ins-pricing 0.4.4__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (96) hide show
  1. ins_pricing/README.md +74 -56
  2. ins_pricing/__init__.py +142 -90
  3. ins_pricing/cli/BayesOpt_entry.py +52 -50
  4. ins_pricing/cli/BayesOpt_incremental.py +832 -898
  5. ins_pricing/cli/Explain_Run.py +31 -23
  6. ins_pricing/cli/Explain_entry.py +532 -579
  7. ins_pricing/cli/Pricing_Run.py +31 -23
  8. ins_pricing/cli/bayesopt_entry_runner.py +1440 -1438
  9. ins_pricing/cli/utils/cli_common.py +256 -256
  10. ins_pricing/cli/utils/cli_config.py +375 -375
  11. ins_pricing/cli/utils/import_resolver.py +382 -365
  12. ins_pricing/cli/utils/notebook_utils.py +340 -340
  13. ins_pricing/cli/watchdog_run.py +209 -201
  14. ins_pricing/frontend/README.md +573 -419
  15. ins_pricing/frontend/__init__.py +10 -10
  16. ins_pricing/frontend/config_builder.py +1 -0
  17. ins_pricing/frontend/example_workflows.py +1 -1
  18. ins_pricing/governance/__init__.py +20 -20
  19. ins_pricing/governance/release.py +159 -159
  20. ins_pricing/modelling/README.md +67 -0
  21. ins_pricing/modelling/__init__.py +147 -92
  22. ins_pricing/modelling/bayesopt/README.md +59 -0
  23. ins_pricing/modelling/{core/bayesopt → bayesopt}/__init__.py +64 -102
  24. ins_pricing/modelling/{core/bayesopt → bayesopt}/config_preprocess.py +562 -550
  25. ins_pricing/modelling/{core/bayesopt → bayesopt}/core.py +965 -962
  26. ins_pricing/modelling/{core/bayesopt → bayesopt}/model_explain_mixin.py +296 -296
  27. ins_pricing/modelling/{core/bayesopt → bayesopt}/model_plotting_mixin.py +482 -548
  28. ins_pricing/modelling/{core/bayesopt → bayesopt}/models/__init__.py +27 -27
  29. ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_ft_trainer.py +915 -913
  30. ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_gnn.py +788 -785
  31. ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_resn.py +448 -446
  32. ins_pricing/modelling/bayesopt/trainers/__init__.py +19 -0
  33. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_base.py +1308 -1308
  34. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_ft.py +3 -3
  35. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_glm.py +197 -198
  36. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_gnn.py +344 -344
  37. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_resn.py +283 -283
  38. ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_xgb.py +346 -347
  39. ins_pricing/modelling/bayesopt/utils/__init__.py +67 -0
  40. ins_pricing/modelling/bayesopt/utils/constants.py +21 -0
  41. ins_pricing/modelling/bayesopt/utils/io_utils.py +7 -0
  42. ins_pricing/modelling/bayesopt/utils/losses.py +27 -0
  43. ins_pricing/modelling/bayesopt/utils/metrics_and_devices.py +17 -0
  44. ins_pricing/modelling/{core/bayesopt → bayesopt}/utils/torch_trainer_mixin.py +623 -623
  45. ins_pricing/modelling/{core/evaluation.py → evaluation.py} +113 -104
  46. ins_pricing/modelling/explain/__init__.py +55 -55
  47. ins_pricing/modelling/explain/metrics.py +27 -174
  48. ins_pricing/modelling/explain/permutation.py +237 -237
  49. ins_pricing/modelling/plotting/__init__.py +40 -36
  50. ins_pricing/modelling/plotting/compat.py +228 -0
  51. ins_pricing/modelling/plotting/curves.py +572 -572
  52. ins_pricing/modelling/plotting/diagnostics.py +163 -163
  53. ins_pricing/modelling/plotting/geo.py +362 -362
  54. ins_pricing/modelling/plotting/importance.py +121 -121
  55. ins_pricing/pricing/__init__.py +27 -27
  56. ins_pricing/production/__init__.py +35 -25
  57. ins_pricing/production/{predict.py → inference.py} +140 -57
  58. ins_pricing/production/monitoring.py +8 -21
  59. ins_pricing/reporting/__init__.py +11 -11
  60. ins_pricing/setup.py +1 -1
  61. ins_pricing/tests/production/test_inference.py +90 -0
  62. ins_pricing/utils/__init__.py +116 -83
  63. ins_pricing/utils/device.py +255 -255
  64. ins_pricing/utils/features.py +53 -0
  65. ins_pricing/utils/io.py +72 -0
  66. ins_pricing/{modelling/core/bayesopt/utils → utils}/losses.py +125 -129
  67. ins_pricing/utils/metrics.py +158 -24
  68. ins_pricing/utils/numerics.py +76 -0
  69. ins_pricing/utils/paths.py +9 -1
  70. {ins_pricing-0.4.4.dist-info → ins_pricing-0.5.0.dist-info}/METADATA +55 -35
  71. ins_pricing-0.5.0.dist-info/RECORD +131 -0
  72. ins_pricing/CHANGELOG.md +0 -272
  73. ins_pricing/RELEASE_NOTES_0.2.8.md +0 -344
  74. ins_pricing/docs/LOSS_FUNCTIONS.md +0 -78
  75. ins_pricing/docs/modelling/BayesOpt_USAGE.md +0 -945
  76. ins_pricing/docs/modelling/README.md +0 -34
  77. ins_pricing/frontend/QUICKSTART.md +0 -152
  78. ins_pricing/modelling/core/BayesOpt.py +0 -146
  79. ins_pricing/modelling/core/__init__.py +0 -1
  80. ins_pricing/modelling/core/bayesopt/PHASE2_REFACTORING_SUMMARY.md +0 -449
  81. ins_pricing/modelling/core/bayesopt/PHASE3_REFACTORING_SUMMARY.md +0 -406
  82. ins_pricing/modelling/core/bayesopt/REFACTORING_SUMMARY.md +0 -247
  83. ins_pricing/modelling/core/bayesopt/trainers/__init__.py +0 -19
  84. ins_pricing/modelling/core/bayesopt/utils/__init__.py +0 -86
  85. ins_pricing/modelling/core/bayesopt/utils/constants.py +0 -183
  86. ins_pricing/modelling/core/bayesopt/utils/io_utils.py +0 -126
  87. ins_pricing/modelling/core/bayesopt/utils/metrics_and_devices.py +0 -555
  88. ins_pricing/modelling/core/bayesopt/utils.py +0 -105
  89. ins_pricing/modelling/core/bayesopt/utils_backup.py +0 -1503
  90. ins_pricing/tests/production/test_predict.py +0 -233
  91. ins_pricing-0.4.4.dist-info/RECORD +0 -137
  92. /ins_pricing/modelling/{core/bayesopt → bayesopt}/config_components.py +0 -0
  93. /ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_ft_components.py +0 -0
  94. /ins_pricing/modelling/{core/bayesopt → bayesopt}/utils/distributed_utils.py +0 -0
  95. {ins_pricing-0.4.4.dist-info → ins_pricing-0.5.0.dist-info}/WHEEL +0 -0
  96. {ins_pricing-0.4.4.dist-info → ins_pricing-0.5.0.dist-info}/top_level.txt +0 -0
@@ -1,163 +1,163 @@
1
- from __future__ import annotations
2
-
3
- from typing import Mapping, Optional, Sequence
4
-
5
- import numpy as np
6
- import pandas as pd
7
-
8
- from .common import EPS, PlotStyle, finalize_figure, plt
9
-
10
-
11
- def plot_loss_curve(
12
- *,
13
- history: Optional[Mapping[str, Sequence[float]]] = None,
14
- train: Optional[Sequence[float]] = None,
15
- val: Optional[Sequence[float]] = None,
16
- title: str = "Loss vs. Epoch",
17
- ax: Optional[plt.Axes] = None,
18
- show: bool = False,
19
- save_path: Optional[str] = None,
20
- style: Optional[PlotStyle] = None,
21
- ) -> Optional[plt.Figure]:
22
- style = style or PlotStyle()
23
- if history is not None:
24
- if train is None:
25
- train = history.get("train")
26
- if val is None:
27
- val = history.get("val")
28
-
29
- train_hist = list(train or [])
30
- val_hist = list(val or [])
31
- if not train_hist and not val_hist:
32
- return None
33
-
34
- created_fig = ax is None
35
- if created_fig:
36
- fig, ax = plt.subplots(figsize=style.figsize)
37
- else:
38
- fig = ax.figure
39
-
40
- if train_hist:
41
- ax.plot(
42
- range(1, len(train_hist) + 1),
43
- train_hist,
44
- label="Train Loss",
45
- color="tab:blue",
46
- )
47
- if val_hist:
48
- ax.plot(
49
- range(1, len(val_hist) + 1),
50
- val_hist,
51
- label="Validation Loss",
52
- color="tab:orange",
53
- )
54
-
55
- ax.set_xlabel("Epoch", fontsize=style.label_size)
56
- ax.set_ylabel("Weighted Loss", fontsize=style.label_size)
57
- ax.set_title(title, fontsize=style.title_size)
58
- ax.tick_params(axis="both", labelsize=style.tick_size)
59
- if style.grid:
60
- ax.grid(True, linestyle=style.grid_style, alpha=style.grid_alpha)
61
- ax.legend(loc="best", fontsize=style.legend_size, frameon=False)
62
-
63
- if created_fig:
64
- finalize_figure(fig, save_path=save_path, show=show, style=style)
65
-
66
- return fig
67
-
68
-
69
- def plot_oneway(
70
- df: pd.DataFrame,
71
- *,
72
- feature: str,
73
- weight_col: str,
74
- target_col: str,
75
- pred_col: Optional[str] = None,
76
- pred_weighted: bool = False,
77
- pred_label: Optional[str] = None,
78
- n_bins: int = 10,
79
- is_categorical: bool = False,
80
- title: Optional[str] = None,
81
- ax: Optional[plt.Axes] = None,
82
- show: bool = False,
83
- save_path: Optional[str] = None,
84
- style: Optional[PlotStyle] = None,
85
- ) -> Optional[plt.Figure]:
86
- if feature not in df.columns:
87
- raise KeyError(f"feature '{feature}' not found in data.")
88
- if weight_col not in df.columns:
89
- raise KeyError(f"weight_col '{weight_col}' not found in data.")
90
- if target_col not in df.columns:
91
- raise KeyError(f"target_col '{target_col}' not found in data.")
92
- if pred_col is not None and pred_col not in df.columns:
93
- raise KeyError(f"pred_col '{pred_col}' not found in data.")
94
-
95
- style = style or PlotStyle()
96
- title = title or f"Analysis of {feature}"
97
-
98
- if is_categorical:
99
- group_col = feature
100
- plot_source = df
101
- else:
102
- group_col = f"{feature}_bins"
103
- series = pd.to_numeric(df[feature], errors="coerce")
104
- try:
105
- bins = pd.qcut(series, n_bins, duplicates="drop")
106
- except ValueError:
107
- bins = pd.cut(series, bins=max(1, int(n_bins)), duplicates="drop")
108
- plot_source = df.assign(**{group_col: bins})
109
-
110
- if pred_col is not None:
111
- if pred_weighted:
112
- plot_source = plot_source.assign(_pred_w=plot_source[pred_col])
113
- else:
114
- plot_source = plot_source.assign(
115
- _pred_w=plot_source[pred_col] * plot_source[weight_col]
116
- )
117
-
118
- plot_data = plot_source.groupby([group_col], observed=True).sum(numeric_only=True)
119
- plot_data.reset_index(inplace=True)
120
-
121
- denom = np.maximum(plot_data[weight_col].to_numpy(dtype=float), EPS)
122
- plot_data["act_v"] = plot_data[target_col].to_numpy(dtype=float) / denom
123
- if pred_col is not None:
124
- plot_data["pred_v"] = plot_data["_pred_w"].to_numpy(dtype=float) / denom
125
-
126
- created_fig = ax is None
127
- if created_fig:
128
- fig, ax = plt.subplots(figsize=style.figsize)
129
- else:
130
- fig = ax.figure
131
-
132
- ax.plot(plot_data.index, plot_data["act_v"], label="Actual", color="red")
133
- if pred_col is not None:
134
- ax.plot(
135
- plot_data.index,
136
- plot_data["pred_v"],
137
- label=pred_label or "Predicted",
138
- color=style.palette[0],
139
- )
140
- ax.set_title(title, fontsize=style.title_size)
141
- ax.set_xticks(plot_data.index)
142
- labels = plot_data[group_col].astype(str).tolist()
143
- tick_size = 3 if len(labels) > 50 else style.tick_size
144
- ax.set_xticklabels(labels, rotation=90, fontsize=tick_size)
145
- ax.tick_params(axis="y", labelsize=style.tick_size)
146
- if style.grid:
147
- ax.grid(True, linestyle=style.grid_style, alpha=style.grid_alpha)
148
- if pred_col is not None:
149
- ax.legend(fontsize=style.legend_size)
150
-
151
- ax2 = ax.twinx()
152
- ax2.bar(
153
- plot_data.index,
154
- plot_data[weight_col],
155
- alpha=0.5,
156
- color=style.weight_color,
157
- )
158
- ax2.tick_params(axis="y", labelsize=style.tick_size)
159
-
160
- if created_fig:
161
- finalize_figure(fig, save_path=save_path, show=show, style=style)
162
-
163
- return fig
1
+ from __future__ import annotations
2
+
3
+ from typing import Mapping, Optional, Sequence
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+
8
+ from ins_pricing.modelling.plotting.common import EPS, PlotStyle, finalize_figure, plt
9
+
10
+
11
+ def plot_loss_curve(
12
+ *,
13
+ history: Optional[Mapping[str, Sequence[float]]] = None,
14
+ train: Optional[Sequence[float]] = None,
15
+ val: Optional[Sequence[float]] = None,
16
+ title: str = "Loss vs. Epoch",
17
+ ax: Optional[plt.Axes] = None,
18
+ show: bool = False,
19
+ save_path: Optional[str] = None,
20
+ style: Optional[PlotStyle] = None,
21
+ ) -> Optional[plt.Figure]:
22
+ style = style or PlotStyle()
23
+ if history is not None:
24
+ if train is None:
25
+ train = history.get("train")
26
+ if val is None:
27
+ val = history.get("val")
28
+
29
+ train_hist = list(train or [])
30
+ val_hist = list(val or [])
31
+ if not train_hist and not val_hist:
32
+ return None
33
+
34
+ created_fig = ax is None
35
+ if created_fig:
36
+ fig, ax = plt.subplots(figsize=style.figsize)
37
+ else:
38
+ fig = ax.figure
39
+
40
+ if train_hist:
41
+ ax.plot(
42
+ range(1, len(train_hist) + 1),
43
+ train_hist,
44
+ label="Train Loss",
45
+ color="tab:blue",
46
+ )
47
+ if val_hist:
48
+ ax.plot(
49
+ range(1, len(val_hist) + 1),
50
+ val_hist,
51
+ label="Validation Loss",
52
+ color="tab:orange",
53
+ )
54
+
55
+ ax.set_xlabel("Epoch", fontsize=style.label_size)
56
+ ax.set_ylabel("Weighted Loss", fontsize=style.label_size)
57
+ ax.set_title(title, fontsize=style.title_size)
58
+ ax.tick_params(axis="both", labelsize=style.tick_size)
59
+ if style.grid:
60
+ ax.grid(True, linestyle=style.grid_style, alpha=style.grid_alpha)
61
+ ax.legend(loc="best", fontsize=style.legend_size, frameon=False)
62
+
63
+ if created_fig:
64
+ finalize_figure(fig, save_path=save_path, show=show, style=style)
65
+
66
+ return fig
67
+
68
+
69
+ def plot_oneway(
70
+ df: pd.DataFrame,
71
+ *,
72
+ feature: str,
73
+ weight_col: str,
74
+ target_col: str,
75
+ pred_col: Optional[str] = None,
76
+ pred_weighted: bool = False,
77
+ pred_label: Optional[str] = None,
78
+ n_bins: int = 10,
79
+ is_categorical: bool = False,
80
+ title: Optional[str] = None,
81
+ ax: Optional[plt.Axes] = None,
82
+ show: bool = False,
83
+ save_path: Optional[str] = None,
84
+ style: Optional[PlotStyle] = None,
85
+ ) -> Optional[plt.Figure]:
86
+ if feature not in df.columns:
87
+ raise KeyError(f"feature '{feature}' not found in data.")
88
+ if weight_col not in df.columns:
89
+ raise KeyError(f"weight_col '{weight_col}' not found in data.")
90
+ if target_col not in df.columns:
91
+ raise KeyError(f"target_col '{target_col}' not found in data.")
92
+ if pred_col is not None and pred_col not in df.columns:
93
+ raise KeyError(f"pred_col '{pred_col}' not found in data.")
94
+
95
+ style = style or PlotStyle()
96
+ title = title or f"Analysis of {feature}"
97
+
98
+ if is_categorical:
99
+ group_col = feature
100
+ plot_source = df
101
+ else:
102
+ group_col = f"{feature}_bins"
103
+ series = pd.to_numeric(df[feature], errors="coerce")
104
+ try:
105
+ bins = pd.qcut(series, n_bins, duplicates="drop")
106
+ except ValueError:
107
+ bins = pd.cut(series, bins=max(1, int(n_bins)), duplicates="drop")
108
+ plot_source = df.assign(**{group_col: bins})
109
+
110
+ if pred_col is not None:
111
+ if pred_weighted:
112
+ plot_source = plot_source.assign(_pred_w=plot_source[pred_col])
113
+ else:
114
+ plot_source = plot_source.assign(
115
+ _pred_w=plot_source[pred_col] * plot_source[weight_col]
116
+ )
117
+
118
+ plot_data = plot_source.groupby([group_col], observed=True).sum(numeric_only=True)
119
+ plot_data.reset_index(inplace=True)
120
+
121
+ denom = np.maximum(plot_data[weight_col].to_numpy(dtype=float), EPS)
122
+ plot_data["act_v"] = plot_data[target_col].to_numpy(dtype=float) / denom
123
+ if pred_col is not None:
124
+ plot_data["pred_v"] = plot_data["_pred_w"].to_numpy(dtype=float) / denom
125
+
126
+ created_fig = ax is None
127
+ if created_fig:
128
+ fig, ax = plt.subplots(figsize=style.figsize)
129
+ else:
130
+ fig = ax.figure
131
+
132
+ ax.plot(plot_data.index, plot_data["act_v"], label="Actual", color="red")
133
+ if pred_col is not None:
134
+ ax.plot(
135
+ plot_data.index,
136
+ plot_data["pred_v"],
137
+ label=pred_label or "Predicted",
138
+ color=style.palette[0],
139
+ )
140
+ ax.set_title(title, fontsize=style.title_size)
141
+ ax.set_xticks(plot_data.index)
142
+ labels = plot_data[group_col].astype(str).tolist()
143
+ tick_size = 3 if len(labels) > 50 else style.tick_size
144
+ ax.set_xticklabels(labels, rotation=90, fontsize=tick_size)
145
+ ax.tick_params(axis="y", labelsize=style.tick_size)
146
+ if style.grid:
147
+ ax.grid(True, linestyle=style.grid_style, alpha=style.grid_alpha)
148
+ if pred_col is not None:
149
+ ax.legend(fontsize=style.legend_size)
150
+
151
+ ax2 = ax.twinx()
152
+ ax2.bar(
153
+ plot_data.index,
154
+ plot_data[weight_col],
155
+ alpha=0.5,
156
+ color=style.weight_color,
157
+ )
158
+ ax2.tick_params(axis="y", labelsize=style.tick_size)
159
+
160
+ if created_fig:
161
+ finalize_figure(fig, save_path=save_path, show=show, style=style)
162
+
163
+ return fig