keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl → 0.15.0.dev20240911134614__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/api/__init__.py +1 -0
- keras_hub/api/bounding_box/__init__.py +36 -0
- keras_hub/api/layers/__init__.py +14 -0
- keras_hub/api/models/__init__.py +75 -31
- keras_hub/api/tokenizers/__init__.py +30 -0
- keras_hub/src/bounding_box/__init__.py +13 -0
- keras_hub/src/bounding_box/converters.py +529 -0
- keras_hub/src/bounding_box/formats.py +162 -0
- keras_hub/src/bounding_box/iou.py +263 -0
- keras_hub/src/bounding_box/to_dense.py +95 -0
- keras_hub/src/bounding_box/to_ragged.py +99 -0
- keras_hub/src/bounding_box/utils.py +194 -0
- keras_hub/src/bounding_box/validate_format.py +99 -0
- keras_hub/src/layers/preprocessing/audio_converter.py +121 -0
- keras_hub/src/layers/preprocessing/image_converter.py +130 -0
- keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +2 -0
- keras_hub/src/layers/preprocessing/multi_segment_packer.py +9 -8
- keras_hub/src/layers/preprocessing/preprocessing_layer.py +2 -29
- keras_hub/src/layers/preprocessing/random_deletion.py +33 -31
- keras_hub/src/layers/preprocessing/random_swap.py +33 -31
- keras_hub/src/layers/preprocessing/resizing_image_converter.py +101 -0
- keras_hub/src/layers/preprocessing/start_end_packer.py +3 -2
- keras_hub/src/models/albert/__init__.py +1 -2
- keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +6 -86
- keras_hub/src/models/albert/{albert_classifier.py → albert_text_classifier.py} +29 -10
- keras_hub/src/models/albert/{albert_preprocessor.py → albert_text_classifier_preprocessor.py} +14 -70
- keras_hub/src/models/albert/albert_tokenizer.py +17 -36
- keras_hub/src/models/backbone.py +12 -34
- keras_hub/src/models/bart/__init__.py +1 -2
- keras_hub/src/models/bart/bart_preprocessor.py +6 -18
- keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +21 -148
- keras_hub/src/models/bart/bart_tokenizer.py +12 -39
- keras_hub/src/models/bert/__init__.py +1 -5
- keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +6 -87
- keras_hub/src/models/bert/bert_presets.py +1 -4
- keras_hub/src/models/bert/{bert_classifier.py → bert_text_classifier.py} +12 -10
- keras_hub/src/models/bert/{bert_preprocessor.py → bert_text_classifier_preprocessor.py} +14 -70
- keras_hub/src/models/bert/bert_tokenizer.py +17 -35
- keras_hub/src/models/bloom/__init__.py +1 -2
- keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/bloom/bloom_preprocessor.py +5 -12
- keras_hub/src/models/bloom/bloom_tokenizer.py +12 -41
- keras_hub/src/models/causal_lm.py +10 -29
- keras_hub/src/models/causal_lm_preprocessor.py +195 -0
- keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +54 -15
- keras_hub/src/models/deberta_v3/__init__.py +1 -4
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +14 -77
- keras_hub/src/models/deberta_v3/{deberta_v3_classifier.py → deberta_v3_text_classifier.py} +11 -11
- keras_hub/src/models/deberta_v3/{deberta_v3_preprocessor.py → deberta_v3_text_classifier_preprocessor.py} +23 -64
- keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +30 -25
- keras_hub/src/models/densenet/densenet_backbone.py +46 -22
- keras_hub/src/models/distil_bert/__init__.py +1 -4
- keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +14 -76
- keras_hub/src/models/distil_bert/{distil_bert_classifier.py → distil_bert_text_classifier.py} +12 -12
- keras_hub/src/models/distil_bert/{distil_bert_preprocessor.py → distil_bert_text_classifier_preprocessor.py} +23 -63
- keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +19 -35
- keras_hub/src/models/efficientnet/__init__.py +13 -0
- keras_hub/src/models/efficientnet/efficientnet_backbone.py +569 -0
- keras_hub/src/models/efficientnet/fusedmbconv.py +229 -0
- keras_hub/src/models/efficientnet/mbconv.py +238 -0
- keras_hub/src/models/electra/__init__.py +1 -2
- keras_hub/src/models/electra/electra_preprocessor.py +6 -5
- keras_hub/src/models/electra/electra_tokenizer.py +17 -32
- keras_hub/src/models/f_net/__init__.py +1 -2
- keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +12 -78
- keras_hub/src/models/f_net/{f_net_classifier.py → f_net_text_classifier.py} +10 -8
- keras_hub/src/models/f_net/{f_net_preprocessor.py → f_net_text_classifier_preprocessor.py} +19 -63
- keras_hub/src/models/f_net/f_net_tokenizer.py +17 -35
- keras_hub/src/models/falcon/__init__.py +1 -2
- keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/falcon/falcon_preprocessor.py +5 -12
- keras_hub/src/models/falcon/falcon_tokenizer.py +12 -35
- keras_hub/src/models/gemma/__init__.py +1 -2
- keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +6 -90
- keras_hub/src/models/gemma/gemma_preprocessor.py +5 -12
- keras_hub/src/models/gemma/gemma_tokenizer.py +12 -23
- keras_hub/src/models/gpt2/__init__.py +1 -2
- keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/gpt2/gpt2_preprocessor.py +5 -12
- keras_hub/src/models/gpt2/gpt2_tokenizer.py +12 -34
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +5 -12
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +12 -34
- keras_hub/src/models/image_classifier.py +0 -5
- keras_hub/src/models/image_classifier_preprocessor.py +83 -0
- keras_hub/src/models/llama/__init__.py +1 -2
- keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +6 -85
- keras_hub/src/models/llama/llama_preprocessor.py +5 -12
- keras_hub/src/models/llama/llama_tokenizer.py +12 -25
- keras_hub/src/models/llama3/__init__.py +1 -2
- keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/llama3/llama3_preprocessor.py +2 -0
- keras_hub/src/models/llama3/llama3_tokenizer.py +12 -33
- keras_hub/src/models/masked_lm.py +0 -2
- keras_hub/src/models/masked_lm_preprocessor.py +156 -0
- keras_hub/src/models/mistral/__init__.py +1 -2
- keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +6 -91
- keras_hub/src/models/mistral/mistral_preprocessor.py +5 -12
- keras_hub/src/models/mistral/mistral_tokenizer.py +12 -23
- keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +2 -2
- keras_hub/src/models/mobilenet/__init__.py +13 -0
- keras_hub/src/models/mobilenet/mobilenet_backbone.py +530 -0
- keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +114 -0
- keras_hub/src/models/opt/__init__.py +1 -2
- keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +6 -93
- keras_hub/src/models/opt/opt_preprocessor.py +5 -12
- keras_hub/src/models/opt/opt_tokenizer.py +12 -41
- keras_hub/src/models/pali_gemma/__init__.py +1 -4
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +28 -28
- keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +25 -0
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +5 -5
- keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +10 -2
- keras_hub/src/models/phi3/__init__.py +1 -2
- keras_hub/src/models/phi3/phi3_causal_lm.py +3 -9
- keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +6 -89
- keras_hub/src/models/phi3/phi3_preprocessor.py +5 -12
- keras_hub/src/models/phi3/phi3_tokenizer.py +12 -36
- keras_hub/src/models/preprocessor.py +76 -83
- keras_hub/src/models/resnet/__init__.py +6 -0
- keras_hub/src/models/resnet/resnet_backbone.py +387 -26
- keras_hub/src/models/resnet/resnet_image_classifier.py +7 -3
- keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +28 -0
- keras_hub/src/models/resnet/resnet_image_converter.py +23 -0
- keras_hub/src/models/resnet/resnet_presets.py +95 -0
- keras_hub/src/models/roberta/__init__.py +1 -2
- keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +22 -74
- keras_hub/src/models/roberta/{roberta_classifier.py → roberta_text_classifier.py} +11 -11
- keras_hub/src/models/roberta/{roberta_preprocessor.py → roberta_text_classifier_preprocessor.py} +21 -53
- keras_hub/src/models/roberta/roberta_tokenizer.py +13 -52
- keras_hub/src/models/seq_2_seq_lm_preprocessor.py +269 -0
- keras_hub/src/models/stable_diffusion_v3/__init__.py +13 -0
- keras_hub/src/models/stable_diffusion_v3/clip_encoder_block.py +103 -0
- keras_hub/src/models/stable_diffusion_v3/clip_preprocessor.py +93 -0
- keras_hub/src/models/stable_diffusion_v3/clip_text_encoder.py +149 -0
- keras_hub/src/models/stable_diffusion_v3/clip_tokenizer.py +167 -0
- keras_hub/src/models/stable_diffusion_v3/mmdit.py +427 -0
- keras_hub/src/models/stable_diffusion_v3/mmdit_block.py +317 -0
- keras_hub/src/models/stable_diffusion_v3/t5_xxl_preprocessor.py +74 -0
- keras_hub/src/models/stable_diffusion_v3/t5_xxl_text_encoder.py +155 -0
- keras_hub/src/models/stable_diffusion_v3/vae_attention.py +126 -0
- keras_hub/src/models/stable_diffusion_v3/vae_image_decoder.py +186 -0
- keras_hub/src/models/t5/__init__.py +1 -2
- keras_hub/src/models/t5/t5_tokenizer.py +13 -23
- keras_hub/src/models/task.py +71 -116
- keras_hub/src/models/{classifier.py → text_classifier.py} +8 -13
- keras_hub/src/models/text_classifier_preprocessor.py +138 -0
- keras_hub/src/models/whisper/__init__.py +1 -2
- keras_hub/src/models/whisper/{whisper_audio_feature_extractor.py → whisper_audio_converter.py} +20 -18
- keras_hub/src/models/whisper/whisper_backbone.py +0 -3
- keras_hub/src/models/whisper/whisper_presets.py +10 -10
- keras_hub/src/models/whisper/whisper_tokenizer.py +20 -16
- keras_hub/src/models/xlm_roberta/__init__.py +1 -4
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +26 -72
- keras_hub/src/models/xlm_roberta/{xlm_roberta_classifier.py → xlm_roberta_text_classifier.py} +11 -11
- keras_hub/src/models/xlm_roberta/{xlm_roberta_preprocessor.py → xlm_roberta_text_classifier_preprocessor.py} +26 -53
- keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +25 -10
- keras_hub/src/tests/test_case.py +25 -0
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +29 -17
- keras_hub/src/tokenizers/byte_tokenizer.py +14 -15
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +19 -7
- keras_hub/src/tokenizers/tokenizer.py +67 -32
- keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +14 -15
- keras_hub/src/tokenizers/word_piece_tokenizer.py +33 -47
- keras_hub/src/utils/keras_utils.py +0 -50
- keras_hub/src/utils/preset_utils.py +238 -67
- keras_hub/src/utils/tensor_utils.py +187 -69
- keras_hub/src/utils/timm/convert_resnet.py +20 -16
- keras_hub/src/utils/timm/preset_loader.py +67 -0
- keras_hub/src/utils/transformers/convert_albert.py +193 -0
- keras_hub/src/utils/transformers/convert_bart.py +373 -0
- keras_hub/src/utils/transformers/convert_bert.py +7 -17
- keras_hub/src/utils/transformers/convert_distilbert.py +10 -20
- keras_hub/src/utils/transformers/convert_gemma.py +5 -19
- keras_hub/src/utils/transformers/convert_gpt2.py +5 -18
- keras_hub/src/utils/transformers/convert_llama3.py +7 -18
- keras_hub/src/utils/transformers/convert_mistral.py +129 -0
- keras_hub/src/utils/transformers/convert_pali_gemma.py +7 -29
- keras_hub/src/utils/transformers/preset_loader.py +77 -0
- keras_hub/src/utils/transformers/safetensor_utils.py +2 -2
- keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.15.0.dev20240911134614.dist-info}/METADATA +1 -2
- keras_hub_nightly-0.15.0.dev20240911134614.dist-info/RECORD +338 -0
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.15.0.dev20240911134614.dist-info}/WHEEL +1 -1
- keras_hub/src/models/whisper/whisper_preprocessor.py +0 -326
- keras_hub/src/utils/timm/convert.py +0 -37
- keras_hub/src/utils/transformers/convert.py +0 -101
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +0 -297
- {keras_hub_nightly-0.15.0.dev20240823171555.dist-info → keras_hub_nightly-0.15.0.dev20240911134614.dist-info}/top_level.txt +0 -0
@@ -12,19 +12,14 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
|
-
import keras
|
16
|
-
from absl import logging
|
17
|
-
|
18
15
|
from keras_hub.src.api_export import keras_hub_export
|
19
|
-
from keras_hub.src.models.
|
20
|
-
from keras_hub.src.
|
21
|
-
|
22
|
-
)
|
23
|
-
from keras_hub.src.utils.tensor_utils import strip_to_ragged
|
16
|
+
from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
|
17
|
+
from keras_hub.src.models.gemma.gemma_backbone import GemmaBackbone
|
18
|
+
from keras_hub.src.models.gemma.gemma_tokenizer import GemmaTokenizer
|
24
19
|
|
25
20
|
|
26
21
|
@keras_hub_export("keras_hub.models.GemmaCausalLMPreprocessor")
|
27
|
-
class GemmaCausalLMPreprocessor(
|
22
|
+
class GemmaCausalLMPreprocessor(CausalLMPreprocessor):
|
28
23
|
"""Gemma Causal LM preprocessor.
|
29
24
|
|
30
25
|
This preprocessing layer is meant for use with
|
@@ -84,84 +79,5 @@ class GemmaCausalLMPreprocessor(GemmaPreprocessor):
|
|
84
79
|
```
|
85
80
|
"""
|
86
81
|
|
87
|
-
|
88
|
-
|
89
|
-
x,
|
90
|
-
y=None,
|
91
|
-
sample_weight=None,
|
92
|
-
sequence_length=None,
|
93
|
-
):
|
94
|
-
if y is not None or sample_weight is not None:
|
95
|
-
logging.warning(
|
96
|
-
"`GemmaCausalLMPreprocessor` generates `y` and `sample_weight` "
|
97
|
-
"based on your input data, but your data already contains `y` "
|
98
|
-
"or `sample_weight`. Your `y` and `sample_weight` will be "
|
99
|
-
"ignored."
|
100
|
-
)
|
101
|
-
sequence_length = sequence_length or self.sequence_length
|
102
|
-
|
103
|
-
x = convert_inputs_to_list_of_tensor_segments(x)[0]
|
104
|
-
x = self.tokenizer(x)
|
105
|
-
# Pad with one extra token to account for the truncation below.
|
106
|
-
token_ids, padding_mask = self.packer(
|
107
|
-
x,
|
108
|
-
sequence_length=sequence_length + 1,
|
109
|
-
add_start_value=self.add_start_token,
|
110
|
-
add_end_value=self.add_end_token,
|
111
|
-
)
|
112
|
-
# The last token does not have a next token, so we truncate it out.
|
113
|
-
x = {
|
114
|
-
"token_ids": token_ids[..., :-1],
|
115
|
-
"padding_mask": padding_mask[..., :-1],
|
116
|
-
}
|
117
|
-
# Target `y` will be the next token.
|
118
|
-
y, sample_weight = token_ids[..., 1:], padding_mask[..., 1:]
|
119
|
-
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
120
|
-
|
121
|
-
def generate_preprocess(
|
122
|
-
self,
|
123
|
-
x,
|
124
|
-
sequence_length=None,
|
125
|
-
):
|
126
|
-
"""Convert strings to integer token input for generation.
|
127
|
-
|
128
|
-
Similar to calling the layer for training, this method takes in strings
|
129
|
-
or tensor strings, tokenizes and packs the input, and computes a padding
|
130
|
-
mask masking all inputs not filled in with a padded value.
|
131
|
-
|
132
|
-
Unlike calling the layer for training, this method does not compute
|
133
|
-
labels and will never append a `tokenizer.end_token_id` to the end of
|
134
|
-
the sequence (as generation is expected to continue at the end of the
|
135
|
-
inputted prompt).
|
136
|
-
"""
|
137
|
-
if not self.built:
|
138
|
-
self.build(None)
|
139
|
-
|
140
|
-
x = convert_inputs_to_list_of_tensor_segments(x)[0]
|
141
|
-
x = self.tokenizer(x)
|
142
|
-
token_ids, padding_mask = self.packer(
|
143
|
-
x, sequence_length=sequence_length, add_end_value=False
|
144
|
-
)
|
145
|
-
return {
|
146
|
-
"token_ids": token_ids,
|
147
|
-
"padding_mask": padding_mask,
|
148
|
-
}
|
149
|
-
|
150
|
-
def generate_postprocess(self, x):
|
151
|
-
"""Convert integer token output to strings for generation.
|
152
|
-
|
153
|
-
This method reverses `generate_preprocess()`, by first removing all
|
154
|
-
padding and start/end tokens, and then converting the integer sequence
|
155
|
-
back to a string.
|
156
|
-
"""
|
157
|
-
if not self.built:
|
158
|
-
self.build(None)
|
159
|
-
|
160
|
-
token_ids, padding_mask = x["token_ids"], x["padding_mask"]
|
161
|
-
ids_to_strip = (
|
162
|
-
self.tokenizer.start_token_id,
|
163
|
-
self.tokenizer.end_token_id,
|
164
|
-
self.tokenizer.pad_token_id,
|
165
|
-
)
|
166
|
-
token_ids = strip_to_ragged(token_ids, padding_mask, ids_to_strip)
|
167
|
-
return self.tokenizer.detokenize(token_ids)
|
82
|
+
backbone_cls = GemmaBackbone
|
83
|
+
tokenizer_cls = GemmaTokenizer
|
@@ -17,11 +17,10 @@ import keras
|
|
17
17
|
|
18
18
|
from keras_hub.src.api_export import keras_hub_export
|
19
19
|
from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
|
20
|
+
from keras_hub.src.models.gemma.gemma_backbone import GemmaBackbone
|
20
21
|
from keras_hub.src.models.gemma.gemma_tokenizer import GemmaTokenizer
|
21
22
|
from keras_hub.src.models.preprocessor import Preprocessor
|
22
|
-
from keras_hub.src.utils.
|
23
|
-
convert_inputs_to_list_of_tensor_segments,
|
24
|
-
)
|
23
|
+
from keras_hub.src.utils.tensor_utils import preprocessing_function
|
25
24
|
|
26
25
|
|
27
26
|
@keras_hub_export("keras_hub.models.GemmaPreprocessor")
|
@@ -122,6 +121,7 @@ class GemmaPreprocessor(Preprocessor):
|
|
122
121
|
```
|
123
122
|
"""
|
124
123
|
|
124
|
+
backbone_cls = GemmaBackbone
|
125
125
|
tokenizer_cls = GemmaTokenizer
|
126
126
|
|
127
127
|
def __init__(
|
@@ -151,6 +151,7 @@ class GemmaPreprocessor(Preprocessor):
|
|
151
151
|
)
|
152
152
|
self.built = True
|
153
153
|
|
154
|
+
@preprocessing_function
|
154
155
|
def call(
|
155
156
|
self,
|
156
157
|
x,
|
@@ -158,17 +159,9 @@ class GemmaPreprocessor(Preprocessor):
|
|
158
159
|
sample_weight=None,
|
159
160
|
sequence_length=None,
|
160
161
|
):
|
161
|
-
x = convert_inputs_to_list_of_tensor_segments(x)
|
162
|
-
if len(x) != 1:
|
163
|
-
raise ValueError(
|
164
|
-
"GemmaPreprocessor requires each input to contain only "
|
165
|
-
f"one segment, but received {len(x)}. If you are using Gemma "
|
166
|
-
"for a multi-segment classification task, please combine your "
|
167
|
-
"input into a single string."
|
168
|
-
)
|
169
162
|
sequence_length = sequence_length or self.sequence_length
|
170
163
|
token_ids, padding_mask = self.packer(
|
171
|
-
self.tokenizer(x
|
164
|
+
self.tokenizer(x),
|
172
165
|
sequence_length=sequence_length,
|
173
166
|
add_start_value=self.add_start_token,
|
174
167
|
add_end_value=self.add_end_token,
|
@@ -13,12 +13,18 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
15
|
from keras_hub.src.api_export import keras_hub_export
|
16
|
+
from keras_hub.src.models.gemma.gemma_backbone import GemmaBackbone
|
16
17
|
from keras_hub.src.tokenizers.sentence_piece_tokenizer import (
|
17
18
|
SentencePieceTokenizer,
|
18
19
|
)
|
19
20
|
|
20
21
|
|
21
|
-
@keras_hub_export(
|
22
|
+
@keras_hub_export(
|
23
|
+
[
|
24
|
+
"keras_hub.tokenizers.GemmaTokenizer",
|
25
|
+
"keras_hub.models.GemmaTokenizer",
|
26
|
+
]
|
27
|
+
)
|
22
28
|
class GemmaTokenizer(SentencePieceTokenizer):
|
23
29
|
"""Gemma tokenizer layer based on SentencePiece.
|
24
30
|
|
@@ -77,27 +83,10 @@ class GemmaTokenizer(SentencePieceTokenizer):
|
|
77
83
|
```
|
78
84
|
"""
|
79
85
|
|
80
|
-
|
81
|
-
self.start_token = "<bos>"
|
82
|
-
self.end_token = "<eos>"
|
83
|
-
self.pad_token = "<pad>"
|
86
|
+
backbone_cls = GemmaBackbone
|
84
87
|
|
88
|
+
def __init__(self, proto, **kwargs):
|
89
|
+
self._add_special_token("<bos>", "start_token")
|
90
|
+
self._add_special_token("<eos>", "end_token")
|
91
|
+
self._add_special_token("<pad>", "pad_token")
|
85
92
|
super().__init__(proto=proto, **kwargs)
|
86
|
-
|
87
|
-
def set_proto(self, proto):
|
88
|
-
super().set_proto(proto)
|
89
|
-
if proto is not None:
|
90
|
-
for token in [self.end_token, self.pad_token]:
|
91
|
-
if token not in self.get_vocabulary():
|
92
|
-
raise ValueError(
|
93
|
-
f"Cannot find token `'{token}'` in the provided "
|
94
|
-
f"`vocabulary`. Please provide `'{token}'` in your "
|
95
|
-
"`vocabulary` or use a pretrained `vocabulary` name."
|
96
|
-
)
|
97
|
-
self.start_token_id = self.token_to_id(self.start_token)
|
98
|
-
self.end_token_id = self.token_to_id(self.end_token)
|
99
|
-
self.pad_token_id = self.token_to_id(self.pad_token)
|
100
|
-
else:
|
101
|
-
self.start_token_id = None
|
102
|
-
self.end_token_id = None
|
103
|
-
self.pad_token_id = None
|
@@ -14,7 +14,6 @@
|
|
14
14
|
|
15
15
|
from keras_hub.src.models.gpt2.gpt2_backbone import GPT2Backbone
|
16
16
|
from keras_hub.src.models.gpt2.gpt2_presets import backbone_presets
|
17
|
-
from keras_hub.src.models.gpt2.gpt2_tokenizer import GPT2Tokenizer
|
18
17
|
from keras_hub.src.utils.preset_utils import register_presets
|
19
18
|
|
20
|
-
register_presets(backbone_presets,
|
19
|
+
register_presets(backbone_presets, GPT2Backbone)
|
@@ -12,19 +12,14 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
|
-
import keras
|
16
|
-
from absl import logging
|
17
|
-
|
18
15
|
from keras_hub.src.api_export import keras_hub_export
|
19
|
-
from keras_hub.src.models.
|
20
|
-
from keras_hub.src.
|
21
|
-
|
22
|
-
)
|
23
|
-
from keras_hub.src.utils.tensor_utils import strip_to_ragged
|
16
|
+
from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
|
17
|
+
from keras_hub.src.models.gpt2.gpt2_backbone import GPT2Backbone
|
18
|
+
from keras_hub.src.models.gpt2.gpt2_tokenizer import GPT2Tokenizer
|
24
19
|
|
25
20
|
|
26
21
|
@keras_hub_export("keras_hub.models.GPT2CausalLMPreprocessor")
|
27
|
-
class GPT2CausalLMPreprocessor(
|
22
|
+
class GPT2CausalLMPreprocessor(CausalLMPreprocessor):
|
28
23
|
"""GPT2 Causal LM preprocessor.
|
29
24
|
|
30
25
|
This preprocessing layer is meant for use with
|
@@ -91,83 +86,5 @@ class GPT2CausalLMPreprocessor(GPT2Preprocessor):
|
|
91
86
|
```
|
92
87
|
"""
|
93
88
|
|
94
|
-
|
95
|
-
|
96
|
-
x,
|
97
|
-
y=None,
|
98
|
-
sample_weight=None,
|
99
|
-
sequence_length=None,
|
100
|
-
):
|
101
|
-
if y is not None or sample_weight is not None:
|
102
|
-
logging.warning(
|
103
|
-
"`GPT2CausalLMPreprocessor` generates `y` and `sample_weight` "
|
104
|
-
"based on your input data, but your data already contains `y` "
|
105
|
-
"or `sample_weight`. Your `y` and `sample_weight` will be "
|
106
|
-
"ignored."
|
107
|
-
)
|
108
|
-
sequence_length = sequence_length or self.sequence_length
|
109
|
-
|
110
|
-
x = convert_inputs_to_list_of_tensor_segments(x)[0]
|
111
|
-
x = self.tokenizer(x)
|
112
|
-
# Pad with one extra token to account for the truncation below.
|
113
|
-
token_ids, padding_mask = self.packer(
|
114
|
-
x,
|
115
|
-
sequence_length=sequence_length + 1,
|
116
|
-
add_start_value=self.add_start_token,
|
117
|
-
add_end_value=self.add_end_token,
|
118
|
-
)
|
119
|
-
# The last token does not have a next token, so we truncate it out.
|
120
|
-
x = {
|
121
|
-
"token_ids": token_ids[..., :-1],
|
122
|
-
"padding_mask": padding_mask[..., :-1],
|
123
|
-
}
|
124
|
-
# Target `y` will be the next token.
|
125
|
-
y, sample_weight = token_ids[..., 1:], padding_mask[..., 1:]
|
126
|
-
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
127
|
-
|
128
|
-
def generate_preprocess(
|
129
|
-
self,
|
130
|
-
x,
|
131
|
-
sequence_length=None,
|
132
|
-
):
|
133
|
-
"""Convert strings to integer token input for generation.
|
134
|
-
|
135
|
-
Similar to calling the layer for training, this method takes in strings
|
136
|
-
or tensor strings, tokenizes and packs the input, and computes a padding
|
137
|
-
mask masking all inputs not filled in with a padded value.
|
138
|
-
|
139
|
-
Unlike calling the layer for training, this method does not compute
|
140
|
-
labels and will never append a `tokenizer.end_token_id` to the end of
|
141
|
-
the sequence (as generation is expected to continue at the end of the
|
142
|
-
inputted prompt).
|
143
|
-
"""
|
144
|
-
if not self.built:
|
145
|
-
self.build(None)
|
146
|
-
|
147
|
-
x = convert_inputs_to_list_of_tensor_segments(x)[0]
|
148
|
-
x = self.tokenizer(x)
|
149
|
-
token_ids, padding_mask = self.packer(
|
150
|
-
x, sequence_length=sequence_length, add_end_value=False
|
151
|
-
)
|
152
|
-
return {
|
153
|
-
"token_ids": token_ids,
|
154
|
-
"padding_mask": padding_mask,
|
155
|
-
}
|
156
|
-
|
157
|
-
def generate_postprocess(
|
158
|
-
self,
|
159
|
-
x,
|
160
|
-
):
|
161
|
-
"""Convert integer token output to strings for generation.
|
162
|
-
|
163
|
-
This method reverses `generate_preprocess()`, by first removing all
|
164
|
-
padding and start/end tokens, and then converting the integer sequence
|
165
|
-
back to a string.
|
166
|
-
"""
|
167
|
-
if not self.built:
|
168
|
-
self.build(None)
|
169
|
-
|
170
|
-
token_ids, padding_mask = x["token_ids"], x["padding_mask"]
|
171
|
-
ids_to_strip = (self.tokenizer.end_token_id,)
|
172
|
-
token_ids = strip_to_ragged(token_ids, padding_mask, ids_to_strip)
|
173
|
-
return self.tokenizer.detokenize(token_ids)
|
89
|
+
backbone_cls = GPT2Backbone
|
90
|
+
tokenizer_cls = GPT2Tokenizer
|
@@ -17,11 +17,10 @@ import keras
|
|
17
17
|
|
18
18
|
from keras_hub.src.api_export import keras_hub_export
|
19
19
|
from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
|
20
|
+
from keras_hub.src.models.gpt2.gpt2_backbone import GPT2Backbone
|
20
21
|
from keras_hub.src.models.gpt2.gpt2_tokenizer import GPT2Tokenizer
|
21
22
|
from keras_hub.src.models.preprocessor import Preprocessor
|
22
|
-
from keras_hub.src.utils.
|
23
|
-
convert_inputs_to_list_of_tensor_segments,
|
24
|
-
)
|
23
|
+
from keras_hub.src.utils.tensor_utils import preprocessing_function
|
25
24
|
|
26
25
|
|
27
26
|
@keras_hub_export("keras_hub.models.GPT2Preprocessor")
|
@@ -107,6 +106,7 @@ class GPT2Preprocessor(Preprocessor):
|
|
107
106
|
```
|
108
107
|
"""
|
109
108
|
|
109
|
+
backbone_cls = GPT2Backbone
|
110
110
|
tokenizer_cls = GPT2Tokenizer
|
111
111
|
|
112
112
|
def __init__(
|
@@ -136,6 +136,7 @@ class GPT2Preprocessor(Preprocessor):
|
|
136
136
|
)
|
137
137
|
self.built = True
|
138
138
|
|
139
|
+
@preprocessing_function
|
139
140
|
def call(
|
140
141
|
self,
|
141
142
|
x,
|
@@ -143,17 +144,9 @@ class GPT2Preprocessor(Preprocessor):
|
|
143
144
|
sample_weight=None,
|
144
145
|
sequence_length=None,
|
145
146
|
):
|
146
|
-
x = convert_inputs_to_list_of_tensor_segments(x)
|
147
|
-
if len(x) != 1:
|
148
|
-
raise ValueError(
|
149
|
-
"GPT2 requires each input feature to contain only "
|
150
|
-
f"one segment, but received {len(x)}. If you are using GPT2 "
|
151
|
-
"for a multi-segment classification task, please refer to "
|
152
|
-
"classification models like BERT or RoBERTa."
|
153
|
-
)
|
154
147
|
sequence_length = sequence_length or self.sequence_length
|
155
148
|
token_ids, padding_mask = self.packer(
|
156
|
-
self.tokenizer(x
|
149
|
+
self.tokenizer(x),
|
157
150
|
sequence_length=sequence_length,
|
158
151
|
add_start_value=self.add_start_token,
|
159
152
|
add_end_value=self.add_end_token,
|
@@ -14,10 +14,16 @@
|
|
14
14
|
|
15
15
|
|
16
16
|
from keras_hub.src.api_export import keras_hub_export
|
17
|
+
from keras_hub.src.models.gpt2.gpt2_backbone import GPT2Backbone
|
17
18
|
from keras_hub.src.tokenizers.byte_pair_tokenizer import BytePairTokenizer
|
18
19
|
|
19
20
|
|
20
|
-
@keras_hub_export(
|
21
|
+
@keras_hub_export(
|
22
|
+
[
|
23
|
+
"keras_hub.tokenizers.GPT2Tokenizer",
|
24
|
+
"keras_hub.models.GPT2Tokenizer",
|
25
|
+
]
|
26
|
+
)
|
21
27
|
class GPT2Tokenizer(BytePairTokenizer):
|
22
28
|
"""A GPT-2 tokenizer using Byte-Pair Encoding subword segmentation.
|
23
29
|
|
@@ -27,8 +33,6 @@ class GPT2Tokenizer(BytePairTokenizer):
|
|
27
33
|
models and provides a `from_preset()` method to automatically download
|
28
34
|
a matching vocabulary for a GPT-2 preset.
|
29
35
|
|
30
|
-
This tokenizer does not provide truncation or padding of inputs.
|
31
|
-
|
32
36
|
If input is a batch of strings (rank > 0), the layer will output a
|
33
37
|
`tf.RaggedTensor` where the last dimension of the output is ragged.
|
34
38
|
|
@@ -65,6 +69,8 @@ class GPT2Tokenizer(BytePairTokenizer):
|
|
65
69
|
```
|
66
70
|
"""
|
67
71
|
|
72
|
+
backbone_cls = GPT2Backbone
|
73
|
+
|
68
74
|
def __init__(
|
69
75
|
self,
|
70
76
|
vocabulary=None,
|
@@ -72,39 +78,11 @@ class GPT2Tokenizer(BytePairTokenizer):
|
|
72
78
|
**kwargs,
|
73
79
|
):
|
74
80
|
# GPT2 uses the same start as end token, i.e., "<|endoftext|>".
|
75
|
-
self.
|
76
|
-
|
81
|
+
self._add_special_token("<|endoftext|>", "end_token")
|
82
|
+
self._add_special_token("<|endoftext|>", "start_token")
|
83
|
+
self.pad_token_id = 0
|
77
84
|
super().__init__(
|
78
85
|
vocabulary=vocabulary,
|
79
86
|
merges=merges,
|
80
|
-
unsplittable_tokens=[self.end_token],
|
81
87
|
**kwargs,
|
82
88
|
)
|
83
|
-
|
84
|
-
def set_vocabulary_and_merges(self, vocabulary, merges):
|
85
|
-
super().set_vocabulary_and_merges(vocabulary, merges)
|
86
|
-
|
87
|
-
if vocabulary is not None:
|
88
|
-
# Check for necessary special tokens.
|
89
|
-
if self.end_token not in self.get_vocabulary():
|
90
|
-
raise ValueError(
|
91
|
-
f"Cannot find token `'{self.end_token}'` in the provided "
|
92
|
-
f"`vocabulary`. Please provide `'{self.end_token}'` in "
|
93
|
-
"your `vocabulary` or use a pretrained `vocabulary` name."
|
94
|
-
)
|
95
|
-
|
96
|
-
self.end_token_id = self.token_to_id(self.end_token)
|
97
|
-
self.start_token_id = self.end_token_id
|
98
|
-
self.pad_token_id = 0
|
99
|
-
else:
|
100
|
-
self.end_token_id = None
|
101
|
-
self.start_token_id = None
|
102
|
-
self.pad_token_id = None
|
103
|
-
|
104
|
-
def get_config(self):
|
105
|
-
config = super().get_config()
|
106
|
-
# In the constructor, we pass the list of special tokens to the
|
107
|
-
# `unsplittable_tokens` arg of the superclass' constructor. Hence, we
|
108
|
-
# delete it from the config here.
|
109
|
-
del config["unsplittable_tokens"]
|
110
|
-
return config
|
@@ -12,21 +12,14 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
|
-
import keras
|
16
|
-
from absl import logging
|
17
|
-
|
18
15
|
from keras_hub.src.api_export import keras_hub_export
|
19
|
-
from keras_hub.src.models.
|
20
|
-
|
21
|
-
|
22
|
-
from keras_hub.src.utils.keras_utils import (
|
23
|
-
convert_inputs_to_list_of_tensor_segments,
|
24
|
-
)
|
25
|
-
from keras_hub.src.utils.tensor_utils import strip_to_ragged
|
16
|
+
from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
|
17
|
+
from keras_hub.src.models.gpt_neo_x.gpt_neo_x_backbone import GPTNeoXBackbone
|
18
|
+
from keras_hub.src.models.gpt_neo_x.gpt_neo_x_tokenizer import GPTNeoXTokenizer
|
26
19
|
|
27
20
|
|
28
21
|
@keras_hub_export("keras_hub.models.GPTNeoXCausalLMPreprocessor")
|
29
|
-
class GPTNeoXCausalLMPreprocessor(
|
22
|
+
class GPTNeoXCausalLMPreprocessor(CausalLMPreprocessor):
|
30
23
|
"""GPT-NeoX Causal LM preprocessor.
|
31
24
|
|
32
25
|
This preprocessing layer is meant for use with
|
@@ -59,83 +52,5 @@ class GPTNeoXCausalLMPreprocessor(GPTNeoXPreprocessor):
|
|
59
52
|
|
60
53
|
"""
|
61
54
|
|
62
|
-
|
63
|
-
|
64
|
-
x,
|
65
|
-
y=None,
|
66
|
-
sample_weight=None,
|
67
|
-
sequence_length=None,
|
68
|
-
):
|
69
|
-
if y is not None or sample_weight is not None:
|
70
|
-
logging.warning(
|
71
|
-
"`GPTNeoXCausalLMPreprocessor` generates `y` and `sample_weight` "
|
72
|
-
"based on your input data, but your data already contains `y` "
|
73
|
-
"or `sample_weight`. Your `y` and `sample_weight` will be "
|
74
|
-
"ignored."
|
75
|
-
)
|
76
|
-
sequence_length = sequence_length or self.sequence_length
|
77
|
-
|
78
|
-
x = convert_inputs_to_list_of_tensor_segments(x)[0]
|
79
|
-
x = self.tokenizer(x)
|
80
|
-
# Pad with one extra token to account for the truncation below.
|
81
|
-
token_ids, padding_mask = self.packer(
|
82
|
-
x,
|
83
|
-
sequence_length=sequence_length + 1,
|
84
|
-
add_start_value=self.add_start_token,
|
85
|
-
add_end_value=self.add_end_token,
|
86
|
-
)
|
87
|
-
# The last token does not have a next token, so we truncate it out.
|
88
|
-
x = {
|
89
|
-
"token_ids": token_ids[..., :-1],
|
90
|
-
"padding_mask": padding_mask[..., :-1],
|
91
|
-
}
|
92
|
-
# Target `y` will be the next token.
|
93
|
-
y, sample_weight = token_ids[..., 1:], padding_mask[..., 1:]
|
94
|
-
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
95
|
-
|
96
|
-
def generate_preprocess(
|
97
|
-
self,
|
98
|
-
x,
|
99
|
-
sequence_length=None,
|
100
|
-
):
|
101
|
-
"""Convert strings to integer token input for generation.
|
102
|
-
|
103
|
-
Similar to calling the layer for training, this method takes in strings
|
104
|
-
or tensor strings, tokenizes and packs the input, and computes a padding
|
105
|
-
mask masking all inputs not filled in with a padded value.
|
106
|
-
|
107
|
-
Unlike calling the layer for training, this method does not compute
|
108
|
-
labels and will never append a `tokenizer.end_token_id` to the end of
|
109
|
-
the sequence (as generation is expected to continue at the end of the
|
110
|
-
inputted prompt).
|
111
|
-
"""
|
112
|
-
if not self.built:
|
113
|
-
self.build(None)
|
114
|
-
|
115
|
-
x = convert_inputs_to_list_of_tensor_segments(x)[0]
|
116
|
-
x = self.tokenizer(x)
|
117
|
-
token_ids, padding_mask = self.packer(
|
118
|
-
x, sequence_length=sequence_length, add_end_value=False
|
119
|
-
)
|
120
|
-
return {
|
121
|
-
"token_ids": token_ids,
|
122
|
-
"padding_mask": padding_mask,
|
123
|
-
}
|
124
|
-
|
125
|
-
def generate_postprocess(
|
126
|
-
self,
|
127
|
-
x,
|
128
|
-
):
|
129
|
-
"""Convert integer token output to strings for generation.
|
130
|
-
|
131
|
-
This method reverses `generate_preprocess()`, by first removing all
|
132
|
-
padding and start/end tokens, and then converting the integer sequence
|
133
|
-
back to a string.
|
134
|
-
"""
|
135
|
-
if not self.built:
|
136
|
-
self.build(None)
|
137
|
-
|
138
|
-
token_ids, padding_mask = x["token_ids"], x["padding_mask"]
|
139
|
-
ids_to_strip = (self.tokenizer.end_token_id,)
|
140
|
-
token_ids = strip_to_ragged(token_ids, padding_mask, ids_to_strip)
|
141
|
-
return self.tokenizer.detokenize(token_ids)
|
55
|
+
backbone_cls = GPTNeoXBackbone
|
56
|
+
tokenizer_cls = GPTNeoXTokenizer
|
@@ -16,11 +16,10 @@ import keras
|
|
16
16
|
|
17
17
|
from keras_hub.src.api_export import keras_hub_export
|
18
18
|
from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
|
19
|
+
from keras_hub.src.models.gpt_neo_x.gpt_neo_x_backbone import GPTNeoXBackbone
|
19
20
|
from keras_hub.src.models.gpt_neo_x.gpt_neo_x_tokenizer import GPTNeoXTokenizer
|
20
21
|
from keras_hub.src.models.preprocessor import Preprocessor
|
21
|
-
from keras_hub.src.utils.
|
22
|
-
convert_inputs_to_list_of_tensor_segments,
|
23
|
-
)
|
22
|
+
from keras_hub.src.utils.tensor_utils import preprocessing_function
|
24
23
|
|
25
24
|
|
26
25
|
@keras_hub_export("keras_hub.models.GPTNeoXPreprocessor")
|
@@ -65,6 +64,7 @@ class GPTNeoXPreprocessor(Preprocessor):
|
|
65
64
|
the layer.
|
66
65
|
"""
|
67
66
|
|
67
|
+
backbone_cls = GPTNeoXBackbone
|
68
68
|
tokenizer_cls = GPTNeoXTokenizer
|
69
69
|
|
70
70
|
def __init__(
|
@@ -94,6 +94,7 @@ class GPTNeoXPreprocessor(Preprocessor):
|
|
94
94
|
)
|
95
95
|
self.built = True
|
96
96
|
|
97
|
+
@preprocessing_function
|
97
98
|
def call(
|
98
99
|
self,
|
99
100
|
x,
|
@@ -101,17 +102,9 @@ class GPTNeoXPreprocessor(Preprocessor):
|
|
101
102
|
sample_weight=None,
|
102
103
|
sequence_length=None,
|
103
104
|
):
|
104
|
-
x = convert_inputs_to_list_of_tensor_segments(x)
|
105
|
-
if len(x) != 1:
|
106
|
-
raise ValueError(
|
107
|
-
"GPTNeoX requires each input feature to contain only "
|
108
|
-
f"one segment, but received {len(x)}. If you are using GPTNeoX "
|
109
|
-
"for a multi-segment classification task, please refer to "
|
110
|
-
"classification models like BERT or RoBERTa."
|
111
|
-
)
|
112
105
|
sequence_length = sequence_length or self.sequence_length
|
113
106
|
token_ids, padding_mask = self.packer(
|
114
|
-
self.tokenizer(x
|
107
|
+
self.tokenizer(x),
|
115
108
|
sequence_length=sequence_length,
|
116
109
|
add_start_value=self.add_start_token,
|
117
110
|
add_end_value=self.add_end_token,
|