"`vocabulary`. Please provide `'{self.end_token}'` in "
|
71
|
-
"your `vocabulary` or use a pretrained `vocabulary` name."
|
72
|
-
)
|
73
|
-
|
74
|
-
self.end_token_id = self.token_to_id(self.end_token)
|
75
|
-
self.start_token_id = self.end_token_id
|
76
|
-
self.pad_token_id = 0
|
77
|
-
else:
|
78
|
-
self.end_token_id = None
|
79
|
-
self.start_token_id = None
|
80
|
-
self.pad_token_id = None
|
81
|
-
|
82
|
-
def get_config(self):
|
83
|
-
config = super().get_config()
|
84
|
-
# In the constructor, we pass the list of special tokens to the
|
85
|
-
# `unsplittable_tokens` arg of the superclass' constructor. Hence, we
|
86
|
-
# delete it from the config here.
|
87
|
-
del config["unsplittable_tokens"]
|
88
|
-
return config
|
@@ -33,11 +33,6 @@ class ImageClassifier(Task):
|
|
33
33
|
used to load a pre-trained config and weights.
|
34
34
|
"""
|
35
35
|
|
36
|
-
def __init__(self, *args, **kwargs):
|
37
|
-
super().__init__(*args, **kwargs)
|
38
|
-
# Default compilation.
|
39
|
-
self.compile()
|
40
|
-
|
41
36
|
def compile(
|
42
37
|
self,
|
43
38
|
optimizer="auto",
|
@@ -0,0 +1,83 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
import keras
|
15
|
+
|
16
|
+
from keras_hub.src.api_export import keras_hub_export
|
17
|
+
from keras_hub.src.models.preprocessor import Preprocessor
|
18
|
+
from keras_hub.src.utils.tensor_utils import preprocessing_function
|
19
|
+
|
20
|
+
|
21
|
+
@keras_hub_export("keras_hub.models.ImageClassifierPreprocessor")
|
22
|
+
class ImageClassifierPreprocessor(Preprocessor):
|
23
|
+
"""Base class for image classification preprocessing layers.
|
24
|
+
|
25
|
+
`ImageClassifierPreprocessor` tasks wraps a
|
26
|
+
`keras_hub.layers.ImageConverter` to create a preprocessing layer for
|
27
|
+
image classification tasks. It is intended to be paired with a
|
28
|
+
`keras_hub.models.ImageClassifier` task.
|
29
|
+
|
30
|
+
All `ImageClassifierPreprocessor` take inputs three inputs, `x`, `y`, and
|
31
|
+
`sample_weight`. `x`, the first input, should always be included. It can
|
32
|
+
be a image or batch of images. See examples below. `y` and `sample_weight`
|
33
|
+
are optional inputs that will be passed through unaltered. Usually, `y` will
|
34
|
+
be the classification label, and `sample_weight` will not be provided.
|
35
|
+
|
36
|
+
The layer will output either `x`, an `(x, y)` tuple if labels were provided,
|
37
|
+
or an `(x, y, sample_weight)` tuple if labels and sample weight were
|
38
|
+
provided. `x` will be the input images after all model preprocessing has
|
39
|
+
been applied.
|
40
|
+
|
41
|
+
All `ImageClassifierPreprocessor` tasks include a `from_preset()`
|
42
|
+
constructor which can be used to load a pre-trained config and vocabularies.
|
43
|
+
You can call the `from_preset()` constructor directly on this base class, in
|
44
|
+
which case the correct class for your model will be automatically
|
45
|
+
instantiated.
|
46
|
+
|
47
|
+
Examples.
|
48
|
+
```python
|
49
|
+
preprocessor = keras_hub.models.ImageClassifierPreprocessor.from_preset(
|
50
|
+
"resnet_50",
|
51
|
+
)
|
52
|
+
|
53
|
+
# Resize a single image for resnet 50.
|
54
|
+
x = np.ones((512, 512, 3))
|
55
|
+
x = preprocessor(x)
|
56
|
+
|
57
|
+
# Resize a labeled image.
|
58
|
+
x, y = np.ones((512, 512, 3)), 1
|
59
|
+
x, y = preprocessor(x, y)
|
60
|
+
|
61
|
+
# Resize a batch of labeled images.
|
62
|
+
x, y = [np.ones((512, 512, 3)), np.zeros((512, 512, 3))], [1, 0]
|
63
|
+
x, y = preprocessor(x, y)
|
64
|
+
|
65
|
+
# Use a `tf.data.Dataset`.
|
66
|
+
ds = tf.data.Dataset.from_tensor_slices((x, y)).batch(2)
|
67
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
68
|
+
```
|
69
|
+
"""
|
70
|
+
|
71
|
+
def __init__(
|
72
|
+
self,
|
73
|
+
image_converter=None,
|
74
|
+
**kwargs,
|
75
|
+
):
|
76
|
+
super().__init__(**kwargs)
|
77
|
+
self.image_converter = image_converter
|
78
|
+
|
79
|
+
@preprocessing_function
|
80
|
+
def call(self, x, y=None, sample_weight=None):
|
81
|
+
if self.image_converter:
|
82
|
+
x = self.image_converter(x)
|
83
|
+
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
@@ -14,7 +14,6 @@
|
|
14
14
|
|
15
15
|
from keras_hub.src.models.llama.llama_backbone import LlamaBackbone
|
16
16
|
from keras_hub.src.models.llama.llama_presets import backbone_presets
|
17
|
-
from keras_hub.src.models.llama.llama_tokenizer import LlamaTokenizer
|
18
17
|
from keras_hub.src.utils.preset_utils import register_presets
|
19
18
|
|
20
|
-
register_presets(backbone_presets,
|
19
|
+
register_presets(backbone_presets, LlamaBackbone)
|
@@ -12,19 +12,15 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
|
-
import keras
|
16
|
-
from absl import logging
|
17
15
|
|
18
16
|
from keras_hub.src.api_export import keras_hub_export
|
19
|
-
from keras_hub.src.models.
|
20
|
-
from keras_hub.src.
|
21
|
-
|
22
|
-
)
|
23
|
-
from keras_hub.src.utils.tensor_utils import strip_to_ragged
|
17
|
+
from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
|
18
|
+
from keras_hub.src.models.llama.llama_backbone import LlamaBackbone
|
19
|
+
from keras_hub.src.models.llama.llama_tokenizer import LlamaTokenizer
|
24
20
|
|
25
21
|
|
26
22
|
@keras_hub_export("keras_hub.models.LlamaCausalLMPreprocessor")
|
27
|
-
class LlamaCausalLMPreprocessor(
|
23
|
+
class LlamaCausalLMPreprocessor(CausalLMPreprocessor):
|
28
24
|
"""Llama Causal LM preprocessor.
|
29
25
|
|
30
26
|
This preprocessing layer is meant for use with
|
@@ -91,80 +87,5 @@ class LlamaCausalLMPreprocessor(LlamaPreprocessor):
|
|
91
87
|
```
|
92
88
|
"""
|
93
89
|
|
94
|
-
|
95
|
-
|
96
|
-
x,
|
97
|
-
y=None,
|
98
|
-
sample_weight=None,
|
99
|
-
sequence_length=None,
|
100
|
-
):
|
101
|
-
if y is not None or sample_weight is not None:
|
102
|
-
logging.warning(
|
103
|
-
"`LlamaCausalLMPreprocessor` generates `y` and "
|
104
|
-
"`sample_weight` based on your input data, but your data "
|
105
|
-
"already contains `y` or `sample_weight`. Your `y` and "
|
106
|
-
"`sample_weight` will be ignored."
|
107
|
-
)
|
108
|
-
sequence_length = sequence_length or self.sequence_length
|
109
|
-
|
110
|
-
x = convert_inputs_to_list_of_tensor_segments(x)[0]
|
111
|
-
x = self.tokenizer(x)
|
112
|
-
# Pad with one extra token to account for the truncation below.
|
113
|
-
token_ids, padding_mask = self.packer(
|
114
|
-
x,
|
115
|
-
sequence_length=sequence_length + 1,
|
116
|
-
add_start_value=self.add_start_token,
|
117
|
-
add_end_value=self.add_end_token,
|
118
|
-
)
|
119
|
-
# The last token does not have a next token, so we truncate it out.
|
120
|
-
x = {
|
121
|
-
"token_ids": token_ids[..., :-1],
|
122
|
-
"padding_mask": padding_mask[..., :-1],
|
123
|
-
}
|
124
|
-
# Target `y` will be the next token.
|
125
|
-
y, sample_weight = token_ids[..., 1:], padding_mask[..., 1:]
|
126
|
-
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
127
|
-
|
128
|
-
def generate_preprocess(
|
129
|
-
self,
|
130
|
-
x,
|
131
|
-
sequence_length=None,
|
132
|
-
):
|
133
|
-
"""Convert strings to integer token input for generation.
|
134
|
-
|
135
|
-
Similar to calling the layer for training, this method takes in strings
|
136
|
-
or tensor strings, tokenizes and packs the input, and computes a padding
|
137
|
-
mask masking all inputs not filled in with a padded value.
|
138
|
-
|
139
|
-
Unlike calling the layer for training, this method does not compute
|
140
|
-
labels and will never append a `tokenizer.end_token_id` to the end of
|
141
|
-
the sequence (as generation is expected to continue at the end of the
|
142
|
-
inputted prompt).
|
143
|
-
"""
|
144
|
-
if not self.built:
|
145
|
-
self.build(None)
|
146
|
-
|
147
|
-
x = convert_inputs_to_list_of_tensor_segments(x)[0]
|
148
|
-
x = self.tokenizer(x)
|
149
|
-
token_ids, padding_mask = self.packer(
|
150
|
-
x, sequence_length=sequence_length, add_end_value=False
|
151
|
-
)
|
152
|
-
return {
|
153
|
-
"token_ids": token_ids,
|
154
|
-
"padding_mask": padding_mask,
|
155
|
-
}
|
156
|
-
|
157
|
-
def generate_postprocess(
|
158
|
-
self,
|
159
|
-
x,
|
160
|
-
):
|
161
|
-
"""Convert integer token output to strings for generation.
|
162
|
-
|
163
|
-
This method reverses `generate_preprocess()`, by first removing all
|
164
|
-
padding and start/end tokens, and then converting the integer sequence
|
165
|
-
back to a string.
|
166
|
-
"""
|
167
|
-
token_ids, padding_mask = x["token_ids"], x["padding_mask"]
|
168
|
-
ids_to_strip = (self.tokenizer.end_token_id,)
|
169
|
-
token_ids = strip_to_ragged(token_ids, padding_mask, ids_to_strip)
|
170
|
-
return self.tokenizer.detokenize(token_ids)
|
90
|
+
backbone_cls = LlamaBackbone
|
91
|
+
tokenizer_cls = LlamaTokenizer
|
@@ -15,11 +15,10 @@ import keras
|
|
15
15
|
|
16
16
|
from keras_hub.src.api_export import keras_hub_export
|
17
17
|
from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
|
18
|
+
from keras_hub.src.models.llama.llama_backbone import LlamaBackbone
|
18
19
|
from keras_hub.src.models.llama.llama_tokenizer import LlamaTokenizer
|
19
20
|
from keras_hub.src.models.preprocessor import Preprocessor
|
20
|
-
from keras_hub.src.utils.
|
21
|
-
convert_inputs_to_list_of_tensor_segments,
|
22
|
-
)
|
21
|
+
from keras_hub.src.utils.tensor_utils import preprocessing_function
|
23
22
|
|
24
23
|
|
25
24
|
@keras_hub_export("keras_hub.models.LlamaPreprocessor")
|
@@ -110,6 +109,7 @@ class LlamaPreprocessor(Preprocessor):
|
|
110
109
|
```
|
111
110
|
"""
|
112
111
|
|
112
|
+
backbone_cls = LlamaBackbone
|
113
113
|
tokenizer_cls = LlamaTokenizer
|
114
114
|
|
115
115
|
def __init__(
|
@@ -149,6 +149,7 @@ class LlamaPreprocessor(Preprocessor):
|
|
149
149
|
)
|
150
150
|
return config
|
151
151
|
|
152
|
+
@preprocessing_function
|
152
153
|
def call(
|
153
154
|
self,
|
154
155
|
x,
|
@@ -156,17 +157,9 @@ class LlamaPreprocessor(Preprocessor):
|
|
156
157
|
sample_weight=None,
|
157
158
|
sequence_length=None,
|
158
159
|
):
|
159
|
-
x = convert_inputs_to_list_of_tensor_segments(x)
|
160
|
-
if len(x) != 1:
|
161
|
-
raise ValueError(
|
162
|
-
"Llama requires each input feature to contain only "
|
163
|
-
f"one segment, but received {len(x)}. If you are using Llama"
|
164
|
-
" for a multi-segment classification task, please refer to "
|
165
|
-
"classification models like BERT or RoBERTa."
|
166
|
-
)
|
167
160
|
sequence_length = sequence_length or self.sequence_length
|
168
161
|
token_ids, padding_mask = self.packer(
|
169
|
-
self.tokenizer(x
|
162
|
+
self.tokenizer(x),
|
170
163
|
sequence_length=sequence_length,
|
171
164
|
add_start_value=self.add_start_token,
|
172
165
|
add_end_value=self.add_end_token,
|
@@ -13,12 +13,18 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
15
|
from keras_hub.src.api_export import keras_hub_export
|
16
|
+
from keras_hub.src.models.llama.llama_backbone import LlamaBackbone
|
16
17
|
from keras_hub.src.tokenizers.sentence_piece_tokenizer import (
|
17
18
|
SentencePieceTokenizer,
|
18
19
|
)
|
19
20
|
|
20
21
|
|
21
|
-
@keras_hub_export(
|
22
|
+
@keras_hub_export(
|
23
|
+
[
|
24
|
+
"keras_hub.tokenizers.LlamaTokenizer",
|
25
|
+
"keras_hub.models.LlamaTokenizer",
|
26
|
+
]
|
27
|
+
)
|
22
28
|
class LlamaTokenizer(SentencePieceTokenizer):
|
23
29
|
"""Llama tokenizer layer based on SentencePiece.
|
24
30
|
|
@@ -28,10 +34,6 @@ class LlamaTokenizer(SentencePieceTokenizer):
|
|
28
34
|
Llama models and provides a `from_preset()` method to automatically
|
29
35
|
download a matching vocabulary for a Llama preset.
|
30
36
|
|
31
|
-
This tokenizer does not provide truncation or padding of inputs. It can be
|
32
|
-
combined with a `keras_hub.models.LlamaPreprocessor` layer for input
|
33
|
-
packing.
|
34
|
-
|
35
37
|
If input is a batch of strings (rank > 0), the layer will output a
|
36
38
|
`tf.RaggedTensor` where the last dimension of the output is ragged.
|
37
39
|
|
@@ -60,25 +62,10 @@ class LlamaTokenizer(SentencePieceTokenizer):
|
|
60
62
|
```
|
61
63
|
"""
|
62
64
|
|
65
|
+
backbone_cls = LlamaBackbone
|
66
|
+
|
63
67
|
def __init__(self, proto, **kwargs):
|
64
|
-
self.
|
65
|
-
self.
|
68
|
+
self._add_special_token("<s>", "start_token")
|
69
|
+
self._add_special_token("</s>", "end_token")
|
70
|
+
self.pad_token_id = 0
|
66
71
|
super().__init__(proto=proto, **kwargs)
|
67
|
-
|
68
|
-
def set_proto(self, proto):
|
69
|
-
super().set_proto(proto)
|
70
|
-
if proto is not None:
|
71
|
-
for token in [self.start_token, self.end_token]:
|
72
|
-
if token not in self.get_vocabulary():
|
73
|
-
raise ValueError(
|
74
|
-
f"Cannot find token `'{token}'` in the provided "
|
75
|
-
f"`vocabulary`. Please provide `'{token}'` in your "
|
76
|
-
"`vocabulary` or use a pretrained `vocabulary` name."
|
77
|
-
)
|
78
|
-
self.start_token_id = self.token_to_id(self.start_token)
|
79
|
-
self.end_token_id = self.token_to_id(self.end_token)
|
80
|
-
self.pad_token_id = 0
|
81
|
-
else:
|
82
|
-
self.start_token_id = None
|
83
|
-
self.end_token_id = None
|
84
|
-
self.pad_token_id = None
|
@@ -14,7 +14,6 @@
|
|
14
14
|
|
15
15
|
from keras_hub.src.models.llama3.llama3_backbone import Llama3Backbone
|
16
16
|
from keras_hub.src.models.llama3.llama3_presets import backbone_presets
|
17
|
-
from keras_hub.src.models.llama3.llama3_tokenizer import Llama3Tokenizer
|
18
17
|
from keras_hub.src.utils.preset_utils import register_presets
|
19
18
|
|
20
|
-
register_presets(backbone_presets,
|
19
|
+
register_presets(backbone_presets, Llama3Backbone)
|
@@ -12,19 +12,14 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
|
-
import keras
|
16
|
-
from absl import logging
|
17
|
-
|
18
15
|
from keras_hub.src.api_export import keras_hub_export
|
19
|
-
from keras_hub.src.models.
|
20
|
-
from keras_hub.src.
|
21
|
-
|
22
|
-
)
|
23
|
-
from keras_hub.src.utils.tensor_utils import strip_to_ragged
|
16
|
+
from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
|
17
|
+
from keras_hub.src.models.llama3.llama3_backbone import Llama3Backbone
|
18
|
+
from keras_hub.src.models.llama3.llama3_tokenizer import Llama3Tokenizer
|
24
19
|
|
25
20
|
|
26
21
|
@keras_hub_export("keras_hub.models.Llama3CausalLMPreprocessor")
|
27
|
-
class Llama3CausalLMPreprocessor(
|
22
|
+
class Llama3CausalLMPreprocessor(CausalLMPreprocessor):
|
28
23
|
"""Llama 3 Causal LM preprocessor.
|
29
24
|
|
30
25
|
This preprocessing layer is meant for use with
|
@@ -91,83 +86,5 @@ class Llama3CausalLMPreprocessor(Llama3Preprocessor):
|
|
91
86
|
```
|
92
87
|
"""
|
93
88
|
|
94
|
-
|
95
|
-
|
96
|
-
x,
|
97
|
-
y=None,
|
98
|
-
sample_weight=None,
|
99
|
-
sequence_length=None,
|
100
|
-
):
|
101
|
-
if y is not None or sample_weight is not None:
|
102
|
-
logging.warning(
|
103
|
-
"`Llama3CausalLMPreprocessor` generates `y` and "
|
104
|
-
"`sample_weight` based on your input data, but your data "
|
105
|
-
"already contains `y` or `sample_weight`. Your `y` and "
|
106
|
-
"`sample_weight` will be ignored."
|
107
|
-
)
|
108
|
-
sequence_length = sequence_length or self.sequence_length
|
109
|
-
|
110
|
-
x = convert_inputs_to_list_of_tensor_segments(x)[0]
|
111
|
-
x = self.tokenizer(x)
|
112
|
-
# Pad with one extra token to account for the truncation below.
|
113
|
-
token_ids, padding_mask = self.packer(
|
114
|
-
x,
|
115
|
-
sequence_length=sequence_length + 1,
|
116
|
-
add_start_value=self.add_start_token,
|
117
|
-
add_end_value=self.add_end_token,
|
118
|
-
)
|
119
|
-
# The last token does not have a next token, so we truncate it out.
|
120
|
-
x = {
|
121
|
-
"token_ids": token_ids[..., :-1],
|
122
|
-
"padding_mask": padding_mask[..., :-1],
|
123
|
-
}
|
124
|
-
# Target `y` will be the next token.
|
125
|
-
y, sample_weight = token_ids[..., 1:], padding_mask[..., 1:]
|
126
|
-
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
127
|
-
|
128
|
-
def generate_preprocess(
|
129
|
-
self,
|
130
|
-
x,
|
131
|
-
sequence_length=None,
|
132
|
-
):
|
133
|
-
"""Convert strings to integer token input for generation.
|
134
|
-
|
135
|
-
Similar to calling the layer for training, this method takes in strings
|
136
|
-
or tensor strings, tokenizes and packs the input, and computes a padding
|
137
|
-
mask masking all inputs not filled in with a padded value.
|
138
|
-
|
139
|
-
Unlike calling the layer for training, this method does not compute
|
140
|
-
labels and will never append a `tokenizer.end_token_id` to the end of
|
141
|
-
the sequence (as generation is expected to continue at the end of the
|
142
|
-
inputted prompt).
|
143
|
-
"""
|
144
|
-
if not self.built:
|
145
|
-
self.build(None)
|
146
|
-
|
147
|
-
x = convert_inputs_to_list_of_tensor_segments(x)[0]
|
148
|
-
x = self.tokenizer(x)
|
149
|
-
token_ids, padding_mask = self.packer(
|
150
|
-
x, sequence_length=sequence_length, add_end_value=False
|
151
|
-
)
|
152
|
-
return {
|
153
|
-
"token_ids": token_ids,
|
154
|
-
"padding_mask": padding_mask,
|
155
|
-
}
|
156
|
-
|
157
|
-
def generate_postprocess(
|
158
|
-
self,
|
159
|
-
x,
|
160
|
-
):
|
161
|
-
"""Convert integer token output to strings for generation.
|
162
|
-
|
163
|
-
This method reverses `generate_preprocess()`, by first removing all
|
164
|
-
padding and start/end tokens, and then converting the integer sequence
|
165
|
-
back to a string.
|
166
|
-
"""
|
167
|
-
token_ids, padding_mask = x["token_ids"], x["padding_mask"]
|
168
|
-
ids_to_strip = (
|
169
|
-
self.tokenizer.end_token_id,
|
170
|
-
self.tokenizer.start_token_id,
|
171
|
-
)
|
172
|
-
token_ids = strip_to_ragged(token_ids, padding_mask, ids_to_strip)
|
173
|
-
return self.tokenizer.detokenize(token_ids)
|
89
|
+
backbone_cls = Llama3Backbone
|
90
|
+
tokenizer_cls = Llama3Tokenizer
|
@@ -12,10 +12,12 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
from keras_hub.src.api_export import keras_hub_export
|
15
|
+
from keras_hub.src.models.llama3.llama3_backbone import Llama3Backbone
|
15
16
|
from keras_hub.src.models.llama3.llama3_tokenizer import Llama3Tokenizer
|
16
17
|
from keras_hub.src.models.llama.llama_preprocessor import LlamaPreprocessor
|
17
18
|
|
18
19
|
|
19
20
|
@keras_hub_export("keras_hub.models.Llama3Preprocessor")
|
20
21
|
class Llama3Preprocessor(LlamaPreprocessor):
|
22
|
+
backbone_cls = Llama3Backbone
|
21
23
|
tokenizer_cls = Llama3Tokenizer
|
@@ -13,51 +13,30 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
15
|
from keras_hub.src.api_export import keras_hub_export
|
16
|
+
from keras_hub.src.models.llama3.llama3_backbone import Llama3Backbone
|
16
17
|
from keras_hub.src.tokenizers.byte_pair_tokenizer import BytePairTokenizer
|
17
18
|
|
18
19
|
|
19
|
-
@keras_hub_export(
|
20
|
+
@keras_hub_export(
|
21
|
+
[
|
22
|
+
"keras_hub.tokenizers.Llama3Tokenizer",
|
23
|
+
"keras_hub.models.Llama3Tokenizer",
|
24
|
+
]
|
25
|
+
)
|
20
26
|
class Llama3Tokenizer(BytePairTokenizer):
|
27
|
+
backbone_cls = Llama3Backbone
|
28
|
+
|
21
29
|
def __init__(
|
22
30
|
self,
|
23
31
|
vocabulary=None,
|
24
32
|
merges=None,
|
25
33
|
**kwargs,
|
26
34
|
):
|
27
|
-
self.
|
28
|
-
self.
|
29
|
-
|
35
|
+
self._add_special_token("<|begin_of_text|>", "start_token")
|
36
|
+
self._add_special_token("<|end_of_text|>", "end_token")
|
37
|
+
self.pad_token_id = 0
|
30
38
|
super().__init__(
|
31
39
|
vocabulary=vocabulary,
|
32
40
|
merges=merges,
|
33
|
-
unsplittable_tokens=[self.start_token, self.end_token],
|
34
41
|
**kwargs,
|
35
42
|
)
|
36
|
-
|
37
|
-
def set_vocabulary_and_merges(self, vocabulary, merges):
|
38
|
-
super().set_vocabulary_and_merges(vocabulary, merges)
|
39
|
-
|
40
|
-
if vocabulary is not None:
|
41
|
-
# Check for necessary special tokens.
|
42
|
-
if self.end_token not in self.get_vocabulary():
|
43
|
-
raise ValueError(
|
44
|
-
f"Cannot find token `'{self.end_token}'` in the provided "
|
45
|
-
f"`vocabulary`. Please provide `'{self.end_token}'` in "
|
46
|
-
"your `vocabulary` or use a pretrained `vocabulary` name."
|
47
|
-
)
|
48
|
-
|
49
|
-
self.start_token_id = self.token_to_id(self.start_token)
|
50
|
-
self.end_token_id = self.token_to_id(self.end_token)
|
51
|
-
self.pad_token_id = 0
|
52
|
-
else:
|
53
|
-
self.end_token_id = None
|
54
|
-
self.start_token_id = None
|
55
|
-
self.pad_token_id = None
|
56
|
-
|
57
|
-
def get_config(self):
|
58
|
-
config = super().get_config()
|
59
|
-
# In the constructor, we pass the list of special tokens to the
|
60
|
-
# `unsplittable_tokens` arg of the superclass' constructor. Hence, we
|
61
|
-
# delete it from the config here.
|
62
|
-
del config["unsplittable_tokens"]
|
63
|
-
return config
|