ins-pricing 0.4.4__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (96) hide show
  1. ins_pricing/README.md +74 -56
  2. ins_pricing/__init__.py +142 -90
  3. ins_pricing/cli/BayesOpt_entry.py +52 -50
  4. ins_pricing/cli/BayesOpt_incremental.py +832 -898
  5. ins_pricing/cli/Explain_Run.py +31 -23
  6. ins_pricing/cli/Explain_entry.py +532 -579
  7. ins_pricing/cli/Pricing_Run.py +31 -23
  8. ins_pricing/cli/bayesopt_entry_runner.py +1440 -1438
  9. ins_pricing/cli/utils/cli_common.py +256 -256
  10. ins_pricing/cli/utils/cli_config.py +375 -375
  11. ins_pricing/cli/utils/import_resolver.py +382 -365
  12. ins_pricing/cli/utils/notebook_utils.py +340 -340
  13. ins_pricing/cli/watchdog_run.py +209 -201
  14. ins_pricing/frontend/README.md +573 -419
  15. ins_pricing/frontend/__init__.py +10 -10
  16. ins_pricing/frontend/config_builder.py +1 -0
  17. ins_pricing/frontend/example_workflows.py +1 -1
  18. ins_pricing/governance/__init__.py +20 -20
  19. ins_pricing/governance/release.py +159 -159
  20. ins_pricing/modelling/README.md +67 -0
  21. ins_pricing/modelling/__init__.py +147 -92
  22. ins_pricing/modelling/bayesopt/README.md +59 -0
  23. ins_pricing/modelling/{core/bayesopt → bayesopt}/__init__.py +64 -102
  24. ins_pricing/modelling/{core/bayesopt → bayesopt}/config_preprocess.py +562 -550
  25. ins_pricing/modelling/{core/bayesopt → bayesopt}/core.py +965 -962
  26. ins_pricing/modelling/{core/bayesopt → bayesopt}/model_explain_mixin.py +296 -296
  27. ins_pricing/modelling/{core/bayesopt → bayesopt}/model_plotting_mixin.py +482 -548
  28. ins_pricing/modelling/{core/bayesopt → bayesopt}/models/__init__.py +27 -27
  29. ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_ft_trainer.py +915 -913
  30. ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_gnn.py +788 -785
  31. ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_resn.py +448 -446
  32. ins_pricing/modelling/bayesopt/trainers/__init__.py +19 -0
  33. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_base.py +1308 -1308
  34. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_ft.py +3 -3
  35. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_glm.py +197 -198
  36. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_gnn.py +344 -344
  37. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_resn.py +283 -283
  38. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_xgb.py +346 -347
  39. ins_pricing/modelling/bayesopt/utils/__init__.py +67 -0
  40. ins_pricing/modelling/bayesopt/utils/constants.py +21 -0
  41. ins_pricing/modelling/bayesopt/utils/io_utils.py +7 -0
  42. ins_pricing/modelling/bayesopt/utils/losses.py +27 -0
  43. ins_pricing/modelling/bayesopt/utils/metrics_and_devices.py +17 -0
  44. ins_pricing/modelling/{core/bayesopt → bayesopt}/utils/torch_trainer_mixin.py +623 -623
  45. ins_pricing/modelling/{core/evaluation.py → evaluation.py} +113 -104
  46. ins_pricing/modelling/explain/__init__.py +55 -55
  47. ins_pricing/modelling/explain/metrics.py +27 -174
  48. ins_pricing/modelling/explain/permutation.py +237 -237
  49. ins_pricing/modelling/plotting/__init__.py +40 -36
  50. ins_pricing/modelling/plotting/compat.py +228 -0
  51. ins_pricing/modelling/plotting/curves.py +572 -572
  52. ins_pricing/modelling/plotting/diagnostics.py +163 -163
  53. ins_pricing/modelling/plotting/geo.py +362 -362
  54. ins_pricing/modelling/plotting/importance.py +121 -121
  55. ins_pricing/pricing/__init__.py +27 -27
  56. ins_pricing/production/__init__.py +35 -25
  57. ins_pricing/production/{predict.py → inference.py} +140 -57
  58. ins_pricing/production/monitoring.py +8 -21
  59. ins_pricing/reporting/__init__.py +11 -11
  60. ins_pricing/setup.py +1 -1
  61. ins_pricing/tests/production/test_inference.py +90 -0
  62. ins_pricing/utils/__init__.py +116 -83
  63. ins_pricing/utils/device.py +255 -255
  64. ins_pricing/utils/features.py +53 -0
  65. ins_pricing/utils/io.py +72 -0
  66. ins_pricing/{modelling/core/bayesopt/utils → utils}/losses.py +125 -129
  67. ins_pricing/utils/metrics.py +158 -24
  68. ins_pricing/utils/numerics.py +76 -0
  69. ins_pricing/utils/paths.py +9 -1
  70. {ins_pricing-0.4.4.dist-info → ins_pricing-0.5.0.dist-info}/METADATA +55 -35
  71. ins_pricing-0.5.0.dist-info/RECORD +131 -0
  72. ins_pricing/CHANGELOG.md +0 -272
  73. ins_pricing/RELEASE_NOTES_0.2.8.md +0 -344
  74. ins_pricing/docs/LOSS_FUNCTIONS.md +0 -78
  75. ins_pricing/docs/modelling/BayesOpt_USAGE.md +0 -945
  76. ins_pricing/docs/modelling/README.md +0 -34
  77. ins_pricing/frontend/QUICKSTART.md +0 -152
  78. ins_pricing/modelling/core/BayesOpt.py +0 -146
  79. ins_pricing/modelling/core/__init__.py +0 -1
  80. ins_pricing/modelling/core/bayesopt/PHASE2_REFACTORING_SUMMARY.md +0 -449
  81. ins_pricing/modelling/core/bayesopt/PHASE3_REFACTORING_SUMMARY.md +0 -406
  82. ins_pricing/modelling/core/bayesopt/REFACTORING_SUMMARY.md +0 -247
  83. ins_pricing/modelling/core/bayesopt/trainers/__init__.py +0 -19
  84. ins_pricing/modelling/core/bayesopt/utils/__init__.py +0 -86
  85. ins_pricing/modelling/core/bayesopt/utils/constants.py +0 -183
  86. ins_pricing/modelling/core/bayesopt/utils/io_utils.py +0 -126
  87. ins_pricing/modelling/core/bayesopt/utils/metrics_and_devices.py +0 -555
  88. ins_pricing/modelling/core/bayesopt/utils.py +0 -105
  89. ins_pricing/modelling/core/bayesopt/utils_backup.py +0 -1503
  90. ins_pricing/tests/production/test_predict.py +0 -233
  91. ins_pricing-0.4.4.dist-info/RECORD +0 -137
  92. /ins_pricing/modelling/{core/bayesopt → bayesopt}/config_components.py +0 -0
  93. /ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_ft_components.py +0 -0
  94. /ins_pricing/modelling/{core/bayesopt → bayesopt}/utils/distributed_utils.py +0 -0
  95. {ins_pricing-0.4.4.dist-info → ins_pricing-0.5.0.dist-info}/WHEEL +0 -0
  96. {ins_pricing-0.4.4.dist-info → ins_pricing-0.5.0.dist-info}/top_level.txt +0 -0
@@ -1,121 +1,121 @@
1
- from __future__ import annotations
2
-
3
- from typing import Mapping, Optional, Sequence, Tuple
4
-
5
- import numpy as np
6
- import pandas as pd
7
-
8
- from .common import PlotStyle, finalize_figure, plt
9
-
10
-
11
- def _to_series(
12
- importance: Mapping[str, float]
13
- | Sequence[Tuple[str, float]]
14
- | pd.Series
15
- | np.ndarray,
16
- feature_names: Optional[Sequence[str]] = None,
17
- ) -> pd.Series:
18
- if isinstance(importance, pd.Series):
19
- return importance.copy()
20
- if isinstance(importance, Mapping):
21
- return pd.Series(dict(importance))
22
- if isinstance(importance, np.ndarray):
23
- if feature_names is None:
24
- raise ValueError("feature_names is required when importance is an array.")
25
- return pd.Series(importance, index=list(feature_names))
26
- return pd.Series(dict(importance))
27
-
28
-
29
- def shap_importance(
30
- shap_values: np.ndarray,
31
- feature_names: Sequence[str],
32
- ) -> pd.Series:
33
- if shap_values.ndim == 3:
34
- shap_values = shap_values[0]
35
- if shap_values.ndim != 2:
36
- raise ValueError("shap_values should be 2d (n_samples, n_features).")
37
- scores = np.abs(shap_values).mean(axis=0)
38
- return pd.Series(scores, index=list(feature_names))
39
-
40
-
41
- def plot_feature_importance(
42
- importance: Mapping[str, float]
43
- | Sequence[Tuple[str, float]]
44
- | pd.Series
45
- | np.ndarray,
46
- *,
47
- feature_names: Optional[Sequence[str]] = None,
48
- top_n: int = 30,
49
- title: str = "Feature Importance",
50
- sort_by: str = "abs",
51
- descending: bool = True,
52
- show_values: bool = False,
53
- ax: Optional[plt.Axes] = None,
54
- show: bool = False,
55
- save_path: Optional[str] = None,
56
- style: Optional[PlotStyle] = None,
57
- ) -> plt.Figure:
58
- style = style or PlotStyle()
59
- series = _to_series(importance, feature_names=feature_names)
60
- series = series.replace([np.inf, -np.inf], np.nan).dropna()
61
-
62
- if sort_by not in {"abs", "value"}:
63
- raise ValueError("sort_by must be 'abs' or 'value'.")
64
- sort_key = series.abs() if sort_by == "abs" else series
65
- series = series.loc[sort_key.sort_values(ascending=not descending).index]
66
-
67
- if top_n > 0:
68
- series = series.head(int(top_n))
69
-
70
- created_fig = ax is None
71
- if created_fig:
72
- height = max(3.0, 0.3 * len(series))
73
- fig, ax = plt.subplots(figsize=(style.figsize[0], height))
74
- else:
75
- fig = ax.figure
76
-
77
- y_pos = np.arange(len(series))
78
- ax.barh(y_pos, series.values, color=style.palette[0])
79
- ax.set_yticks(y_pos)
80
- ax.set_yticklabels(series.index, fontsize=style.tick_size)
81
- ax.invert_yaxis()
82
- ax.set_title(title, fontsize=style.title_size)
83
- ax.tick_params(axis="x", labelsize=style.tick_size)
84
- if style.grid:
85
- ax.grid(True, axis="x", linestyle=style.grid_style, alpha=style.grid_alpha)
86
-
87
- if show_values:
88
- for idx, val in enumerate(series.values):
89
- ax.text(val, idx, f" {val:.3f}", va="center", fontsize=style.tick_size)
90
-
91
- if created_fig:
92
- finalize_figure(fig, save_path=save_path, show=show, style=style)
93
-
94
- return fig
95
-
96
-
97
- def plot_shap_importance(
98
- shap_values: np.ndarray,
99
- feature_names: Sequence[str],
100
- *,
101
- top_n: int = 30,
102
- title: str = "SHAP Importance",
103
- show_values: bool = False,
104
- ax: Optional[plt.Axes] = None,
105
- show: bool = False,
106
- save_path: Optional[str] = None,
107
- style: Optional[PlotStyle] = None,
108
- ) -> plt.Figure:
109
- series = shap_importance(shap_values, feature_names)
110
- return plot_feature_importance(
111
- series,
112
- top_n=top_n,
113
- title=title,
114
- sort_by="abs",
115
- descending=True,
116
- show_values=show_values,
117
- ax=ax,
118
- show=show,
119
- save_path=save_path,
120
- style=style,
121
- )
1
+ from __future__ import annotations
2
+
3
+ from typing import Mapping, Optional, Sequence, Tuple
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+
8
+ from ins_pricing.modelling.plotting.common import PlotStyle, finalize_figure, plt
9
+
10
+
11
+ def _to_series(
12
+ importance: Mapping[str, float]
13
+ | Sequence[Tuple[str, float]]
14
+ | pd.Series
15
+ | np.ndarray,
16
+ feature_names: Optional[Sequence[str]] = None,
17
+ ) -> pd.Series:
18
+ if isinstance(importance, pd.Series):
19
+ return importance.copy()
20
+ if isinstance(importance, Mapping):
21
+ return pd.Series(dict(importance))
22
+ if isinstance(importance, np.ndarray):
23
+ if feature_names is None:
24
+ raise ValueError("feature_names is required when importance is an array.")
25
+ return pd.Series(importance, index=list(feature_names))
26
+ return pd.Series(dict(importance))
27
+
28
+
29
+ def shap_importance(
30
+ shap_values: np.ndarray,
31
+ feature_names: Sequence[str],
32
+ ) -> pd.Series:
33
+ if shap_values.ndim == 3:
34
+ shap_values = shap_values[0]
35
+ if shap_values.ndim != 2:
36
+ raise ValueError("shap_values should be 2d (n_samples, n_features).")
37
+ scores = np.abs(shap_values).mean(axis=0)
38
+ return pd.Series(scores, index=list(feature_names))
39
+
40
+
41
+ def plot_feature_importance(
42
+ importance: Mapping[str, float]
43
+ | Sequence[Tuple[str, float]]
44
+ | pd.Series
45
+ | np.ndarray,
46
+ *,
47
+ feature_names: Optional[Sequence[str]] = None,
48
+ top_n: int = 30,
49
+ title: str = "Feature Importance",
50
+ sort_by: str = "abs",
51
+ descending: bool = True,
52
+ show_values: bool = False,
53
+ ax: Optional[plt.Axes] = None,
54
+ show: bool = False,
55
+ save_path: Optional[str] = None,
56
+ style: Optional[PlotStyle] = None,
57
+ ) -> plt.Figure:
58
+ style = style or PlotStyle()
59
+ series = _to_series(importance, feature_names=feature_names)
60
+ series = series.replace([np.inf, -np.inf], np.nan).dropna()
61
+
62
+ if sort_by not in {"abs", "value"}:
63
+ raise ValueError("sort_by must be 'abs' or 'value'.")
64
+ sort_key = series.abs() if sort_by == "abs" else series
65
+ series = series.loc[sort_key.sort_values(ascending=not descending).index]
66
+
67
+ if top_n > 0:
68
+ series = series.head(int(top_n))
69
+
70
+ created_fig = ax is None
71
+ if created_fig:
72
+ height = max(3.0, 0.3 * len(series))
73
+ fig, ax = plt.subplots(figsize=(style.figsize[0], height))
74
+ else:
75
+ fig = ax.figure
76
+
77
+ y_pos = np.arange(len(series))
78
+ ax.barh(y_pos, series.values, color=style.palette[0])
79
+ ax.set_yticks(y_pos)
80
+ ax.set_yticklabels(series.index, fontsize=style.tick_size)
81
+ ax.invert_yaxis()
82
+ ax.set_title(title, fontsize=style.title_size)
83
+ ax.tick_params(axis="x", labelsize=style.tick_size)
84
+ if style.grid:
85
+ ax.grid(True, axis="x", linestyle=style.grid_style, alpha=style.grid_alpha)
86
+
87
+ if show_values:
88
+ for idx, val in enumerate(series.values):
89
+ ax.text(val, idx, f" {val:.3f}", va="center", fontsize=style.tick_size)
90
+
91
+ if created_fig:
92
+ finalize_figure(fig, save_path=save_path, show=show, style=style)
93
+
94
+ return fig
95
+
96
+
97
+ def plot_shap_importance(
98
+ shap_values: np.ndarray,
99
+ feature_names: Sequence[str],
100
+ *,
101
+ top_n: int = 30,
102
+ title: str = "SHAP Importance",
103
+ show_values: bool = False,
104
+ ax: Optional[plt.Axes] = None,
105
+ show: bool = False,
106
+ save_path: Optional[str] = None,
107
+ style: Optional[PlotStyle] = None,
108
+ ) -> plt.Figure:
109
+ series = shap_importance(shap_values, feature_names)
110
+ return plot_feature_importance(
111
+ series,
112
+ top_n=top_n,
113
+ title=title,
114
+ sort_by="abs",
115
+ descending=True,
116
+ show_values=show_values,
117
+ ax=ax,
118
+ show=show,
119
+ save_path=save_path,
120
+ style=style,
121
+ )
@@ -1,27 +1,27 @@
1
- from __future__ import annotations
2
-
3
- from .calibration import apply_calibration, fit_calibration_factor
4
- from .data_quality import detect_leakage, profile_columns, validate_schema
5
- from .exposure import aggregate_policy_level, build_frequency_severity, compute_exposure
6
- from .factors import bin_numeric, build_factor_table
7
- from .monitoring import population_stability_index, psi_report
8
- from .rate_table import RateTable, apply_factor_tables, compute_base_rate, rate_premium
9
-
10
- __all__ = [
11
- "apply_calibration",
12
- "fit_calibration_factor",
13
- "detect_leakage",
14
- "profile_columns",
15
- "validate_schema",
16
- "aggregate_policy_level",
17
- "build_frequency_severity",
18
- "compute_exposure",
19
- "bin_numeric",
20
- "build_factor_table",
21
- "population_stability_index",
22
- "psi_report",
23
- "RateTable",
24
- "apply_factor_tables",
25
- "compute_base_rate",
26
- "rate_premium",
27
- ]
1
+ from __future__ import annotations
2
+
3
+ from ins_pricing.pricing.calibration import apply_calibration, fit_calibration_factor
4
+ from ins_pricing.pricing.data_quality import detect_leakage, profile_columns, validate_schema
5
+ from ins_pricing.pricing.exposure import aggregate_policy_level, build_frequency_severity, compute_exposure
6
+ from ins_pricing.pricing.factors import bin_numeric, build_factor_table
7
+ from ins_pricing.pricing.monitoring import population_stability_index, psi_report
8
+ from ins_pricing.pricing.rate_table import RateTable, apply_factor_tables, compute_base_rate, rate_premium
9
+
10
+ __all__ = [
11
+ "apply_calibration",
12
+ "fit_calibration_factor",
13
+ "detect_leakage",
14
+ "profile_columns",
15
+ "validate_schema",
16
+ "aggregate_policy_level",
17
+ "build_frequency_severity",
18
+ "compute_exposure",
19
+ "bin_numeric",
20
+ "build_factor_table",
21
+ "population_stability_index",
22
+ "psi_report",
23
+ "RateTable",
24
+ "apply_factor_tables",
25
+ "compute_base_rate",
26
+ "rate_premium",
27
+ ]
@@ -1,35 +1,45 @@
1
- from __future__ import annotations
2
-
3
- from .drift import psi_report
4
- from .monitoring import (
5
- classification_metrics,
6
- group_metrics,
7
- loss_ratio,
8
- metrics_report,
9
- regression_metrics,
10
- )
11
- from .scoring import batch_score
12
- from .preprocess import apply_preprocess_artifacts, load_preprocess_artifacts, prepare_raw_features
13
- from .predict import (
1
+ from __future__ import annotations
2
+
3
+ from ins_pricing.production.drift import psi_report
4
+ from ins_pricing.production.monitoring import (
5
+ classification_metrics,
6
+ group_metrics,
7
+ loss_ratio,
8
+ metrics_report,
9
+ regression_metrics,
10
+ )
11
+ from ins_pricing.production.scoring import batch_score
12
+ from ins_pricing.production.preprocess import apply_preprocess_artifacts, load_preprocess_artifacts, prepare_raw_features
13
+ from ins_pricing.production.inference import (
14
+ Predictor,
15
+ ModelSpec,
16
+ PredictorRegistry,
17
+ register_model_loader,
18
+ load_predictor,
14
19
  SavedModelPredictor,
15
20
  load_best_params,
16
21
  load_predictor_from_config,
17
22
  load_saved_model,
18
23
  predict_from_config,
19
24
  )
20
-
21
- __all__ = [
22
- "psi_report",
23
- "classification_metrics",
24
- "group_metrics",
25
- "loss_ratio",
26
- "metrics_report",
27
- "regression_metrics",
28
- "batch_score",
29
- "apply_preprocess_artifacts",
30
- "load_preprocess_artifacts",
31
- "prepare_raw_features",
25
+
26
+ __all__ = [
27
+ "psi_report",
28
+ "classification_metrics",
29
+ "group_metrics",
30
+ "loss_ratio",
31
+ "metrics_report",
32
+ "regression_metrics",
33
+ "batch_score",
34
+ "apply_preprocess_artifacts",
35
+ "load_preprocess_artifacts",
36
+ "prepare_raw_features",
32
37
  "SavedModelPredictor",
38
+ "Predictor",
39
+ "ModelSpec",
40
+ "PredictorRegistry",
41
+ "register_model_loader",
42
+ "load_predictor",
33
43
  "load_best_params",
34
44
  "load_predictor_from_config",
35
45
  "load_saved_model",