ins-pricing 0.4.4__py3-none-any.whl → 0.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ins_pricing/README.md +74 -56
- ins_pricing/__init__.py +142 -90
- ins_pricing/cli/BayesOpt_entry.py +52 -50
- ins_pricing/cli/BayesOpt_incremental.py +832 -898
- ins_pricing/cli/Explain_Run.py +31 -23
- ins_pricing/cli/Explain_entry.py +532 -579
- ins_pricing/cli/Pricing_Run.py +31 -23
- ins_pricing/cli/bayesopt_entry_runner.py +1440 -1438
- ins_pricing/cli/utils/cli_common.py +256 -256
- ins_pricing/cli/utils/cli_config.py +375 -375
- ins_pricing/cli/utils/import_resolver.py +382 -365
- ins_pricing/cli/utils/notebook_utils.py +340 -340
- ins_pricing/cli/watchdog_run.py +209 -201
- ins_pricing/frontend/README.md +573 -419
- ins_pricing/frontend/__init__.py +10 -10
- ins_pricing/frontend/config_builder.py +1 -0
- ins_pricing/frontend/example_workflows.py +1 -1
- ins_pricing/governance/__init__.py +20 -20
- ins_pricing/governance/release.py +159 -159
- ins_pricing/modelling/README.md +67 -0
- ins_pricing/modelling/__init__.py +147 -92
- ins_pricing/modelling/bayesopt/README.md +59 -0
- ins_pricing/modelling/{core/bayesopt → bayesopt}/__init__.py +64 -102
- ins_pricing/modelling/{core/bayesopt → bayesopt}/config_preprocess.py +562 -550
- ins_pricing/modelling/{core/bayesopt → bayesopt}/core.py +965 -962
- ins_pricing/modelling/{core/bayesopt → bayesopt}/model_explain_mixin.py +296 -296
- ins_pricing/modelling/{core/bayesopt → bayesopt}/model_plotting_mixin.py +482 -548
- ins_pricing/modelling/{core/bayesopt → bayesopt}/models/__init__.py +27 -27
- ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_ft_trainer.py +915 -913
- ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_gnn.py +788 -785
- ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_resn.py +448 -446
- ins_pricing/modelling/bayesopt/trainers/__init__.py +19 -0
- ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_base.py +1308 -1308
- ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_ft.py +3 -3
- ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_glm.py +197 -198
- ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_gnn.py +344 -344
- ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_resn.py +283 -283
- ins_pricing/modelling/{core/bayesopt → bayesopt}/trainers/trainer_xgb.py +346 -347
- ins_pricing/modelling/bayesopt/utils/__init__.py +67 -0
- ins_pricing/modelling/bayesopt/utils/constants.py +21 -0
- ins_pricing/modelling/bayesopt/utils/io_utils.py +7 -0
- ins_pricing/modelling/bayesopt/utils/losses.py +27 -0
- ins_pricing/modelling/bayesopt/utils/metrics_and_devices.py +17 -0
- ins_pricing/modelling/{core/bayesopt → bayesopt}/utils/torch_trainer_mixin.py +623 -623
- ins_pricing/modelling/{core/evaluation.py → evaluation.py} +113 -104
- ins_pricing/modelling/explain/__init__.py +55 -55
- ins_pricing/modelling/explain/metrics.py +27 -174
- ins_pricing/modelling/explain/permutation.py +237 -237
- ins_pricing/modelling/plotting/__init__.py +40 -36
- ins_pricing/modelling/plotting/compat.py +228 -0
- ins_pricing/modelling/plotting/curves.py +572 -572
- ins_pricing/modelling/plotting/diagnostics.py +163 -163
- ins_pricing/modelling/plotting/geo.py +362 -362
- ins_pricing/modelling/plotting/importance.py +121 -121
- ins_pricing/pricing/__init__.py +27 -27
- ins_pricing/production/__init__.py +35 -25
- ins_pricing/production/{predict.py → inference.py} +140 -57
- ins_pricing/production/monitoring.py +8 -21
- ins_pricing/reporting/__init__.py +11 -11
- ins_pricing/setup.py +1 -1
- ins_pricing/tests/production/test_inference.py +90 -0
- ins_pricing/utils/__init__.py +116 -83
- ins_pricing/utils/device.py +255 -255
- ins_pricing/utils/features.py +53 -0
- ins_pricing/utils/io.py +72 -0
- ins_pricing/{modelling/core/bayesopt/utils → utils}/losses.py +125 -129
- ins_pricing/utils/metrics.py +158 -24
- ins_pricing/utils/numerics.py +76 -0
- ins_pricing/utils/paths.py +9 -1
- {ins_pricing-0.4.4.dist-info → ins_pricing-0.5.0.dist-info}/METADATA +55 -35
- ins_pricing-0.5.0.dist-info/RECORD +131 -0
- ins_pricing/CHANGELOG.md +0 -272
- ins_pricing/RELEASE_NOTES_0.2.8.md +0 -344
- ins_pricing/docs/LOSS_FUNCTIONS.md +0 -78
- ins_pricing/docs/modelling/BayesOpt_USAGE.md +0 -945
- ins_pricing/docs/modelling/README.md +0 -34
- ins_pricing/frontend/QUICKSTART.md +0 -152
- ins_pricing/modelling/core/BayesOpt.py +0 -146
- ins_pricing/modelling/core/__init__.py +0 -1
- ins_pricing/modelling/core/bayesopt/PHASE2_REFACTORING_SUMMARY.md +0 -449
- ins_pricing/modelling/core/bayesopt/PHASE3_REFACTORING_SUMMARY.md +0 -406
- ins_pricing/modelling/core/bayesopt/REFACTORING_SUMMARY.md +0 -247
- ins_pricing/modelling/core/bayesopt/trainers/__init__.py +0 -19
- ins_pricing/modelling/core/bayesopt/utils/__init__.py +0 -86
- ins_pricing/modelling/core/bayesopt/utils/constants.py +0 -183
- ins_pricing/modelling/core/bayesopt/utils/io_utils.py +0 -126
- ins_pricing/modelling/core/bayesopt/utils/metrics_and_devices.py +0 -555
- ins_pricing/modelling/core/bayesopt/utils.py +0 -105
- ins_pricing/modelling/core/bayesopt/utils_backup.py +0 -1503
- ins_pricing/tests/production/test_predict.py +0 -233
- ins_pricing-0.4.4.dist-info/RECORD +0 -137
- /ins_pricing/modelling/{core/bayesopt → bayesopt}/config_components.py +0 -0
- /ins_pricing/modelling/{core/bayesopt → bayesopt}/models/model_ft_components.py +0 -0
- /ins_pricing/modelling/{core/bayesopt → bayesopt}/utils/distributed_utils.py +0 -0
- {ins_pricing-0.4.4.dist-info → ins_pricing-0.5.0.dist-info}/WHEEL +0 -0
- {ins_pricing-0.4.4.dist-info → ins_pricing-0.5.0.dist-info}/top_level.txt +0 -0
|
@@ -1,362 +1,362 @@
|
|
|
1
|
-
from __future__ import annotations
|
|
2
|
-
|
|
3
|
-
from typing import Optional, Sequence, Tuple
|
|
4
|
-
|
|
5
|
-
import numpy as np
|
|
6
|
-
import pandas as pd
|
|
7
|
-
import matplotlib.tri as mtri
|
|
8
|
-
|
|
9
|
-
from .common import EPS, PlotStyle, finalize_figure, plt
|
|
10
|
-
|
|
11
|
-
try: # optional map basemap support
|
|
12
|
-
import contextily as cx
|
|
13
|
-
except Exception: # pragma: no cover - optional dependency
|
|
14
|
-
cx = None
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
_MERCATOR_MAX_LAT = 85.05112878
|
|
18
|
-
_MERCATOR_FACTOR = 20037508.34
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
def _require_contextily(func_name: str) -> None:
|
|
22
|
-
if cx is None:
|
|
23
|
-
raise RuntimeError(
|
|
24
|
-
f"{func_name} requires contextily. Install it via 'pip install contextily'."
|
|
25
|
-
)
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
def _lonlat_to_mercator(lon: np.ndarray, lat: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
|
29
|
-
lon = np.asarray(lon, dtype=float)
|
|
30
|
-
lat = np.asarray(lat, dtype=float)
|
|
31
|
-
lat = np.clip(lat, -_MERCATOR_MAX_LAT, _MERCATOR_MAX_LAT)
|
|
32
|
-
x = lon * _MERCATOR_FACTOR / 180.0
|
|
33
|
-
y = np.log(np.tan((90.0 + lat) * np.pi / 360.0)) * _MERCATOR_FACTOR / np.pi
|
|
34
|
-
return x, y
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
def _apply_bounds(ax: plt.Axes, x: np.ndarray, y: np.ndarray, padding: float) -> None:
|
|
38
|
-
x_min, x_max = float(np.min(x)), float(np.max(x))
|
|
39
|
-
y_min, y_max = float(np.min(y)), float(np.max(y))
|
|
40
|
-
pad_x = (x_max - x_min) * padding
|
|
41
|
-
pad_y = (y_max - y_min) * padding
|
|
42
|
-
if pad_x == 0:
|
|
43
|
-
pad_x = 1.0
|
|
44
|
-
if pad_y == 0:
|
|
45
|
-
pad_y = 1.0
|
|
46
|
-
ax.set_xlim(x_min - pad_x, x_max + pad_x)
|
|
47
|
-
ax.set_ylim(y_min - pad_y, y_max + pad_y)
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
def _resolve_basemap(source):
|
|
51
|
-
if cx is None or source is None:
|
|
52
|
-
return source
|
|
53
|
-
if isinstance(source, str):
|
|
54
|
-
provider = cx.providers
|
|
55
|
-
for part in source.split("."):
|
|
56
|
-
if isinstance(provider, dict):
|
|
57
|
-
provider = provider[part]
|
|
58
|
-
else:
|
|
59
|
-
provider = getattr(provider, part)
|
|
60
|
-
return provider
|
|
61
|
-
return source
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
def _sanitize_geo(
|
|
65
|
-
df: pd.DataFrame,
|
|
66
|
-
x_col: str,
|
|
67
|
-
y_col: str,
|
|
68
|
-
value_col: str,
|
|
69
|
-
weight_col: Optional[str] = None,
|
|
70
|
-
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, Optional[np.ndarray]]:
|
|
71
|
-
x = pd.to_numeric(df[x_col], errors="coerce").to_numpy(dtype=float)
|
|
72
|
-
y = pd.to_numeric(df[y_col], errors="coerce").to_numpy(dtype=float)
|
|
73
|
-
z = pd.to_numeric(df[value_col], errors="coerce").to_numpy(dtype=float)
|
|
74
|
-
w = None
|
|
75
|
-
if weight_col:
|
|
76
|
-
w = pd.to_numeric(df[weight_col], errors="coerce").to_numpy(dtype=float)
|
|
77
|
-
|
|
78
|
-
if w is None:
|
|
79
|
-
mask = np.isfinite(x) & np.isfinite(y) & np.isfinite(z)
|
|
80
|
-
else:
|
|
81
|
-
mask = np.isfinite(x) & np.isfinite(y) & np.isfinite(z) & np.isfinite(w)
|
|
82
|
-
w = w[mask]
|
|
83
|
-
return x[mask], y[mask], z[mask], w
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
def _downsample_points(
|
|
87
|
-
x: np.ndarray,
|
|
88
|
-
y: np.ndarray,
|
|
89
|
-
z: np.ndarray,
|
|
90
|
-
w: Optional[np.ndarray],
|
|
91
|
-
max_points: Optional[int],
|
|
92
|
-
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, Optional[np.ndarray]]:
|
|
93
|
-
if max_points is None:
|
|
94
|
-
return x, y, z, w
|
|
95
|
-
max_points = int(max_points)
|
|
96
|
-
if max_points <= 0 or len(x) <= max_points:
|
|
97
|
-
return x, y, z, w
|
|
98
|
-
rng = np.random.default_rng(13)
|
|
99
|
-
idx = rng.choice(len(x), size=max_points, replace=False)
|
|
100
|
-
if w is None:
|
|
101
|
-
return x[idx], y[idx], z[idx], None
|
|
102
|
-
return x[idx], y[idx], z[idx], w[idx]
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
def plot_geo_heatmap(
|
|
106
|
-
df: pd.DataFrame,
|
|
107
|
-
*,
|
|
108
|
-
x_col: str,
|
|
109
|
-
y_col: str,
|
|
110
|
-
value_col: str,
|
|
111
|
-
weight_col: Optional[str] = None,
|
|
112
|
-
bins: int | Tuple[int, int] = 50,
|
|
113
|
-
agg: str = "mean",
|
|
114
|
-
cmap: str = "YlOrRd",
|
|
115
|
-
title: str = "Geo Heatmap",
|
|
116
|
-
ax: Optional[plt.Axes] = None,
|
|
117
|
-
show: bool = False,
|
|
118
|
-
save_path: Optional[str] = None,
|
|
119
|
-
style: Optional[PlotStyle] = None,
|
|
120
|
-
) -> plt.Figure:
|
|
121
|
-
style = style or PlotStyle()
|
|
122
|
-
if agg not in {"mean", "sum"}:
|
|
123
|
-
raise ValueError("agg must be 'mean' or 'sum'.")
|
|
124
|
-
x, y, z, w = _sanitize_geo(df, x_col, y_col, value_col, weight_col)
|
|
125
|
-
|
|
126
|
-
if isinstance(bins, int):
|
|
127
|
-
bins = (bins, bins)
|
|
128
|
-
|
|
129
|
-
if w is None:
|
|
130
|
-
sum_z, x_edges, y_edges = np.histogram2d(x, y, bins=bins, weights=z)
|
|
131
|
-
if agg == "sum":
|
|
132
|
-
grid = sum_z
|
|
133
|
-
else:
|
|
134
|
-
count, _, _ = np.histogram2d(x, y, bins=bins)
|
|
135
|
-
grid = sum_z / np.maximum(count, 1.0)
|
|
136
|
-
else:
|
|
137
|
-
sum_w, x_edges, y_edges = np.histogram2d(x, y, bins=bins, weights=w)
|
|
138
|
-
sum_zw, _, _ = np.histogram2d(x, y, bins=bins, weights=z * w)
|
|
139
|
-
grid = sum_zw / np.maximum(sum_w, EPS)
|
|
140
|
-
|
|
141
|
-
created_fig = ax is None
|
|
142
|
-
if created_fig:
|
|
143
|
-
fig, ax = plt.subplots(figsize=style.figsize)
|
|
144
|
-
else:
|
|
145
|
-
fig = ax.figure
|
|
146
|
-
|
|
147
|
-
im = ax.imshow(
|
|
148
|
-
grid.T,
|
|
149
|
-
origin="lower",
|
|
150
|
-
extent=[x_edges[0], x_edges[-1], y_edges[0], y_edges[-1]],
|
|
151
|
-
aspect="auto",
|
|
152
|
-
cmap=cmap,
|
|
153
|
-
)
|
|
154
|
-
cbar = fig.colorbar(im, ax=ax)
|
|
155
|
-
cbar.set_label(value_col, fontsize=style.label_size)
|
|
156
|
-
cbar.ax.tick_params(labelsize=style.tick_size)
|
|
157
|
-
|
|
158
|
-
ax.set_xlabel(x_col, fontsize=style.label_size)
|
|
159
|
-
ax.set_ylabel(y_col, fontsize=style.label_size)
|
|
160
|
-
ax.set_title(title, fontsize=style.title_size)
|
|
161
|
-
ax.tick_params(axis="both", labelsize=style.tick_size)
|
|
162
|
-
|
|
163
|
-
if created_fig:
|
|
164
|
-
finalize_figure(fig, save_path=save_path, show=show, style=style)
|
|
165
|
-
|
|
166
|
-
return fig
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
def plot_geo_contour(
|
|
170
|
-
df: pd.DataFrame,
|
|
171
|
-
*,
|
|
172
|
-
x_col: str,
|
|
173
|
-
y_col: str,
|
|
174
|
-
value_col: str,
|
|
175
|
-
weight_col: Optional[str] = None,
|
|
176
|
-
max_points: Optional[int] = None,
|
|
177
|
-
levels: int | Sequence[float] = 10,
|
|
178
|
-
cmap: str = "viridis",
|
|
179
|
-
title: str = "Geo Contour",
|
|
180
|
-
ax: Optional[plt.Axes] = None,
|
|
181
|
-
show_points: bool = False,
|
|
182
|
-
show: bool = False,
|
|
183
|
-
save_path: Optional[str] = None,
|
|
184
|
-
style: Optional[PlotStyle] = None,
|
|
185
|
-
) -> plt.Figure:
|
|
186
|
-
style = style or PlotStyle()
|
|
187
|
-
x, y, z, w = _sanitize_geo(df, x_col, y_col, value_col, weight_col)
|
|
188
|
-
x, y, z, w = _downsample_points(x, y, z, w, max_points)
|
|
189
|
-
|
|
190
|
-
if w is not None:
|
|
191
|
-
z = z * w
|
|
192
|
-
|
|
193
|
-
triang = mtri.Triangulation(x, y)
|
|
194
|
-
|
|
195
|
-
created_fig = ax is None
|
|
196
|
-
if created_fig:
|
|
197
|
-
fig, ax = plt.subplots(figsize=style.figsize)
|
|
198
|
-
else:
|
|
199
|
-
fig = ax.figure
|
|
200
|
-
|
|
201
|
-
contour = ax.tricontourf(triang, z, levels=levels, cmap=cmap)
|
|
202
|
-
if show_points:
|
|
203
|
-
ax.scatter(x, y, s=6, c="k", alpha=0.2)
|
|
204
|
-
cbar = fig.colorbar(contour, ax=ax)
|
|
205
|
-
cbar.set_label(value_col, fontsize=style.label_size)
|
|
206
|
-
cbar.ax.tick_params(labelsize=style.tick_size)
|
|
207
|
-
|
|
208
|
-
ax.set_xlabel(x_col, fontsize=style.label_size)
|
|
209
|
-
ax.set_ylabel(y_col, fontsize=style.label_size)
|
|
210
|
-
ax.set_title(title, fontsize=style.title_size)
|
|
211
|
-
ax.tick_params(axis="both", labelsize=style.tick_size)
|
|
212
|
-
|
|
213
|
-
if created_fig:
|
|
214
|
-
finalize_figure(fig, save_path=save_path, show=show, style=style)
|
|
215
|
-
|
|
216
|
-
return fig
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
def plot_geo_heatmap_on_map(
|
|
220
|
-
df: pd.DataFrame,
|
|
221
|
-
*,
|
|
222
|
-
lon_col: str,
|
|
223
|
-
lat_col: str,
|
|
224
|
-
value_col: str,
|
|
225
|
-
weight_col: Optional[str] = None,
|
|
226
|
-
bins: int | Tuple[int, int] = 100,
|
|
227
|
-
agg: str = "mean",
|
|
228
|
-
cmap: str = "YlOrRd",
|
|
229
|
-
alpha: float = 0.6,
|
|
230
|
-
basemap: Optional[object] = "CartoDB.Positron",
|
|
231
|
-
zoom: Optional[int] = None,
|
|
232
|
-
padding: float = 0.05,
|
|
233
|
-
title: str = "Geo Heatmap (Map)",
|
|
234
|
-
ax: Optional[plt.Axes] = None,
|
|
235
|
-
show_points: bool = False,
|
|
236
|
-
show: bool = False,
|
|
237
|
-
save_path: Optional[str] = None,
|
|
238
|
-
style: Optional[PlotStyle] = None,
|
|
239
|
-
) -> plt.Figure:
|
|
240
|
-
_require_contextily("plot_geo_heatmap_on_map")
|
|
241
|
-
style = style or PlotStyle()
|
|
242
|
-
if agg not in {"mean", "sum"}:
|
|
243
|
-
raise ValueError("agg must be 'mean' or 'sum'.")
|
|
244
|
-
lon, lat, z, w = _sanitize_geo(df, lon_col, lat_col, value_col, weight_col)
|
|
245
|
-
x, y = _lonlat_to_mercator(lon, lat)
|
|
246
|
-
|
|
247
|
-
if isinstance(bins, int):
|
|
248
|
-
bins = (bins, bins)
|
|
249
|
-
|
|
250
|
-
if w is None:
|
|
251
|
-
sum_z, x_edges, y_edges = np.histogram2d(x, y, bins=bins, weights=z)
|
|
252
|
-
if agg == "sum":
|
|
253
|
-
grid = sum_z
|
|
254
|
-
else:
|
|
255
|
-
count, _, _ = np.histogram2d(x, y, bins=bins)
|
|
256
|
-
grid = sum_z / np.maximum(count, 1.0)
|
|
257
|
-
else:
|
|
258
|
-
sum_w, x_edges, y_edges = np.histogram2d(x, y, bins=bins, weights=w)
|
|
259
|
-
sum_zw, _, _ = np.histogram2d(x, y, bins=bins, weights=z * w)
|
|
260
|
-
grid = sum_zw / np.maximum(sum_w, EPS)
|
|
261
|
-
|
|
262
|
-
created_fig = ax is None
|
|
263
|
-
if created_fig:
|
|
264
|
-
fig, ax = plt.subplots(figsize=style.figsize)
|
|
265
|
-
else:
|
|
266
|
-
fig = ax.figure
|
|
267
|
-
|
|
268
|
-
_apply_bounds(ax, x, y, padding)
|
|
269
|
-
ax.set_aspect("equal", adjustable="box")
|
|
270
|
-
|
|
271
|
-
source = _resolve_basemap(basemap)
|
|
272
|
-
if source is not None:
|
|
273
|
-
if zoom is None:
|
|
274
|
-
cx.add_basemap(ax, source=source, crs="EPSG:3857")
|
|
275
|
-
else:
|
|
276
|
-
cx.add_basemap(ax, source=source, crs="EPSG:3857", zoom=zoom)
|
|
277
|
-
|
|
278
|
-
im = ax.imshow(
|
|
279
|
-
grid.T,
|
|
280
|
-
origin="lower",
|
|
281
|
-
extent=[x_edges[0], x_edges[-1], y_edges[0], y_edges[-1]],
|
|
282
|
-
aspect="auto",
|
|
283
|
-
cmap=cmap,
|
|
284
|
-
alpha=alpha,
|
|
285
|
-
)
|
|
286
|
-
if show_points:
|
|
287
|
-
ax.scatter(x, y, s=6, c="k", alpha=0.25)
|
|
288
|
-
|
|
289
|
-
cbar = fig.colorbar(im, ax=ax)
|
|
290
|
-
cbar.set_label(value_col, fontsize=style.label_size)
|
|
291
|
-
cbar.ax.tick_params(labelsize=style.tick_size)
|
|
292
|
-
|
|
293
|
-
ax.set_title(title, fontsize=style.title_size)
|
|
294
|
-
ax.tick_params(axis="both", labelsize=style.tick_size)
|
|
295
|
-
|
|
296
|
-
if created_fig:
|
|
297
|
-
finalize_figure(fig, save_path=save_path, show=show, style=style)
|
|
298
|
-
|
|
299
|
-
return fig
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
def plot_geo_contour_on_map(
|
|
303
|
-
df: pd.DataFrame,
|
|
304
|
-
*,
|
|
305
|
-
lon_col: str,
|
|
306
|
-
lat_col: str,
|
|
307
|
-
value_col: str,
|
|
308
|
-
weight_col: Optional[str] = None,
|
|
309
|
-
max_points: Optional[int] = None,
|
|
310
|
-
levels: int | Sequence[float] = 10,
|
|
311
|
-
cmap: str = "viridis",
|
|
312
|
-
alpha: float = 0.6,
|
|
313
|
-
basemap: Optional[object] = "CartoDB.Positron",
|
|
314
|
-
zoom: Optional[int] = None,
|
|
315
|
-
padding: float = 0.05,
|
|
316
|
-
title: str = "Geo Contour (Map)",
|
|
317
|
-
ax: Optional[plt.Axes] = None,
|
|
318
|
-
show_points: bool = False,
|
|
319
|
-
show: bool = False,
|
|
320
|
-
save_path: Optional[str] = None,
|
|
321
|
-
style: Optional[PlotStyle] = None,
|
|
322
|
-
) -> plt.Figure:
|
|
323
|
-
_require_contextily("plot_geo_contour_on_map")
|
|
324
|
-
style = style or PlotStyle()
|
|
325
|
-
lon, lat, z, w = _sanitize_geo(df, lon_col, lat_col, value_col, weight_col)
|
|
326
|
-
lon, lat, z, w = _downsample_points(lon, lat, z, w, max_points)
|
|
327
|
-
x, y = _lonlat_to_mercator(lon, lat)
|
|
328
|
-
if w is not None:
|
|
329
|
-
z = z * w
|
|
330
|
-
|
|
331
|
-
created_fig = ax is None
|
|
332
|
-
if created_fig:
|
|
333
|
-
fig, ax = plt.subplots(figsize=style.figsize)
|
|
334
|
-
else:
|
|
335
|
-
fig = ax.figure
|
|
336
|
-
|
|
337
|
-
_apply_bounds(ax, x, y, padding)
|
|
338
|
-
ax.set_aspect("equal", adjustable="box")
|
|
339
|
-
|
|
340
|
-
source = _resolve_basemap(basemap)
|
|
341
|
-
if source is not None:
|
|
342
|
-
if zoom is None:
|
|
343
|
-
cx.add_basemap(ax, source=source, crs="EPSG:3857")
|
|
344
|
-
else:
|
|
345
|
-
cx.add_basemap(ax, source=source, crs="EPSG:3857", zoom=zoom)
|
|
346
|
-
|
|
347
|
-
triang = mtri.Triangulation(x, y)
|
|
348
|
-
contour = ax.tricontourf(triang, z, levels=levels, cmap=cmap, alpha=alpha)
|
|
349
|
-
if show_points:
|
|
350
|
-
ax.scatter(x, y, s=6, c="k", alpha=0.25)
|
|
351
|
-
|
|
352
|
-
cbar = fig.colorbar(contour, ax=ax)
|
|
353
|
-
cbar.set_label(value_col, fontsize=style.label_size)
|
|
354
|
-
cbar.ax.tick_params(labelsize=style.tick_size)
|
|
355
|
-
|
|
356
|
-
ax.set_title(title, fontsize=style.title_size)
|
|
357
|
-
ax.tick_params(axis="both", labelsize=style.tick_size)
|
|
358
|
-
|
|
359
|
-
if created_fig:
|
|
360
|
-
finalize_figure(fig, save_path=save_path, show=show, style=style)
|
|
361
|
-
|
|
362
|
-
return fig
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import Optional, Sequence, Tuple
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import pandas as pd
|
|
7
|
+
import matplotlib.tri as mtri
|
|
8
|
+
|
|
9
|
+
from ins_pricing.modelling.plotting.common import EPS, PlotStyle, finalize_figure, plt
|
|
10
|
+
|
|
11
|
+
try: # optional map basemap support
|
|
12
|
+
import contextily as cx
|
|
13
|
+
except Exception: # pragma: no cover - optional dependency
|
|
14
|
+
cx = None
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
_MERCATOR_MAX_LAT = 85.05112878
|
|
18
|
+
_MERCATOR_FACTOR = 20037508.34
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def _require_contextily(func_name: str) -> None:
|
|
22
|
+
if cx is None:
|
|
23
|
+
raise RuntimeError(
|
|
24
|
+
f"{func_name} requires contextily. Install it via 'pip install contextily'."
|
|
25
|
+
)
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
def _lonlat_to_mercator(lon: np.ndarray, lat: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
|
29
|
+
lon = np.asarray(lon, dtype=float)
|
|
30
|
+
lat = np.asarray(lat, dtype=float)
|
|
31
|
+
lat = np.clip(lat, -_MERCATOR_MAX_LAT, _MERCATOR_MAX_LAT)
|
|
32
|
+
x = lon * _MERCATOR_FACTOR / 180.0
|
|
33
|
+
y = np.log(np.tan((90.0 + lat) * np.pi / 360.0)) * _MERCATOR_FACTOR / np.pi
|
|
34
|
+
return x, y
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def _apply_bounds(ax: plt.Axes, x: np.ndarray, y: np.ndarray, padding: float) -> None:
|
|
38
|
+
x_min, x_max = float(np.min(x)), float(np.max(x))
|
|
39
|
+
y_min, y_max = float(np.min(y)), float(np.max(y))
|
|
40
|
+
pad_x = (x_max - x_min) * padding
|
|
41
|
+
pad_y = (y_max - y_min) * padding
|
|
42
|
+
if pad_x == 0:
|
|
43
|
+
pad_x = 1.0
|
|
44
|
+
if pad_y == 0:
|
|
45
|
+
pad_y = 1.0
|
|
46
|
+
ax.set_xlim(x_min - pad_x, x_max + pad_x)
|
|
47
|
+
ax.set_ylim(y_min - pad_y, y_max + pad_y)
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
def _resolve_basemap(source):
|
|
51
|
+
if cx is None or source is None:
|
|
52
|
+
return source
|
|
53
|
+
if isinstance(source, str):
|
|
54
|
+
provider = cx.providers
|
|
55
|
+
for part in source.split("."):
|
|
56
|
+
if isinstance(provider, dict):
|
|
57
|
+
provider = provider[part]
|
|
58
|
+
else:
|
|
59
|
+
provider = getattr(provider, part)
|
|
60
|
+
return provider
|
|
61
|
+
return source
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
def _sanitize_geo(
|
|
65
|
+
df: pd.DataFrame,
|
|
66
|
+
x_col: str,
|
|
67
|
+
y_col: str,
|
|
68
|
+
value_col: str,
|
|
69
|
+
weight_col: Optional[str] = None,
|
|
70
|
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, Optional[np.ndarray]]:
|
|
71
|
+
x = pd.to_numeric(df[x_col], errors="coerce").to_numpy(dtype=float)
|
|
72
|
+
y = pd.to_numeric(df[y_col], errors="coerce").to_numpy(dtype=float)
|
|
73
|
+
z = pd.to_numeric(df[value_col], errors="coerce").to_numpy(dtype=float)
|
|
74
|
+
w = None
|
|
75
|
+
if weight_col:
|
|
76
|
+
w = pd.to_numeric(df[weight_col], errors="coerce").to_numpy(dtype=float)
|
|
77
|
+
|
|
78
|
+
if w is None:
|
|
79
|
+
mask = np.isfinite(x) & np.isfinite(y) & np.isfinite(z)
|
|
80
|
+
else:
|
|
81
|
+
mask = np.isfinite(x) & np.isfinite(y) & np.isfinite(z) & np.isfinite(w)
|
|
82
|
+
w = w[mask]
|
|
83
|
+
return x[mask], y[mask], z[mask], w
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
def _downsample_points(
|
|
87
|
+
x: np.ndarray,
|
|
88
|
+
y: np.ndarray,
|
|
89
|
+
z: np.ndarray,
|
|
90
|
+
w: Optional[np.ndarray],
|
|
91
|
+
max_points: Optional[int],
|
|
92
|
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, Optional[np.ndarray]]:
|
|
93
|
+
if max_points is None:
|
|
94
|
+
return x, y, z, w
|
|
95
|
+
max_points = int(max_points)
|
|
96
|
+
if max_points <= 0 or len(x) <= max_points:
|
|
97
|
+
return x, y, z, w
|
|
98
|
+
rng = np.random.default_rng(13)
|
|
99
|
+
idx = rng.choice(len(x), size=max_points, replace=False)
|
|
100
|
+
if w is None:
|
|
101
|
+
return x[idx], y[idx], z[idx], None
|
|
102
|
+
return x[idx], y[idx], z[idx], w[idx]
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
def plot_geo_heatmap(
|
|
106
|
+
df: pd.DataFrame,
|
|
107
|
+
*,
|
|
108
|
+
x_col: str,
|
|
109
|
+
y_col: str,
|
|
110
|
+
value_col: str,
|
|
111
|
+
weight_col: Optional[str] = None,
|
|
112
|
+
bins: int | Tuple[int, int] = 50,
|
|
113
|
+
agg: str = "mean",
|
|
114
|
+
cmap: str = "YlOrRd",
|
|
115
|
+
title: str = "Geo Heatmap",
|
|
116
|
+
ax: Optional[plt.Axes] = None,
|
|
117
|
+
show: bool = False,
|
|
118
|
+
save_path: Optional[str] = None,
|
|
119
|
+
style: Optional[PlotStyle] = None,
|
|
120
|
+
) -> plt.Figure:
|
|
121
|
+
style = style or PlotStyle()
|
|
122
|
+
if agg not in {"mean", "sum"}:
|
|
123
|
+
raise ValueError("agg must be 'mean' or 'sum'.")
|
|
124
|
+
x, y, z, w = _sanitize_geo(df, x_col, y_col, value_col, weight_col)
|
|
125
|
+
|
|
126
|
+
if isinstance(bins, int):
|
|
127
|
+
bins = (bins, bins)
|
|
128
|
+
|
|
129
|
+
if w is None:
|
|
130
|
+
sum_z, x_edges, y_edges = np.histogram2d(x, y, bins=bins, weights=z)
|
|
131
|
+
if agg == "sum":
|
|
132
|
+
grid = sum_z
|
|
133
|
+
else:
|
|
134
|
+
count, _, _ = np.histogram2d(x, y, bins=bins)
|
|
135
|
+
grid = sum_z / np.maximum(count, 1.0)
|
|
136
|
+
else:
|
|
137
|
+
sum_w, x_edges, y_edges = np.histogram2d(x, y, bins=bins, weights=w)
|
|
138
|
+
sum_zw, _, _ = np.histogram2d(x, y, bins=bins, weights=z * w)
|
|
139
|
+
grid = sum_zw / np.maximum(sum_w, EPS)
|
|
140
|
+
|
|
141
|
+
created_fig = ax is None
|
|
142
|
+
if created_fig:
|
|
143
|
+
fig, ax = plt.subplots(figsize=style.figsize)
|
|
144
|
+
else:
|
|
145
|
+
fig = ax.figure
|
|
146
|
+
|
|
147
|
+
im = ax.imshow(
|
|
148
|
+
grid.T,
|
|
149
|
+
origin="lower",
|
|
150
|
+
extent=[x_edges[0], x_edges[-1], y_edges[0], y_edges[-1]],
|
|
151
|
+
aspect="auto",
|
|
152
|
+
cmap=cmap,
|
|
153
|
+
)
|
|
154
|
+
cbar = fig.colorbar(im, ax=ax)
|
|
155
|
+
cbar.set_label(value_col, fontsize=style.label_size)
|
|
156
|
+
cbar.ax.tick_params(labelsize=style.tick_size)
|
|
157
|
+
|
|
158
|
+
ax.set_xlabel(x_col, fontsize=style.label_size)
|
|
159
|
+
ax.set_ylabel(y_col, fontsize=style.label_size)
|
|
160
|
+
ax.set_title(title, fontsize=style.title_size)
|
|
161
|
+
ax.tick_params(axis="both", labelsize=style.tick_size)
|
|
162
|
+
|
|
163
|
+
if created_fig:
|
|
164
|
+
finalize_figure(fig, save_path=save_path, show=show, style=style)
|
|
165
|
+
|
|
166
|
+
return fig
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
def plot_geo_contour(
|
|
170
|
+
df: pd.DataFrame,
|
|
171
|
+
*,
|
|
172
|
+
x_col: str,
|
|
173
|
+
y_col: str,
|
|
174
|
+
value_col: str,
|
|
175
|
+
weight_col: Optional[str] = None,
|
|
176
|
+
max_points: Optional[int] = None,
|
|
177
|
+
levels: int | Sequence[float] = 10,
|
|
178
|
+
cmap: str = "viridis",
|
|
179
|
+
title: str = "Geo Contour",
|
|
180
|
+
ax: Optional[plt.Axes] = None,
|
|
181
|
+
show_points: bool = False,
|
|
182
|
+
show: bool = False,
|
|
183
|
+
save_path: Optional[str] = None,
|
|
184
|
+
style: Optional[PlotStyle] = None,
|
|
185
|
+
) -> plt.Figure:
|
|
186
|
+
style = style or PlotStyle()
|
|
187
|
+
x, y, z, w = _sanitize_geo(df, x_col, y_col, value_col, weight_col)
|
|
188
|
+
x, y, z, w = _downsample_points(x, y, z, w, max_points)
|
|
189
|
+
|
|
190
|
+
if w is not None:
|
|
191
|
+
z = z * w
|
|
192
|
+
|
|
193
|
+
triang = mtri.Triangulation(x, y)
|
|
194
|
+
|
|
195
|
+
created_fig = ax is None
|
|
196
|
+
if created_fig:
|
|
197
|
+
fig, ax = plt.subplots(figsize=style.figsize)
|
|
198
|
+
else:
|
|
199
|
+
fig = ax.figure
|
|
200
|
+
|
|
201
|
+
contour = ax.tricontourf(triang, z, levels=levels, cmap=cmap)
|
|
202
|
+
if show_points:
|
|
203
|
+
ax.scatter(x, y, s=6, c="k", alpha=0.2)
|
|
204
|
+
cbar = fig.colorbar(contour, ax=ax)
|
|
205
|
+
cbar.set_label(value_col, fontsize=style.label_size)
|
|
206
|
+
cbar.ax.tick_params(labelsize=style.tick_size)
|
|
207
|
+
|
|
208
|
+
ax.set_xlabel(x_col, fontsize=style.label_size)
|
|
209
|
+
ax.set_ylabel(y_col, fontsize=style.label_size)
|
|
210
|
+
ax.set_title(title, fontsize=style.title_size)
|
|
211
|
+
ax.tick_params(axis="both", labelsize=style.tick_size)
|
|
212
|
+
|
|
213
|
+
if created_fig:
|
|
214
|
+
finalize_figure(fig, save_path=save_path, show=show, style=style)
|
|
215
|
+
|
|
216
|
+
return fig
|
|
217
|
+
|
|
218
|
+
|
|
219
|
+
def plot_geo_heatmap_on_map(
|
|
220
|
+
df: pd.DataFrame,
|
|
221
|
+
*,
|
|
222
|
+
lon_col: str,
|
|
223
|
+
lat_col: str,
|
|
224
|
+
value_col: str,
|
|
225
|
+
weight_col: Optional[str] = None,
|
|
226
|
+
bins: int | Tuple[int, int] = 100,
|
|
227
|
+
agg: str = "mean",
|
|
228
|
+
cmap: str = "YlOrRd",
|
|
229
|
+
alpha: float = 0.6,
|
|
230
|
+
basemap: Optional[object] = "CartoDB.Positron",
|
|
231
|
+
zoom: Optional[int] = None,
|
|
232
|
+
padding: float = 0.05,
|
|
233
|
+
title: str = "Geo Heatmap (Map)",
|
|
234
|
+
ax: Optional[plt.Axes] = None,
|
|
235
|
+
show_points: bool = False,
|
|
236
|
+
show: bool = False,
|
|
237
|
+
save_path: Optional[str] = None,
|
|
238
|
+
style: Optional[PlotStyle] = None,
|
|
239
|
+
) -> plt.Figure:
|
|
240
|
+
_require_contextily("plot_geo_heatmap_on_map")
|
|
241
|
+
style = style or PlotStyle()
|
|
242
|
+
if agg not in {"mean", "sum"}:
|
|
243
|
+
raise ValueError("agg must be 'mean' or 'sum'.")
|
|
244
|
+
lon, lat, z, w = _sanitize_geo(df, lon_col, lat_col, value_col, weight_col)
|
|
245
|
+
x, y = _lonlat_to_mercator(lon, lat)
|
|
246
|
+
|
|
247
|
+
if isinstance(bins, int):
|
|
248
|
+
bins = (bins, bins)
|
|
249
|
+
|
|
250
|
+
if w is None:
|
|
251
|
+
sum_z, x_edges, y_edges = np.histogram2d(x, y, bins=bins, weights=z)
|
|
252
|
+
if agg == "sum":
|
|
253
|
+
grid = sum_z
|
|
254
|
+
else:
|
|
255
|
+
count, _, _ = np.histogram2d(x, y, bins=bins)
|
|
256
|
+
grid = sum_z / np.maximum(count, 1.0)
|
|
257
|
+
else:
|
|
258
|
+
sum_w, x_edges, y_edges = np.histogram2d(x, y, bins=bins, weights=w)
|
|
259
|
+
sum_zw, _, _ = np.histogram2d(x, y, bins=bins, weights=z * w)
|
|
260
|
+
grid = sum_zw / np.maximum(sum_w, EPS)
|
|
261
|
+
|
|
262
|
+
created_fig = ax is None
|
|
263
|
+
if created_fig:
|
|
264
|
+
fig, ax = plt.subplots(figsize=style.figsize)
|
|
265
|
+
else:
|
|
266
|
+
fig = ax.figure
|
|
267
|
+
|
|
268
|
+
_apply_bounds(ax, x, y, padding)
|
|
269
|
+
ax.set_aspect("equal", adjustable="box")
|
|
270
|
+
|
|
271
|
+
source = _resolve_basemap(basemap)
|
|
272
|
+
if source is not None:
|
|
273
|
+
if zoom is None:
|
|
274
|
+
cx.add_basemap(ax, source=source, crs="EPSG:3857")
|
|
275
|
+
else:
|
|
276
|
+
cx.add_basemap(ax, source=source, crs="EPSG:3857", zoom=zoom)
|
|
277
|
+
|
|
278
|
+
im = ax.imshow(
|
|
279
|
+
grid.T,
|
|
280
|
+
origin="lower",
|
|
281
|
+
extent=[x_edges[0], x_edges[-1], y_edges[0], y_edges[-1]],
|
|
282
|
+
aspect="auto",
|
|
283
|
+
cmap=cmap,
|
|
284
|
+
alpha=alpha,
|
|
285
|
+
)
|
|
286
|
+
if show_points:
|
|
287
|
+
ax.scatter(x, y, s=6, c="k", alpha=0.25)
|
|
288
|
+
|
|
289
|
+
cbar = fig.colorbar(im, ax=ax)
|
|
290
|
+
cbar.set_label(value_col, fontsize=style.label_size)
|
|
291
|
+
cbar.ax.tick_params(labelsize=style.tick_size)
|
|
292
|
+
|
|
293
|
+
ax.set_title(title, fontsize=style.title_size)
|
|
294
|
+
ax.tick_params(axis="both", labelsize=style.tick_size)
|
|
295
|
+
|
|
296
|
+
if created_fig:
|
|
297
|
+
finalize_figure(fig, save_path=save_path, show=show, style=style)
|
|
298
|
+
|
|
299
|
+
return fig
|
|
300
|
+
|
|
301
|
+
|
|
302
|
+
def plot_geo_contour_on_map(
|
|
303
|
+
df: pd.DataFrame,
|
|
304
|
+
*,
|
|
305
|
+
lon_col: str,
|
|
306
|
+
lat_col: str,
|
|
307
|
+
value_col: str,
|
|
308
|
+
weight_col: Optional[str] = None,
|
|
309
|
+
max_points: Optional[int] = None,
|
|
310
|
+
levels: int | Sequence[float] = 10,
|
|
311
|
+
cmap: str = "viridis",
|
|
312
|
+
alpha: float = 0.6,
|
|
313
|
+
basemap: Optional[object] = "CartoDB.Positron",
|
|
314
|
+
zoom: Optional[int] = None,
|
|
315
|
+
padding: float = 0.05,
|
|
316
|
+
title: str = "Geo Contour (Map)",
|
|
317
|
+
ax: Optional[plt.Axes] = None,
|
|
318
|
+
show_points: bool = False,
|
|
319
|
+
show: bool = False,
|
|
320
|
+
save_path: Optional[str] = None,
|
|
321
|
+
style: Optional[PlotStyle] = None,
|
|
322
|
+
) -> plt.Figure:
|
|
323
|
+
_require_contextily("plot_geo_contour_on_map")
|
|
324
|
+
style = style or PlotStyle()
|
|
325
|
+
lon, lat, z, w = _sanitize_geo(df, lon_col, lat_col, value_col, weight_col)
|
|
326
|
+
lon, lat, z, w = _downsample_points(lon, lat, z, w, max_points)
|
|
327
|
+
x, y = _lonlat_to_mercator(lon, lat)
|
|
328
|
+
if w is not None:
|
|
329
|
+
z = z * w
|
|
330
|
+
|
|
331
|
+
created_fig = ax is None
|
|
332
|
+
if created_fig:
|
|
333
|
+
fig, ax = plt.subplots(figsize=style.figsize)
|
|
334
|
+
else:
|
|
335
|
+
fig = ax.figure
|
|
336
|
+
|
|
337
|
+
_apply_bounds(ax, x, y, padding)
|
|
338
|
+
ax.set_aspect("equal", adjustable="box")
|
|
339
|
+
|
|
340
|
+
source = _resolve_basemap(basemap)
|
|
341
|
+
if source is not None:
|
|
342
|
+
if zoom is None:
|
|
343
|
+
cx.add_basemap(ax, source=source, crs="EPSG:3857")
|
|
344
|
+
else:
|
|
345
|
+
cx.add_basemap(ax, source=source, crs="EPSG:3857", zoom=zoom)
|
|
346
|
+
|
|
347
|
+
triang = mtri.Triangulation(x, y)
|
|
348
|
+
contour = ax.tricontourf(triang, z, levels=levels, cmap=cmap, alpha=alpha)
|
|
349
|
+
if show_points:
|
|
350
|
+
ax.scatter(x, y, s=6, c="k", alpha=0.25)
|
|
351
|
+
|
|
352
|
+
cbar = fig.colorbar(contour, ax=ax)
|
|
353
|
+
cbar.set_label(value_col, fontsize=style.label_size)
|
|
354
|
+
cbar.ax.tick_params(labelsize=style.tick_size)
|
|
355
|
+
|
|
356
|
+
ax.set_title(title, fontsize=style.title_size)
|
|
357
|
+
ax.tick_params(axis="both", labelsize=style.tick_size)
|
|
358
|
+
|
|
359
|
+
if created_fig:
|
|
360
|
+
finalize_figure(fig, save_path=save_path, show=show, style=style)
|
|
361
|
+
|
|
362
|
+
return fig
|