ins-pricing 0.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (169) hide show
  1. ins_pricing/README.md +60 -0
  2. ins_pricing/__init__.py +102 -0
  3. ins_pricing/governance/README.md +18 -0
  4. ins_pricing/governance/__init__.py +20 -0
  5. ins_pricing/governance/approval.py +93 -0
  6. ins_pricing/governance/audit.py +37 -0
  7. ins_pricing/governance/registry.py +99 -0
  8. ins_pricing/governance/release.py +159 -0
  9. ins_pricing/modelling/BayesOpt.py +146 -0
  10. ins_pricing/modelling/BayesOpt_USAGE.md +925 -0
  11. ins_pricing/modelling/BayesOpt_entry.py +575 -0
  12. ins_pricing/modelling/BayesOpt_incremental.py +731 -0
  13. ins_pricing/modelling/Explain_Run.py +36 -0
  14. ins_pricing/modelling/Explain_entry.py +539 -0
  15. ins_pricing/modelling/Pricing_Run.py +36 -0
  16. ins_pricing/modelling/README.md +33 -0
  17. ins_pricing/modelling/__init__.py +44 -0
  18. ins_pricing/modelling/bayesopt/__init__.py +98 -0
  19. ins_pricing/modelling/bayesopt/config_preprocess.py +303 -0
  20. ins_pricing/modelling/bayesopt/core.py +1476 -0
  21. ins_pricing/modelling/bayesopt/models.py +2196 -0
  22. ins_pricing/modelling/bayesopt/trainers.py +2446 -0
  23. ins_pricing/modelling/bayesopt/utils.py +1021 -0
  24. ins_pricing/modelling/cli_common.py +136 -0
  25. ins_pricing/modelling/explain/__init__.py +55 -0
  26. ins_pricing/modelling/explain/gradients.py +334 -0
  27. ins_pricing/modelling/explain/metrics.py +176 -0
  28. ins_pricing/modelling/explain/permutation.py +155 -0
  29. ins_pricing/modelling/explain/shap_utils.py +146 -0
  30. ins_pricing/modelling/notebook_utils.py +284 -0
  31. ins_pricing/modelling/plotting/__init__.py +45 -0
  32. ins_pricing/modelling/plotting/common.py +63 -0
  33. ins_pricing/modelling/plotting/curves.py +572 -0
  34. ins_pricing/modelling/plotting/diagnostics.py +139 -0
  35. ins_pricing/modelling/plotting/geo.py +362 -0
  36. ins_pricing/modelling/plotting/importance.py +121 -0
  37. ins_pricing/modelling/run_logging.py +133 -0
  38. ins_pricing/modelling/tests/conftest.py +8 -0
  39. ins_pricing/modelling/tests/test_cross_val_generic.py +66 -0
  40. ins_pricing/modelling/tests/test_distributed_utils.py +18 -0
  41. ins_pricing/modelling/tests/test_explain.py +56 -0
  42. ins_pricing/modelling/tests/test_geo_tokens_split.py +49 -0
  43. ins_pricing/modelling/tests/test_graph_cache.py +33 -0
  44. ins_pricing/modelling/tests/test_plotting.py +63 -0
  45. ins_pricing/modelling/tests/test_plotting_library.py +150 -0
  46. ins_pricing/modelling/tests/test_preprocessor.py +48 -0
  47. ins_pricing/modelling/watchdog_run.py +211 -0
  48. ins_pricing/pricing/README.md +44 -0
  49. ins_pricing/pricing/__init__.py +27 -0
  50. ins_pricing/pricing/calibration.py +39 -0
  51. ins_pricing/pricing/data_quality.py +117 -0
  52. ins_pricing/pricing/exposure.py +85 -0
  53. ins_pricing/pricing/factors.py +91 -0
  54. ins_pricing/pricing/monitoring.py +99 -0
  55. ins_pricing/pricing/rate_table.py +78 -0
  56. ins_pricing/production/__init__.py +21 -0
  57. ins_pricing/production/drift.py +30 -0
  58. ins_pricing/production/monitoring.py +143 -0
  59. ins_pricing/production/scoring.py +40 -0
  60. ins_pricing/reporting/README.md +20 -0
  61. ins_pricing/reporting/__init__.py +11 -0
  62. ins_pricing/reporting/report_builder.py +72 -0
  63. ins_pricing/reporting/scheduler.py +45 -0
  64. ins_pricing/setup.py +41 -0
  65. ins_pricing v2/__init__.py +23 -0
  66. ins_pricing v2/governance/__init__.py +20 -0
  67. ins_pricing v2/governance/approval.py +93 -0
  68. ins_pricing v2/governance/audit.py +37 -0
  69. ins_pricing v2/governance/registry.py +99 -0
  70. ins_pricing v2/governance/release.py +159 -0
  71. ins_pricing v2/modelling/Explain_Run.py +36 -0
  72. ins_pricing v2/modelling/Pricing_Run.py +36 -0
  73. ins_pricing v2/modelling/__init__.py +151 -0
  74. ins_pricing v2/modelling/cli_common.py +141 -0
  75. ins_pricing v2/modelling/config.py +249 -0
  76. ins_pricing v2/modelling/config_preprocess.py +254 -0
  77. ins_pricing v2/modelling/core.py +741 -0
  78. ins_pricing v2/modelling/data_container.py +42 -0
  79. ins_pricing v2/modelling/explain/__init__.py +55 -0
  80. ins_pricing v2/modelling/explain/gradients.py +334 -0
  81. ins_pricing v2/modelling/explain/metrics.py +176 -0
  82. ins_pricing v2/modelling/explain/permutation.py +155 -0
  83. ins_pricing v2/modelling/explain/shap_utils.py +146 -0
  84. ins_pricing v2/modelling/features.py +215 -0
  85. ins_pricing v2/modelling/model_manager.py +148 -0
  86. ins_pricing v2/modelling/model_plotting.py +463 -0
  87. ins_pricing v2/modelling/models.py +2203 -0
  88. ins_pricing v2/modelling/notebook_utils.py +294 -0
  89. ins_pricing v2/modelling/plotting/__init__.py +45 -0
  90. ins_pricing v2/modelling/plotting/common.py +63 -0
  91. ins_pricing v2/modelling/plotting/curves.py +572 -0
  92. ins_pricing v2/modelling/plotting/diagnostics.py +139 -0
  93. ins_pricing v2/modelling/plotting/geo.py +362 -0
  94. ins_pricing v2/modelling/plotting/importance.py +121 -0
  95. ins_pricing v2/modelling/run_logging.py +133 -0
  96. ins_pricing v2/modelling/tests/conftest.py +8 -0
  97. ins_pricing v2/modelling/tests/test_cross_val_generic.py +66 -0
  98. ins_pricing v2/modelling/tests/test_distributed_utils.py +18 -0
  99. ins_pricing v2/modelling/tests/test_explain.py +56 -0
  100. ins_pricing v2/modelling/tests/test_geo_tokens_split.py +49 -0
  101. ins_pricing v2/modelling/tests/test_graph_cache.py +33 -0
  102. ins_pricing v2/modelling/tests/test_plotting.py +63 -0
  103. ins_pricing v2/modelling/tests/test_plotting_library.py +150 -0
  104. ins_pricing v2/modelling/tests/test_preprocessor.py +48 -0
  105. ins_pricing v2/modelling/trainers.py +2447 -0
  106. ins_pricing v2/modelling/utils.py +1020 -0
  107. ins_pricing v2/modelling/watchdog_run.py +211 -0
  108. ins_pricing v2/pricing/__init__.py +27 -0
  109. ins_pricing v2/pricing/calibration.py +39 -0
  110. ins_pricing v2/pricing/data_quality.py +117 -0
  111. ins_pricing v2/pricing/exposure.py +85 -0
  112. ins_pricing v2/pricing/factors.py +91 -0
  113. ins_pricing v2/pricing/monitoring.py +99 -0
  114. ins_pricing v2/pricing/rate_table.py +78 -0
  115. ins_pricing v2/production/__init__.py +21 -0
  116. ins_pricing v2/production/drift.py +30 -0
  117. ins_pricing v2/production/monitoring.py +143 -0
  118. ins_pricing v2/production/scoring.py +40 -0
  119. ins_pricing v2/reporting/__init__.py +11 -0
  120. ins_pricing v2/reporting/report_builder.py +72 -0
  121. ins_pricing v2/reporting/scheduler.py +45 -0
  122. ins_pricing v2/scripts/BayesOpt_incremental.py +722 -0
  123. ins_pricing v2/scripts/Explain_entry.py +545 -0
  124. ins_pricing v2/scripts/__init__.py +1 -0
  125. ins_pricing v2/scripts/train.py +568 -0
  126. ins_pricing v2/setup.py +55 -0
  127. ins_pricing v2/smoke_test.py +28 -0
  128. ins_pricing-0.1.6.dist-info/METADATA +78 -0
  129. ins_pricing-0.1.6.dist-info/RECORD +169 -0
  130. ins_pricing-0.1.6.dist-info/WHEEL +5 -0
  131. ins_pricing-0.1.6.dist-info/top_level.txt +4 -0
  132. user_packages/__init__.py +105 -0
  133. user_packages legacy/BayesOpt.py +5659 -0
  134. user_packages legacy/BayesOpt_entry.py +513 -0
  135. user_packages legacy/BayesOpt_incremental.py +685 -0
  136. user_packages legacy/Pricing_Run.py +36 -0
  137. user_packages legacy/Try/BayesOpt Legacy251213.py +3719 -0
  138. user_packages legacy/Try/BayesOpt Legacy251215.py +3758 -0
  139. user_packages legacy/Try/BayesOpt lagecy251201.py +3506 -0
  140. user_packages legacy/Try/BayesOpt lagecy251218.py +3992 -0
  141. user_packages legacy/Try/BayesOpt legacy.py +3280 -0
  142. user_packages legacy/Try/BayesOpt.py +838 -0
  143. user_packages legacy/Try/BayesOptAll.py +1569 -0
  144. user_packages legacy/Try/BayesOptAllPlatform.py +909 -0
  145. user_packages legacy/Try/BayesOptCPUGPU.py +1877 -0
  146. user_packages legacy/Try/BayesOptSearch.py +830 -0
  147. user_packages legacy/Try/BayesOptSearchOrigin.py +829 -0
  148. user_packages legacy/Try/BayesOptV1.py +1911 -0
  149. user_packages legacy/Try/BayesOptV10.py +2973 -0
  150. user_packages legacy/Try/BayesOptV11.py +3001 -0
  151. user_packages legacy/Try/BayesOptV12.py +3001 -0
  152. user_packages legacy/Try/BayesOptV2.py +2065 -0
  153. user_packages legacy/Try/BayesOptV3.py +2209 -0
  154. user_packages legacy/Try/BayesOptV4.py +2342 -0
  155. user_packages legacy/Try/BayesOptV5.py +2372 -0
  156. user_packages legacy/Try/BayesOptV6.py +2759 -0
  157. user_packages legacy/Try/BayesOptV7.py +2832 -0
  158. user_packages legacy/Try/BayesOptV8Codex.py +2731 -0
  159. user_packages legacy/Try/BayesOptV8Gemini.py +2614 -0
  160. user_packages legacy/Try/BayesOptV9.py +2927 -0
  161. user_packages legacy/Try/BayesOpt_entry legacy.py +313 -0
  162. user_packages legacy/Try/ModelBayesOptSearch.py +359 -0
  163. user_packages legacy/Try/ResNetBayesOptSearch.py +249 -0
  164. user_packages legacy/Try/XgbBayesOptSearch.py +121 -0
  165. user_packages legacy/Try/xgbbayesopt.py +523 -0
  166. user_packages legacy/__init__.py +19 -0
  167. user_packages legacy/cli_common.py +124 -0
  168. user_packages legacy/notebook_utils.py +228 -0
  169. user_packages legacy/watchdog_run.py +202 -0
@@ -0,0 +1,2209 @@
1
+ # 数据在CPU和GPU之间传输会带来较大开销,但可以多CUDA流同时传输数据和计算,从而实现更大数据集的操作。
2
+
3
+ import pandas as pd
4
+ import numpy as np
5
+ from random import sample
6
+ from re import X
7
+ from turtle import st
8
+ from uuid import RESERVED_FUTURE
9
+ import numpy as np # 1.26.2
10
+ import pandas as pd # 2.2.3
11
+ import torch # 版本: 1.10.1+cu111
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+ import optuna # 4.3.0
15
+ import xgboost as xgb # 1.7.0
16
+ import matplotlib.pyplot as plt
17
+ import os
18
+ import joblib
19
+ import copy
20
+ import shap
21
+ import math
22
+ import gc
23
+ from dataclasses import dataclass
24
+ from pathlib import Path
25
+ from typing import Any, Dict, List, Optional
26
+
27
+ from torch.utils.data import Dataset, DataLoader, TensorDataset
28
+ from torch.cuda.amp import autocast, GradScaler
29
+ from torch.nn.utils import clip_grad_norm_
30
+ from sklearn.model_selection import ShuffleSplit, cross_val_score # 1.2.2
31
+ from sklearn.preprocessing import StandardScaler
32
+ from sklearn.metrics import make_scorer, mean_tweedie_deviance
33
+
34
+
35
+ def ensure_parent_dir(file_path: str) -> None:
36
+ # 若目标文件所在目录不存在则自动创建
37
+ directory = os.path.dirname(file_path)
38
+ if directory:
39
+ os.makedirs(directory, exist_ok=True)
40
+
41
+
42
+ # 定义在 PyTorch 环境下的 Tweedie 偏差损失函数
43
+ # 参考文档:https://scikit-learn.org/stable/modules/model_evaluation.html#mean-poisson-gamma-and-tweedie-deviances
44
+
45
+
46
+ def tweedie_loss(pred, target, p=1.5, eps=1e-6, max_clip=1e6):
47
+ # 为确保稳定性先将预测值裁剪为正数
48
+ pred_clamped = torch.clamp(pred, min=eps)
49
+ # 计算 Tweedie 偏差的各部分
50
+ if p == 1:
51
+ # 对应泊松分布
52
+ term1 = target * torch.log(target / pred_clamped + eps)
53
+ term2 = -target + pred_clamped
54
+ term3 = 0
55
+ elif p == 0:
56
+ # 对应高斯分布
57
+ term1 = 0.5 * torch.pow(target - pred_clamped, 2)
58
+ term2 = 0
59
+ term3 = 0
60
+ elif p == 2:
61
+ # 对应伽马分布
62
+ term1 = torch.log(pred_clamped / target + eps)
63
+ term2 = -target / pred_clamped + 1
64
+ term3 = 0
65
+ else:
66
+ term1 = torch.pow(target, 2 - p) / ((1 - p) * (2 - p))
67
+ term2 = target * torch.pow(pred_clamped, 1 - p) / (1 - p)
68
+ term3 = torch.pow(pred_clamped, 2 - p) / (2 - p)
69
+ # Tweedie 负对数似然(忽略常数项)
70
+ return torch.nan_to_num(2 * (term1 - term2 + term3), nan=eps, posinf=max_clip, neginf=-max_clip)
71
+
72
+ # 定义释放CUDA内存函数
73
+
74
+
75
+ def free_cuda():
76
+ print(">>> Moving all models to CPU...")
77
+ for obj in gc.get_objects():
78
+ try:
79
+ if hasattr(obj, "to") and callable(obj.to):
80
+ # 跳过 torch.device 等不可移动对象
81
+ obj.to("cpu")
82
+ except:
83
+ pass
84
+
85
+ print(">>> Deleting tensors, optimizers, dataloaders...")
86
+ gc.collect()
87
+
88
+ print(">>> Emptying CUDA cache...")
89
+ torch.cuda.empty_cache()
90
+ torch.cuda.synchronize()
91
+
92
+ print(">>> CUDA memory freed.")
93
+
94
+
95
+ # 定义分箱函数
96
+
97
+
98
+ def split_data(data, col_nme, wgt_nme, n_bins=10):
99
+ data.sort_values(by=col_nme, ascending=True, inplace=True)
100
+ data['cum_weight'] = data[wgt_nme].cumsum()
101
+ w_sum = data[wgt_nme].sum()
102
+ data.loc[:, 'bins'] = np.floor(data['cum_weight'] * float(n_bins) / w_sum)
103
+ data.loc[(data['bins'] == n_bins), 'bins'] = n_bins - 1
104
+ return data.groupby(['bins'], observed=True).sum(numeric_only=True)
105
+
106
+ # 定义提纯曲线(Lift)绘制函数
107
+
108
+
109
+ def plot_lift_list(pred_model, w_pred_list, w_act_list,
110
+ weight_list, tgt_nme, n_bins=10,
111
+ fig_nme='Lift Chart'):
112
+ lift_data = pd.DataFrame()
113
+ lift_data.loc[:, 'pred'] = pred_model
114
+ lift_data.loc[:, 'w_pred'] = w_pred_list
115
+ lift_data.loc[:, 'act'] = w_act_list
116
+ lift_data.loc[:, 'weight'] = weight_list
117
+ plot_data = split_data(lift_data, 'pred', 'weight', n_bins)
118
+ plot_data['exp_v'] = plot_data['w_pred'] / plot_data['weight']
119
+ plot_data['act_v'] = plot_data['act'] / plot_data['weight']
120
+ plot_data.reset_index(inplace=True)
121
+ fig = plt.figure(figsize=(7, 5))
122
+ ax = fig.add_subplot(111)
123
+ ax.plot(plot_data.index, plot_data['act_v'],
124
+ label='Actual', color='red')
125
+ ax.plot(plot_data.index, plot_data['exp_v'],
126
+ label='Predicted', color='blue')
127
+ ax.set_title(
128
+ 'Lift Chart of %s' % tgt_nme, fontsize=8)
129
+ plt.xticks(plot_data.index,
130
+ plot_data.index,
131
+ rotation=90, fontsize=6)
132
+ plt.yticks(fontsize=6)
133
+ plt.legend(loc='upper left',
134
+ fontsize=5, frameon=False)
135
+ plt.margins(0.05)
136
+ ax2 = ax.twinx()
137
+ ax2.bar(plot_data.index, plot_data['weight'],
138
+ alpha=0.5, color='seagreen',
139
+ label='Earned Exposure')
140
+ plt.yticks(fontsize=6)
141
+ plt.legend(loc='upper right',
142
+ fontsize=5, frameon=False)
143
+ plt.subplots_adjust(wspace=0.3)
144
+ save_path = os.path.join(
145
+ os.getcwd(), 'plot', f'05_{tgt_nme}_{fig_nme}.png')
146
+ ensure_parent_dir(save_path)
147
+ plt.savefig(save_path, dpi=300)
148
+ plt.close(fig)
149
+
150
+ # 定义双提纯曲线绘制函数
151
+
152
+
153
+ def plot_dlift_list(pred_model_1, pred_model_2,
154
+ model_nme_1, model_nme_2,
155
+ tgt_nme,
156
+ w_list, w_act_list, n_bins=10,
157
+ fig_nme='Double Lift Chart'):
158
+ lift_data = pd.DataFrame()
159
+ lift_data.loc[:, 'pred1'] = pred_model_1
160
+ lift_data.loc[:, 'pred2'] = pred_model_2
161
+ lift_data.loc[:, 'diff_ly'] = lift_data['pred1'] / lift_data['pred2']
162
+ lift_data.loc[:, 'act'] = w_act_list
163
+ lift_data.loc[:, 'weight'] = w_list
164
+ lift_data.loc[:, 'w_pred1'] = lift_data['pred1'] * lift_data['weight']
165
+ lift_data.loc[:, 'w_pred2'] = lift_data['pred2'] * lift_data['weight']
166
+ plot_data = split_data(lift_data, 'diff_ly', 'weight', n_bins)
167
+ plot_data['exp_v1'] = plot_data['w_pred1'] / plot_data['act']
168
+ plot_data['exp_v2'] = plot_data['w_pred2'] / plot_data['act']
169
+ plot_data['act_v'] = plot_data['act']/plot_data['act']
170
+ plot_data.reset_index(inplace=True)
171
+ fig = plt.figure(figsize=(7, 5))
172
+ ax = fig.add_subplot(111)
173
+ ax.plot(plot_data.index, plot_data['act_v'],
174
+ label='Actual', color='red')
175
+ ax.plot(plot_data.index, plot_data['exp_v1'],
176
+ label=model_nme_1, color='blue')
177
+ ax.plot(plot_data.index, plot_data['exp_v2'],
178
+ label=model_nme_2, color='black')
179
+ ax.set_title(
180
+ 'Double Lift Chart of %s' % tgt_nme, fontsize=8)
181
+ plt.xticks(plot_data.index,
182
+ plot_data.index,
183
+ rotation=90, fontsize=6)
184
+ plt.xlabel('%s / %s' % (model_nme_1, model_nme_2), fontsize=6)
185
+ plt.yticks(fontsize=6)
186
+ plt.legend(loc='upper left',
187
+ fontsize=5, frameon=False)
188
+ plt.margins(0.1)
189
+ plt.subplots_adjust(bottom=0.25, top=0.95, right=0.8)
190
+ ax2 = ax.twinx()
191
+ ax2.bar(plot_data.index, plot_data['weight'],
192
+ alpha=0.5, color='seagreen',
193
+ label='Earned Exposure')
194
+ plt.yticks(fontsize=6)
195
+ plt.legend(loc='upper right',
196
+ fontsize=5, frameon=False)
197
+ plt.subplots_adjust(wspace=0.3)
198
+ save_path = os.path.join(
199
+ os.getcwd(), 'plot', f'06_{tgt_nme}_{fig_nme}.png')
200
+ ensure_parent_dir(save_path)
201
+ plt.savefig(save_path, dpi=300)
202
+ plt.close(fig)
203
+
204
+
205
+ # 开始定义ResNet模型结构
206
+ # 残差块:两层线性 + ReLU + 残差连接
207
+ # ResBlock 继承 nn.Module
208
+ class ResBlock(nn.Module):
209
+ def __init__(self, dim: int, dropout: float = 0.1,
210
+ use_layernorm: bool = False, residual_scale: float = 0.1
211
+ ):
212
+ super().__init__()
213
+ self.use_layernorm = use_layernorm
214
+
215
+ if use_layernorm:
216
+ Norm = nn.LayerNorm # 对最后一维做归一化
217
+ else:
218
+ def Norm(d): return nn.BatchNorm1d(d) # 保留一个开关,想试 BN 时也能用
219
+
220
+ self.norm1 = Norm(dim)
221
+ self.fc1 = nn.Linear(dim, dim, bias=True)
222
+ self.act = nn.ReLU(inplace=True)
223
+ self.dropout = nn.Dropout(dropout) if dropout > 0.0 else nn.Identity()
224
+ self.norm2 = Norm(dim)
225
+ self.fc2 = nn.Linear(dim, dim, bias=True)
226
+
227
+ # 残差缩放,防止一开始就把主干搞炸
228
+ self.res_scale = nn.Parameter(
229
+ torch.tensor(residual_scale, dtype=torch.float32)
230
+ )
231
+
232
+ def forward(self, x):
233
+ # 前置激活结构
234
+ out = self.norm1(x)
235
+ out = self.fc1(out)
236
+ out = self.act(out)
237
+ out = self.dropout(out)
238
+ out = self.norm2(out)
239
+ out = self.fc2(out)
240
+ # 残差缩放再相加
241
+ return F.relu(x + self.res_scale * out)
242
+
243
+ # ResNetSequential 继承 nn.Module,定义整个网络结构
244
+
245
+
246
+ class ResNetSequential(nn.Module):
247
+ # 输入张量形状:(batch, input_dim)
248
+ # 网络结构:全连接 + 归一化 + ReLU,再堆叠若干残差块,最后输出 Softplus
249
+
250
+ def __init__(self, input_dim: int, hidden_dim: int = 64, block_num: int = 2,
251
+ use_layernorm: bool = True, dropout: float = 0.1,
252
+ residual_scale: float = 0.1):
253
+ super(ResNetSequential, self).__init__()
254
+
255
+ self.net = nn.Sequential()
256
+ self.net.add_module('fc1', nn.Linear(input_dim, hidden_dim))
257
+
258
+ if use_layernorm:
259
+ self.net.add_module('norm1', nn.LayerNorm(hidden_dim))
260
+ else:
261
+ self.net.add_module('norm1', nn.BatchNorm1d(hidden_dim))
262
+
263
+ self.net.add_module('relu1', nn.ReLU(inplace=True))
264
+
265
+ # 多个残差块
266
+ for i in range(block_num):
267
+ self.net.add_module(
268
+ f'ResBlk_{i+1}',
269
+ ResBlock(
270
+ hidden_dim,
271
+ dropout=dropout,
272
+ use_layernorm=use_layernorm,
273
+ residual_scale=residual_scale)
274
+ )
275
+
276
+ self.net.add_module('fc_out', nn.Linear(hidden_dim, 1))
277
+ self.net.add_module('softplus', nn.Softplus())
278
+
279
+ def forward(self, x):
280
+ return self.net(x)
281
+
282
+ # 定义ResNet模型的Scikit-Learn接口类
283
+
284
+
285
+ class ResNetSklearn(nn.Module):
286
+ def __init__(self, model_nme: str, input_dim: int, hidden_dim: int = 64,
287
+ block_num: int = 2, batch_num: int = 100, epochs: int = 100,
288
+ tweedie_power: float = 1.5, learning_rate: float = 0.01, patience: int = 10,
289
+ use_layernorm: bool = True, dropout: float = 0.1,
290
+ residual_scale: float = 0.1):
291
+ super(ResNetSklearn, self).__init__()
292
+
293
+ self.input_dim = input_dim
294
+ self.hidden_dim = hidden_dim
295
+ self.block_num = block_num
296
+ self.batch_num = batch_num
297
+ self.epochs = epochs
298
+ self.model_nme = model_nme
299
+ self.learning_rate = learning_rate
300
+ self.patience = patience
301
+ self.use_layernorm = use_layernorm
302
+ self.dropout = dropout
303
+ self.residual_scale = residual_scale
304
+
305
+ # 设备选择:cuda > mps > cpu
306
+ if torch.cuda.is_available():
307
+ self.device = torch.device('cuda')
308
+ elif torch.backends.mps.is_available():
309
+ self.device = torch.device('mps')
310
+ else:
311
+ self.device = torch.device('cpu')
312
+
313
+ # Tweedie 幂指数设定
314
+ if 'f' in self.model_nme:
315
+ self.tw_power = 1
316
+ elif 's' in self.model_nme:
317
+ self.tw_power = 2
318
+ else:
319
+ self.tw_power = tweedie_power
320
+
321
+ # 搭建网络
322
+ self.resnet = ResNetSequential(
323
+ self.input_dim,
324
+ self.hidden_dim,
325
+ self.block_num,
326
+ use_layernorm=self.use_layernorm,
327
+ dropout=self.dropout,
328
+ residual_scale=self.residual_scale
329
+ ).to(self.device)
330
+
331
+ def fit(self, X_train, y_train, w_train=None,
332
+ X_val=None, y_val=None, w_val=None):
333
+
334
+ # === 1. 训练集:先留在 CPU,交给 DataLoader 批量搬运到 GPU ===
335
+ # 注意:从 pandas DataFrame 转 tensor 时要复制数据,避免后续视图修改
336
+ X_tensor = torch.tensor(X_train.values, dtype=torch.float32)
337
+ y_tensor = torch.tensor(
338
+ y_train.values, dtype=torch.float32).view(-1, 1)
339
+ if w_train is not None:
340
+ w_tensor = torch.tensor(
341
+ w_train.values, dtype=torch.float32).view(-1, 1)
342
+ else:
343
+ w_tensor = torch.ones_like(y_tensor)
344
+
345
+ # === 2. 验证集:先在 CPU 上构造,后续一次性搬到目标设备 ===
346
+ has_val = X_val is not None and y_val is not None
347
+ if has_val:
348
+ X_val_tensor = torch.tensor(X_val.values, dtype=torch.float32)
349
+ y_val_tensor = torch.tensor(
350
+ y_val.values, dtype=torch.float32).view(-1, 1)
351
+ if w_val is not None:
352
+ w_val_tensor = torch.tensor(
353
+ w_val.values, dtype=torch.float32).view(-1, 1)
354
+ else:
355
+ w_val_tensor = torch.ones_like(y_val_tensor)
356
+ else:
357
+ X_val_tensor = y_val_tensor = w_val_tensor = None
358
+
359
+ # === 3. 构建 DataLoader ===
360
+ dataset = TensorDataset(X_tensor, y_tensor, w_tensor)
361
+ batch_size = max(
362
+ 4096,
363
+ int((self.learning_rate / (1e-4)) ** 0.5 *
364
+ (X_train.shape[0] / self.batch_num))
365
+ )
366
+
367
+ dataloader = DataLoader(
368
+ dataset,
369
+ batch_size=batch_size,
370
+ shuffle=True,
371
+ num_workers=1, # 表格数据通常 0~1 个线程即可
372
+ pin_memory=(self.device.type == 'cuda')
373
+ )
374
+
375
+ # === 4. 优化器与 AMP ===
376
+ # 建议使用 Adam + AMP 主要是为了稳定损失,同时保持 GPU 性能
377
+ optimizer = torch.optim.Adam(
378
+ self.resnet.parameters(), lr=self.learning_rate)
379
+ scaler = GradScaler(enabled=(self.device.type == 'cuda'))
380
+
381
+ # === 5. 早停机制 ===
382
+ best_loss, patience_counter = float('inf'), 0
383
+ best_model_state = None
384
+
385
+ # 若存在验证集则一次性搬到目标设备
386
+ if has_val:
387
+ X_val_dev = X_val_tensor.to(self.device, non_blocking=True)
388
+ y_val_dev = y_val_tensor.to(self.device, non_blocking=True)
389
+ w_val_dev = w_val_tensor.to(self.device, non_blocking=True)
390
+
391
+ # === 6. 训练循环 ===
392
+ for epoch in range(1, self.epochs + 1):
393
+ self.resnet.train()
394
+ for X_batch, y_batch, w_batch in dataloader:
395
+ optimizer.zero_grad()
396
+
397
+ X_batch = X_batch.to(self.device, non_blocking=True)
398
+ y_batch = y_batch.to(self.device, non_blocking=True)
399
+ w_batch = w_batch.to(self.device, non_blocking=True)
400
+
401
+ with autocast(enabled=(self.device.type == 'cuda')):
402
+ y_pred = self.resnet(X_batch)
403
+ y_pred = torch.clamp(y_pred, min=1e-6)
404
+
405
+ losses = tweedie_loss(
406
+ y_pred, y_batch, p=self.tw_power).view(-1)
407
+ weighted_loss = (losses * w_batch.view(-1)
408
+ ).sum() / w_batch.sum()
409
+
410
+ scaler.scale(weighted_loss).backward()
411
+
412
+ if self.device.type == 'cuda':
413
+ scaler.unscale_(optimizer)
414
+ clip_grad_norm_(self.resnet.parameters(), max_norm=1.0)
415
+
416
+ scaler.step(optimizer)
417
+ scaler.update()
418
+
419
+ # === 7. 验证损失与早停判断 ===
420
+ if has_val:
421
+ self.resnet.eval()
422
+ with torch.no_grad(), autocast(enabled=(self.device.type == 'cuda')):
423
+ y_val_pred = self.resnet(X_val_dev)
424
+ y_val_pred = torch.clamp(y_val_pred, min=1e-6)
425
+
426
+ val_loss_values = tweedie_loss(
427
+ y_val_pred, y_val_dev, p=self.tw_power
428
+ ).view(-1)
429
+ val_weighted_loss = (
430
+ val_loss_values * w_val_dev.view(-1)
431
+ ).sum() / w_val_dev.sum()
432
+
433
+ if val_weighted_loss < best_loss:
434
+ best_loss = val_weighted_loss
435
+ patience_counter = 0
436
+ best_model_state = copy.deepcopy(self.resnet.state_dict())
437
+ else:
438
+ patience_counter += 1
439
+
440
+ if patience_counter >= self.patience and best_model_state is not None:
441
+ self.resnet.load_state_dict(best_model_state)
442
+ break
443
+ if has_val and best_model_state is not None:
444
+ self.resnet.load_state_dict(best_model_state)
445
+
446
+ # ---------------- 预测 ----------------
447
+
448
+ def predict(self, X_test):
449
+ self.resnet.eval()
450
+ with torch.no_grad():
451
+ X_tensor = torch.tensor(
452
+ X_test.values, dtype=torch.float32).to(self.device)
453
+ y_pred = self.resnet(X_tensor).cpu().numpy()
454
+
455
+ y_pred = np.clip(y_pred, 1e-6, None)
456
+ return y_pred.flatten()
457
+
458
+ # ---------------- 设置参数 ----------------
459
+
460
+ def set_params(self, params):
461
+ for key, value in params.items():
462
+ if hasattr(self, key):
463
+ setattr(self, key, value)
464
+ else:
465
+ raise ValueError(f"Parameter {key} not found in model.")
466
+
467
+ # 开始定义FT Transformer模型结构
468
+
469
+
470
+ class FeatureTokenizer(nn.Module):
471
+ # 将数值与类别特征映射为 token,输出形状 (batch, token 数, d_model)
472
+ # 设定:
473
+ # - X_num 表示数值特征,形状 (batch, num_numeric)
474
+ # - X_cat 表示类别特征,形状 (batch, num_categorical),每列为编码后的整数标签 [0, card-1]
475
+
476
+ def __init__(self, num_numeric: int, cat_cardinalities, d_model: int):
477
+ super().__init__()
478
+
479
+ self.num_numeric = num_numeric
480
+ self.has_numeric = num_numeric > 0
481
+
482
+ if self.has_numeric:
483
+ self.num_linear = nn.Linear(num_numeric, d_model)
484
+
485
+ self.embeddings = nn.ModuleList([
486
+ nn.Embedding(card, d_model) for card in cat_cardinalities
487
+ ])
488
+
489
+ def forward(self, X_num, X_cat):
490
+ tokens = []
491
+
492
+ if self.has_numeric:
493
+ # 数值特征映射为单个 token
494
+ num_token = self.num_linear(X_num) # 形状 (batch, d_model)
495
+ tokens.append(num_token)
496
+
497
+ # 每个类别特征生成一个嵌入 token
498
+ for i, emb in enumerate(self.embeddings):
499
+ tok = emb(X_cat[:, i]) # 形状 (batch, d_model)
500
+ tokens.append(tok)
501
+
502
+ # 最终堆叠为 (batch, token 数, d_model)
503
+ x = torch.stack(tokens, dim=1)
504
+ return x
505
+
506
+ # 定义具有残差缩放的Encoder层
507
+
508
+
509
+ class ScaledTransformerEncoderLayer(nn.Module):
510
+ def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048,
511
+ dropout: float = 0.1, residual_scale_attn: float = 1.0,
512
+ residual_scale_ffn: float = 1.0, norm_first: bool = True,
513
+ ):
514
+ super().__init__()
515
+ self.self_attn = nn.MultiheadAttention(
516
+ embed_dim=d_model,
517
+ num_heads=nhead,
518
+ dropout=dropout,
519
+ batch_first=True
520
+ )
521
+
522
+ # 前馈网络部分
523
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
524
+ self.dropout = nn.Dropout(dropout)
525
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
526
+
527
+ # 归一化与 Dropout
528
+ self.norm1 = nn.LayerNorm(d_model)
529
+ self.norm2 = nn.LayerNorm(d_model)
530
+ self.dropout1 = nn.Dropout(dropout)
531
+ self.dropout2 = nn.Dropout(dropout)
532
+
533
+ self.activation = nn.GELU()
534
+ self.norm_first = norm_first
535
+
536
+ # 残差缩放系数
537
+ self.res_scale_attn = residual_scale_attn
538
+ self.res_scale_ffn = residual_scale_ffn
539
+
540
+ def forward(self, src, src_mask=None, src_key_padding_mask=None):
541
+ # 输入张量形状:(batch, 序列长度, d_model)
542
+ x = src
543
+
544
+ if self.norm_first:
545
+ # 先归一化再做注意力
546
+ x = x + self._sa_block(self.norm1(x), src_mask,
547
+ src_key_padding_mask)
548
+ x = x + self._ff_block(self.norm2(x))
549
+ else:
550
+ # 后归一化(一般不启用)
551
+ x = self.norm1(
552
+ x + self._sa_block(x, src_mask, src_key_padding_mask))
553
+ x = self.norm2(x + self._ff_block(x))
554
+
555
+ return x
556
+
557
+ def _sa_block(self, x, attn_mask, key_padding_mask):
558
+ # 自注意力并附带残差缩放
559
+ attn_out, _ = self.self_attn(
560
+ x, x, x,
561
+ attn_mask=attn_mask,
562
+ key_padding_mask=key_padding_mask,
563
+ need_weights=False
564
+ )
565
+ return self.res_scale_attn * self.dropout1(attn_out)
566
+
567
+ def _ff_block(self, x):
568
+ # 前馈网络并附带残差缩放
569
+ x2 = self.linear2(self.dropout(self.activation(self.linear1(x))))
570
+ return self.res_scale_ffn * self.dropout2(x2)
571
+
572
+ # 定义FT-Transformer核心模型
573
+
574
+
575
+ class FTTransformerCore(nn.Module):
576
+ # 最小可用版本的 FT-Transformer:
577
+ # - FeatureTokenizer:将数值与类别特征转换为 token
578
+ # - TransformerEncoder:捕捉特征之间的交互
579
+ # - 池化 + MLP + Softplus:保证输出为正值(适配 Tweedie/Gamma)
580
+
581
+ def __init__(self, num_numeric: int, cat_cardinalities, d_model: int = 64,
582
+ n_heads: int = 8, n_layers: int = 4, dropout: float = 0.1,
583
+ ):
584
+ super().__init__()
585
+
586
+ self.tokenizer = FeatureTokenizer(
587
+ num_numeric=num_numeric,
588
+ cat_cardinalities=cat_cardinalities,
589
+ d_model=d_model
590
+ )
591
+ scale = 1.0 / math.sqrt(n_layers) # 推荐一个默认值
592
+ encoder_layer = ScaledTransformerEncoderLayer(
593
+ d_model=d_model,
594
+ nhead=n_heads,
595
+ dim_feedforward=d_model * 4,
596
+ dropout=dropout,
597
+ residual_scale_attn=scale,
598
+ residual_scale_ffn=scale,
599
+ norm_first=True,
600
+ )
601
+ self.encoder = nn.TransformerEncoder(
602
+ encoder_layer,
603
+ num_layers=n_layers
604
+ )
605
+ self.n_layers = n_layers
606
+
607
+ self.head = nn.Sequential(
608
+ nn.LayerNorm(d_model),
609
+ nn.Linear(d_model, d_model),
610
+ nn.GELU(),
611
+ nn.Linear(d_model, 1),
612
+ nn.Softplus() # 保证输出为正,适合 Tweedie / Gamma
613
+ )
614
+
615
+ def forward(self, X_num, X_cat):
616
+
617
+ # X_num: (batch, 数值特征数),float32
618
+ # X_cat: (batch, 类别特征数),long
619
+
620
+ tokens = self.tokenizer(X_num, X_cat) # 形状 (batch, token 数, d_model)
621
+ x = self.encoder(tokens) # 形状 (batch, token 数, d_model)
622
+
623
+ # 对 token 做平均池化
624
+ x = x.mean(dim=1) # 形状 (batch, d_model)
625
+
626
+ out = self.head(x) # 形状 (batch, 1),Softplus 保证为正
627
+ return out
628
+
629
+ # 定义TabularDataset类
630
+
631
+
632
+ class TabularDataset(Dataset):
633
+ def __init__(self, X_num, X_cat, y, w):
634
+
635
+ # X_num: torch.float32, 形状 (N, 数值特征数)
636
+ # X_cat: torch.long, 形状 (N, 类别特征数)
637
+ # y: torch.float32, 形状 (N, 1)
638
+ # w: torch.float32, 形状 (N, 1)
639
+
640
+ self.X_num = X_num
641
+ self.X_cat = X_cat
642
+ self.y = y
643
+ self.w = w
644
+
645
+ def __len__(self):
646
+ return self.y.shape[0]
647
+
648
+ def __getitem__(self, idx):
649
+ return (
650
+ self.X_num[idx],
651
+ self.X_cat[idx],
652
+ self.y[idx],
653
+ self.w[idx],
654
+ )
655
+
656
+ # 定义FTTransformer的Scikit-Learn接口类
657
+
658
+
659
+ class FTTransformerSklearn(nn.Module):
660
+
661
+ # sklearn 风格包装:
662
+ # - num_cols:数值特征列名列表
663
+ # - cat_cols:类别特征列名列表(需提前做标签编码,取值 [0, n_classes-1])
664
+
665
+ def __init__(self, model_nme: str, num_cols, cat_cols, d_model: int = 64, n_heads: int = 8,
666
+ n_layers: int = 4, dropout: float = 0.1, batch_num: int = 100, epochs: int = 100,
667
+ tweedie_power: float = 1.5, learning_rate: float = 1e-3, patience: int = 10,
668
+ ):
669
+ super().__init__()
670
+
671
+ self.model_nme = model_nme
672
+ self.num_cols = list(num_cols)
673
+ self.cat_cols = list(cat_cols)
674
+ self.d_model = d_model
675
+ self.n_heads = n_heads
676
+ self.n_layers = n_layers
677
+ self.dropout = dropout
678
+ self.batch_num = batch_num
679
+ self.epochs = epochs
680
+ self.learning_rate = learning_rate
681
+ self.patience = patience
682
+ if 'f' in self.model_nme:
683
+ self.tw_power = 1.0
684
+ elif 's' in self.model_nme:
685
+ self.tw_power = 2.0
686
+ else:
687
+ self.tw_power = tweedie_power
688
+ if torch.cuda.is_available():
689
+ self.device = torch.device("cuda")
690
+ elif torch.backends.mps.is_available():
691
+ self.device = torch.device("mps")
692
+ else:
693
+ self.device = torch.device("cpu")
694
+ self.cat_cardinalities = None
695
+ self.cat_categories = {}
696
+ self.ft = None
697
+
698
+ def _build_model(self, X_train):
699
+ num_numeric = len(self.num_cols)
700
+ cat_cardinalities = []
701
+
702
+ for col in self.cat_cols:
703
+ cats = X_train[col].astype('category')
704
+ categories = cats.cat.categories
705
+ self.cat_categories[col] = categories # 保存训练集类别全集
706
+
707
+ card = len(categories) + 1 # 多预留 1 类给“未知/缺失”
708
+ cat_cardinalities.append(card)
709
+
710
+ self.cat_cardinalities = cat_cardinalities
711
+
712
+ self.ft = FTTransformerCore(
713
+ num_numeric=num_numeric,
714
+ cat_cardinalities=cat_cardinalities,
715
+ d_model=self.d_model,
716
+ n_heads=self.n_heads,
717
+ n_layers=self.n_layers,
718
+ dropout=self.dropout,
719
+ ).to(self.device)
720
+
721
+ def _encode_cats(self, X):
722
+ # 输入 DataFrame 至少需要包含所有类别特征列
723
+ # 返回形状 (N, 类别特征数) 的 int64 数组
724
+
725
+ if not self.cat_cols:
726
+ return np.zeros((len(X), 0), dtype='int64')
727
+
728
+ X_cat_list = []
729
+ for col in self.cat_cols:
730
+ # 使用训练阶段记录的类别全集
731
+ categories = self.cat_categories[col]
732
+ # 按固定类别构造 Categorical
733
+ cats = pd.Categorical(X[col], categories=categories)
734
+ codes = cats.codes.astype('int64', copy=True) # -1 表示未知或缺失
735
+ # 未知或缺失映射到额外的“未知”索引 len(categories)
736
+ codes[codes < 0] = len(categories)
737
+ X_cat_list.append(codes)
738
+
739
+ X_cat_np = np.stack(X_cat_list, axis=1) # 形状 (N, 类别特征数)
740
+ return X_cat_np
741
+
742
+ def fit(self, X_train, y_train, w_train=None,
743
+ X_val=None, y_val=None, w_val=None):
744
+
745
+ # 首次拟合时需要构建底层模型结构
746
+ if self.ft is None:
747
+ self._build_model(X_train)
748
+
749
+ # --- 构建训练张量(全部先放在 CPU,后续按批搬运) ---
750
+ # 复制数据确保与原 DataFrame 脱钩,这样标准化或采样不会污染原始数据
751
+ X_num_train = X_train[self.num_cols].to_numpy(
752
+ dtype=np.float32, copy=True)
753
+ X_num_train = torch.tensor(
754
+ X_num_train,
755
+ dtype=torch.float32
756
+ )
757
+
758
+ if self.cat_cols:
759
+ X_cat_train_np = self._encode_cats(X_train)
760
+ X_cat_train = torch.tensor(X_cat_train_np, dtype=torch.long)
761
+ else:
762
+ X_cat_train = torch.zeros(
763
+ (X_num_train.size(0), 0), dtype=torch.long)
764
+
765
+ y_tensor = torch.tensor(
766
+ y_train.values,
767
+ dtype=torch.float32
768
+ ).view(-1, 1)
769
+
770
+ if w_train is not None:
771
+ w_tensor = torch.tensor(
772
+ w_train.values,
773
+ dtype=torch.float32
774
+ ).view(-1, 1)
775
+ else:
776
+ w_tensor = torch.ones_like(y_tensor)
777
+
778
+ # --- 验证集张量(一次性搬到目标设备) ---
779
+ has_val = X_val is not None and y_val is not None
780
+ if has_val:
781
+ # ---------- 数值特征 ----------
782
+ X_num_val_np = X_val[self.num_cols].to_numpy(
783
+ dtype=np.float32, copy=True)
784
+ X_num_val = torch.tensor(X_num_val_np, dtype=torch.float32)
785
+
786
+ # ---------- 类别特征 ----------
787
+ if self.cat_cols:
788
+ X_cat_val_np = self._encode_cats(X_val)
789
+ X_cat_val = torch.tensor(X_cat_val_np, dtype=torch.long)
790
+ else:
791
+ X_cat_val = torch.zeros(
792
+ (X_num_val.shape[0], 0), dtype=torch.long)
793
+
794
+ # ---------- 目标 & 权重 ----------
795
+ y_val_np = y_val.values.astype(np.float32, copy=True)
796
+ y_val_tensor = torch.tensor(
797
+ y_val_np, dtype=torch.float32).view(-1, 1)
798
+
799
+ if w_val is not None:
800
+ w_val_np = w_val.values.astype(np.float32, copy=True)
801
+ w_val_tensor = torch.tensor(
802
+ w_val_np, dtype=torch.float32).view(-1, 1)
803
+ else:
804
+ w_val_tensor = torch.ones_like(y_val_tensor)
805
+
806
+ else:
807
+ X_num_val = X_cat_val = y_val_tensor = w_val_tensor = None
808
+
809
+ # --- 构建 DataLoader ---
810
+ dataset = TabularDataset(
811
+ X_num_train, X_cat_train, y_tensor, w_tensor
812
+ )
813
+
814
+ batch_size = max(
815
+ 32,
816
+ int((self.learning_rate / 1e-4) ** 0.5 *
817
+ (X_train.shape[0] / self.batch_num))
818
+ )
819
+
820
+ dataloader = DataLoader(
821
+ dataset,
822
+ batch_size=batch_size,
823
+ shuffle=True,
824
+ num_workers=1,
825
+ pin_memory=(self.device.type == 'cuda')
826
+ )
827
+
828
+ # --- 优化器与 AMP ---
829
+ # 这部分与 ResNet 一致,仍建议使用 Adam + AMP 来避免数值不稳定
830
+ optimizer = torch.optim.Adam(
831
+ self.ft.parameters(),
832
+ lr=self.learning_rate
833
+ )
834
+ scaler = GradScaler(enabled=(self.device.type == 'cuda'))
835
+
836
+ # --- 早停机制 ---
837
+ best_loss = float('inf')
838
+ patience_counter = 0
839
+ best_model_state = None
840
+
841
+ # 若存在验证集则整体迁移到目标设备
842
+ if has_val:
843
+ X_num_val_dev = X_num_val.to(self.device, non_blocking=True)
844
+ X_cat_val_dev = X_cat_val.to(self.device, non_blocking=True)
845
+ y_val_dev = y_val_tensor.to(self.device, non_blocking=True)
846
+ w_val_dev = w_val_tensor.to(self.device, non_blocking=True)
847
+
848
+ # --- 训练循环 ---
849
+ for epoch in range(1, self.epochs + 1):
850
+ self.ft.train()
851
+ for X_num_b, X_cat_b, y_b, w_b in dataloader:
852
+ optimizer.zero_grad()
853
+
854
+ X_num_b = X_num_b.to(self.device, non_blocking=True)
855
+ X_cat_b = X_cat_b.to(self.device, non_blocking=True)
856
+ y_b = y_b.to(self.device, non_blocking=True)
857
+ w_b = w_b.to(self.device, non_blocking=True)
858
+
859
+ with autocast(enabled=(self.device.type == 'cuda')):
860
+ y_pred = self.ft(X_num_b, X_cat_b)
861
+ y_pred = torch.clamp(y_pred, min=1e-6)
862
+
863
+ losses = tweedie_loss(
864
+ y_pred, y_b, p=self.tw_power
865
+ ).view(-1)
866
+
867
+ weighted_loss = (losses * w_b.view(-1)).sum() / w_b.sum()
868
+
869
+ scaler.scale(weighted_loss).backward()
870
+
871
+ if self.device.type == 'cuda':
872
+ scaler.unscale_(optimizer)
873
+ clip_grad_norm_(self.ft.parameters(), max_norm=1.0)
874
+
875
+ scaler.step(optimizer)
876
+ scaler.update()
877
+
878
+ # --- 验证阶段与早停判断 ---
879
+ if has_val:
880
+ self.ft.eval()
881
+ with torch.no_grad(), autocast(enabled=(self.device.type == 'cuda')):
882
+ y_val_pred = self.ft(X_num_val_dev, X_cat_val_dev)
883
+ y_val_pred = torch.clamp(y_val_pred, min=1e-6)
884
+
885
+ val_losses = tweedie_loss(
886
+ y_val_pred, y_val_dev, p=self.tw_power
887
+ ).view(-1)
888
+
889
+ val_weighted_loss = (
890
+ val_losses * w_val_dev.view(-1)
891
+ ).sum() / w_val_dev.sum()
892
+
893
+ if val_weighted_loss < best_loss:
894
+ best_loss = val_weighted_loss
895
+ patience_counter = 0
896
+ best_model_state = copy.deepcopy(self.ft.state_dict())
897
+ else:
898
+ patience_counter += 1
899
+
900
+ if patience_counter >= self.patience and best_model_state is not None:
901
+ self.ft.load_state_dict(best_model_state)
902
+ break
903
+ if has_val and best_model_state is not None:
904
+ self.ft.load_state_dict(best_model_state)
905
+
906
+ def predict(self, X_test):
907
+ # X_test 需要包含所有数值列与类别列
908
+
909
+ self.ft.eval()
910
+ X_num = X_test[self.num_cols].to_numpy(dtype=np.float32, copy=True)
911
+ X_num = torch.tensor(
912
+ X_num,
913
+ dtype=torch.float32
914
+ )
915
+ if self.cat_cols:
916
+ X_cat_np = self._encode_cats(X_test)
917
+ X_cat = torch.tensor(X_cat_np, dtype=torch.long)
918
+ else:
919
+ X_cat = torch.zeros((X_num.size(0), 0), dtype=torch.long)
920
+
921
+ with torch.no_grad():
922
+ X_num = X_num.to(self.device, non_blocking=True)
923
+ X_cat = X_cat.to(self.device, non_blocking=True)
924
+ y_pred = self.ft(X_num, X_cat).cpu().numpy()
925
+
926
+ y_pred = np.clip(y_pred, 1e-6, None)
927
+ return y_pred.ravel()
928
+
929
+ def set_params(self, params: dict):
930
+
931
+ # 和 sklearn 风格保持一致。
932
+ # 注意:对结构性参数(如 d_model/n_heads)修改后,需要重新 fit 才会生效。
933
+
934
+ for key, value in params.items():
935
+ if hasattr(self, key):
936
+ setattr(self, key, value)
937
+ else:
938
+ raise ValueError(f"Parameter {key} not found in model.")
939
+ return self
940
+
941
+
942
+ # ===== 基础组件与训练封装 =====================================================
943
+
944
+ @dataclass
945
+ class BayesOptConfig:
946
+ model_nme: str
947
+ resp_nme: str
948
+ weight_nme: str
949
+ factor_nmes: List[str]
950
+ cate_list: Optional[List[str]] = None
951
+ prop_test: float = 0.25
952
+ rand_seed: Optional[int] = None
953
+ epochs: int = 100
954
+ use_gpu: bool = True
955
+
956
+
957
+ class OutputManager:
958
+ # 统一管理结果、图表与模型的输出路径
959
+
960
+ def __init__(self, root: Optional[str] = None, model_name: str = "model") -> None:
961
+ self.root = Path(root or os.getcwd())
962
+ self.model_name = model_name
963
+ self.plot_dir = self.root / 'plot'
964
+ self.result_dir = self.root / 'Results'
965
+ self.model_dir = self.root / 'model'
966
+
967
+ def _prepare(self, path: Path) -> str:
968
+ ensure_parent_dir(str(path))
969
+ return str(path)
970
+
971
+ def plot_path(self, filename: str) -> str:
972
+ return self._prepare(self.plot_dir / filename)
973
+
974
+ def result_path(self, filename: str) -> str:
975
+ return self._prepare(self.result_dir / filename)
976
+
977
+ def model_path(self, filename: str) -> str:
978
+ return self._prepare(self.model_dir / filename)
979
+
980
+
981
+ class DatasetPreprocessor:
982
+ # 为各训练器准备通用的训练/测试数据视图
983
+
984
+ def __init__(self, train_df: pd.DataFrame, test_df: pd.DataFrame,
985
+ config: BayesOptConfig) -> None:
986
+ self.config = config
987
+ self.train_data = train_df.copy(deep=True)
988
+ self.test_data = test_df.copy(deep=True)
989
+ self.num_features: List[str] = []
990
+ self.train_oht_scl_data: Optional[pd.DataFrame] = None
991
+ self.test_oht_scl_data: Optional[pd.DataFrame] = None
992
+ self.var_nmes: List[str] = []
993
+ self.cat_categories_for_shap: Dict[str, List[Any]] = {}
994
+
995
+ def run(self) -> "DatasetPreprocessor":
996
+ cfg = self.config
997
+ # 预先计算加权实际值,后续画图、校验都依赖该字段
998
+ self.train_data.loc[:, 'w_act'] = self.train_data[cfg.resp_nme] * \
999
+ self.train_data[cfg.weight_nme]
1000
+ self.test_data.loc[:, 'w_act'] = self.test_data[cfg.resp_nme] * \
1001
+ self.test_data[cfg.weight_nme]
1002
+ # 高分位裁剪用来吸收离群值;若删除会导致极端点主导损失
1003
+ q99 = self.train_data[cfg.resp_nme].quantile(0.999)
1004
+ self.train_data[cfg.resp_nme] = self.train_data[cfg.resp_nme].clip(
1005
+ upper=q99)
1006
+ cate_list = list(cfg.cate_list or [])
1007
+ if cate_list:
1008
+ for cate in cate_list:
1009
+ self.train_data[cate] = self.train_data[cate].astype(
1010
+ 'category')
1011
+ self.test_data[cate] = self.test_data[cate].astype('category')
1012
+ cats = self.train_data[cate].cat.categories
1013
+ self.cat_categories_for_shap[cate] = list(cats)
1014
+ self.num_features = [
1015
+ nme for nme in cfg.factor_nmes if nme not in cate_list]
1016
+ train_oht = self.train_data[cfg.factor_nmes +
1017
+ [cfg.weight_nme] + [cfg.resp_nme]].copy()
1018
+ test_oht = self.test_data[cfg.factor_nmes +
1019
+ [cfg.weight_nme] + [cfg.resp_nme]].copy()
1020
+ train_oht = pd.get_dummies(
1021
+ train_oht,
1022
+ columns=cate_list,
1023
+ drop_first=True,
1024
+ dtype=np.int8
1025
+ )
1026
+ test_oht = pd.get_dummies(
1027
+ test_oht,
1028
+ columns=cate_list,
1029
+ drop_first=True,
1030
+ dtype=np.int8
1031
+ )
1032
+ for num_chr in self.num_features:
1033
+ # 逐列标准化保障每个特征在同一量级,否则神经网络会难以收敛
1034
+ scaler = StandardScaler()
1035
+ train_oht[num_chr] = scaler.fit_transform(
1036
+ train_oht[num_chr].values.reshape(-1, 1))
1037
+ test_oht[num_chr] = scaler.transform(
1038
+ test_oht[num_chr].values.reshape(-1, 1))
1039
+ # reindex 时将缺失的哑变量列补零,避免测试集列数与训练集不一致
1040
+ test_oht = test_oht.reindex(columns=train_oht.columns, fill_value=0)
1041
+ self.train_oht_scl_data = train_oht
1042
+ self.test_oht_scl_data = test_oht
1043
+ self.var_nmes = list(
1044
+ set(list(train_oht.columns)) - set([cfg.weight_nme, cfg.resp_nme])
1045
+ )
1046
+ return self
1047
+
1048
+
1049
+ class TrainerBase:
1050
+ def __init__(self, context: "BayesOptModel", label: str) -> None:
1051
+ self.ctx = context
1052
+ self.label = label
1053
+
1054
+ @property
1055
+ def config(self) -> BayesOptConfig:
1056
+ return self.ctx.config
1057
+
1058
+ @property
1059
+ def output(self) -> OutputManager:
1060
+ return self.ctx.output_manager
1061
+
1062
+ def tune(self, max_evals: int) -> None: # pragma: no cover 子类会覆盖
1063
+ raise NotImplementedError
1064
+
1065
+ def train(self) -> None: # pragma: no cover 子类会覆盖
1066
+ raise NotImplementedError
1067
+
1068
+ def save(self) -> None:
1069
+ pass
1070
+
1071
+ def load(self) -> None:
1072
+ pass
1073
+
1074
+
1075
+ class XGBTrainer(TrainerBase):
1076
+ def __init__(self, context: "BayesOptModel") -> None:
1077
+ super().__init__(context, 'Xgboost')
1078
+ self.model: Optional[xgb.XGBRegressor] = None
1079
+ self.best_params: Optional[Dict[str, Any]] = None
1080
+ self.best_trial = None
1081
+
1082
+ def _build_estimator(self) -> xgb.XGBRegressor:
1083
+ params = dict(
1084
+ objective=self.ctx.obj,
1085
+ random_state=self.ctx.rand_seed,
1086
+ subsample=0.9,
1087
+ tree_method='gpu_hist' if self.ctx.use_gpu else 'hist',
1088
+ enable_categorical=True,
1089
+ predictor='gpu_predictor' if self.ctx.use_gpu else 'cpu_predictor'
1090
+ )
1091
+ if self.ctx.use_gpu:
1092
+ params['gpu_id'] = 0
1093
+ return xgb.XGBRegressor(**params)
1094
+
1095
+ def cross_val(self, trial: optuna.trial.Trial) -> float:
1096
+ learning_rate = trial.suggest_float(
1097
+ 'learning_rate', 1e-5, 1e-1, log=True)
1098
+ gamma = trial.suggest_float('gamma', 0, 10000)
1099
+ max_depth = trial.suggest_int('max_depth', 3, 25)
1100
+ n_estimators = trial.suggest_int('n_estimators', 10, 500, step=10)
1101
+ min_child_weight = trial.suggest_int(
1102
+ 'min_child_weight', 100, 10000, step=100)
1103
+ reg_alpha = trial.suggest_float('reg_alpha', 1e-10, 1, log=True)
1104
+ reg_lambda = trial.suggest_float('reg_lambda', 1e-10, 1, log=True)
1105
+ if self.ctx.obj == 'reg:tweedie':
1106
+ tweedie_variance_power = trial.suggest_float(
1107
+ 'tweedie_variance_power', 1, 2)
1108
+ elif self.ctx.obj == 'count:poisson':
1109
+ tweedie_variance_power = 1
1110
+ elif self.ctx.obj == 'reg:gamma':
1111
+ tweedie_variance_power = 2
1112
+ else:
1113
+ tweedie_variance_power = 1.5
1114
+ clf = self._build_estimator()
1115
+ params = {
1116
+ 'learning_rate': learning_rate,
1117
+ 'gamma': gamma,
1118
+ 'max_depth': max_depth,
1119
+ 'n_estimators': n_estimators,
1120
+ 'min_child_weight': min_child_weight,
1121
+ 'reg_alpha': reg_alpha,
1122
+ 'reg_lambda': reg_lambda
1123
+ }
1124
+ if self.ctx.obj == 'reg:tweedie':
1125
+ params['tweedie_variance_power'] = tweedie_variance_power
1126
+ clf.set_params(**params)
1127
+ n_jobs = 1 if self.ctx.use_gpu else int(1 / self.ctx.prop_test)
1128
+ acc = cross_val_score(
1129
+ clf,
1130
+ self.ctx.train_data[self.ctx.factor_nmes],
1131
+ self.ctx.train_data[self.ctx.resp_nme].values,
1132
+ fit_params=self.ctx.fit_params,
1133
+ cv=self.ctx.cv,
1134
+ scoring=make_scorer(
1135
+ mean_tweedie_deviance,
1136
+ power=tweedie_variance_power,
1137
+ greater_is_better=False),
1138
+ error_score='raise',
1139
+ n_jobs=n_jobs
1140
+ ).mean()
1141
+ return -acc
1142
+
1143
+ def tune(self, max_evals: int = 100) -> None:
1144
+ study = optuna.create_study(
1145
+ direction='minimize',
1146
+ sampler=optuna.samplers.TPESampler(seed=self.ctx.rand_seed)
1147
+ )
1148
+ study.optimize(self.cross_val, n_trials=max_evals)
1149
+ self.best_params = study.best_params
1150
+ self.best_trial = study.best_trial
1151
+ params_path = self.output.result_path(
1152
+ f'{self.ctx.model_nme}_bestparams_xgb.csv'
1153
+ )
1154
+ pd.DataFrame(self.best_params, index=[0]).to_csv(params_path)
1155
+
1156
+ def train(self) -> None:
1157
+ if not self.best_params:
1158
+ raise RuntimeError('请先运行 tune() 以获得 XGB 最优参数。')
1159
+ self.model = self._build_estimator()
1160
+ self.model.set_params(**self.best_params)
1161
+ self.model.fit(self.ctx.train_data[self.ctx.factor_nmes],
1162
+ self.ctx.train_data[self.ctx.resp_nme].values,
1163
+ **self.ctx.fit_params)
1164
+ self.ctx.model_label += [self.label]
1165
+ self.ctx.train_data['pred_xgb'] = self.model.predict(
1166
+ self.ctx.train_data[self.ctx.factor_nmes])
1167
+ self.ctx.test_data['pred_xgb'] = self.model.predict(
1168
+ self.ctx.test_data[self.ctx.factor_nmes])
1169
+ self.ctx.train_data.loc[:, 'w_pred_xgb'] = self.ctx.train_data['pred_xgb'] * \
1170
+ self.ctx.train_data[self.ctx.weight_nme]
1171
+ self.ctx.test_data.loc[:, 'w_pred_xgb'] = self.ctx.test_data['pred_xgb'] * \
1172
+ self.ctx.test_data[self.ctx.weight_nme]
1173
+ self.ctx.xgb_best = self.model
1174
+
1175
+ def save(self) -> None:
1176
+ if self.model is not None:
1177
+ joblib.dump(self.model, self.output.model_path(
1178
+ f'01_{self.ctx.model_nme}_Xgboost.pkl'))
1179
+
1180
+ def load(self) -> None:
1181
+ path = self.output.model_path(
1182
+ f'01_{self.ctx.model_nme}_Xgboost.pkl')
1183
+ if os.path.exists(path):
1184
+ self.model = joblib.load(path)
1185
+ self.ctx.xgb_best = self.model
1186
+ else:
1187
+ print(f"[load_model] Warning: 未找到 Xgboost 模型文件:{path}")
1188
+
1189
+
1190
+ class ResNetTrainer(TrainerBase):
1191
+ def __init__(self, context: "BayesOptModel") -> None:
1192
+ super().__init__(context, 'ResNet')
1193
+ self.model: Optional[ResNetSklearn] = None
1194
+ self.best_params: Optional[Dict[str, Any]] = None
1195
+ self.best_trial = None
1196
+
1197
+ # ========= 交叉验证(BayesOpt 用) =========
1198
+ def cross_val(self, trial: optuna.trial.Trial) -> float:
1199
+ """
1200
+ 对 ResNet 做交叉验证。
1201
+ 为了防止显存 OOM:
1202
+ - 每个 fold 独立创建一个 ResNetSklearn
1203
+ - fold 结束就把模型挪到 CPU + 删除 + gc + empty_cache
1204
+ - 可选:BayesOpt 阶段只用训练集子样本
1205
+ """
1206
+
1207
+ # 1. 超参空间(基本沿用你之前的设定)
1208
+ learning_rate = trial.suggest_float(
1209
+ 'learning_rate', 1e-6, 1e-2, log=True
1210
+ )
1211
+ hidden_dim = trial.suggest_int('hidden_dim', 32, 256, step=32)
1212
+ block_num = trial.suggest_int('block_num', 2, 10)
1213
+ batch_num = trial.suggest_int(
1214
+ 'batch_num',
1215
+ 10 if self.ctx.obj == 'reg:gamma' else 100,
1216
+ 100 if self.ctx.obj == 'reg:gamma' else 1000,
1217
+ step=10 if self.ctx.obj == 'reg:gamma' else 100
1218
+ )
1219
+
1220
+ if self.ctx.obj == 'reg:tweedie':
1221
+ tw_power = trial.suggest_float('tw_power', 1.0, 2.0)
1222
+ elif self.ctx.obj == 'count:poisson':
1223
+ tw_power = 1.0
1224
+ elif self.ctx.obj == 'reg:gamma':
1225
+ tw_power = 2.0
1226
+ else:
1227
+ tw_power = 1.5
1228
+
1229
+ loss = 0.0
1230
+
1231
+ # 2. (可选)BayesOpt 只在子样本上做 CV,减轻显存 & 时间压力
1232
+ data_for_cv = self.ctx.train_oht_scl_data
1233
+ max_rows_for_resnet_bo = min(100000, int(
1234
+ len(data_for_cv)/5)) # 你可以按 A30 情况调小,比如 50_000
1235
+ if len(data_for_cv) > max_rows_for_resnet_bo:
1236
+ data_for_cv = data_for_cv.sample(
1237
+ max_rows_for_resnet_bo,
1238
+ random_state=self.ctx.rand_seed
1239
+ )
1240
+
1241
+ X_all = data_for_cv[self.ctx.var_nmes]
1242
+ y_all = data_for_cv[self.ctx.resp_nme]
1243
+ w_all = data_for_cv[self.ctx.weight_nme]
1244
+
1245
+ # 用局部 ShuffleSplit,避免子样本时索引不一致
1246
+ cv_local = ShuffleSplit(
1247
+ n_splits=int(1 / self.ctx.prop_test),
1248
+ test_size=self.ctx.prop_test,
1249
+ random_state=self.ctx.rand_seed
1250
+ )
1251
+
1252
+ for fold, (train_idx, val_idx) in enumerate(cv_local.split(X_all)):
1253
+ X_train_fold = X_all.iloc[train_idx]
1254
+ y_train_fold = y_all.iloc[train_idx]
1255
+ w_train_fold = w_all.iloc[train_idx]
1256
+
1257
+ X_val_fold = X_all.iloc[val_idx]
1258
+ y_val_fold = y_all.iloc[val_idx]
1259
+ w_val_fold = w_all.iloc[val_idx]
1260
+
1261
+ # 3. 每个 fold 创建一个临时 ResNet 模型
1262
+ cv_net = ResNetSklearn(
1263
+ model_nme=self.ctx.model_nme,
1264
+ input_dim=X_all.shape[1],
1265
+ hidden_dim=hidden_dim,
1266
+ block_num=block_num,
1267
+ batch_num=batch_num,
1268
+ epochs=self.ctx.epochs,
1269
+ tweedie_power=tw_power,
1270
+ learning_rate=learning_rate,
1271
+ patience=5
1272
+ )
1273
+
1274
+ try:
1275
+ # 4. 训练(内部仍然用你自己的 tweedie_loss)
1276
+ cv_net.fit(
1277
+ X_train_fold,
1278
+ y_train_fold,
1279
+ w_train_fold,
1280
+ X_val_fold,
1281
+ y_val_fold,
1282
+ w_val_fold
1283
+ )
1284
+
1285
+ # 5. 验证集预测
1286
+ y_pred_fold = cv_net.predict(X_val_fold)
1287
+
1288
+ # 6. 评估:Tweedie deviance(评估用,训练 loss 不动)
1289
+ loss += mean_tweedie_deviance(
1290
+ y_val_fold,
1291
+ y_pred_fold,
1292
+ sample_weight=w_val_fold,
1293
+ power=tw_power
1294
+ )
1295
+
1296
+ finally:
1297
+ # 7. ★ 每个 fold 结束后释放 GPU 资源 ★
1298
+ try:
1299
+ if hasattr(cv_net, "resnet"):
1300
+ cv_net.resnet.to("cpu")
1301
+ except Exception:
1302
+ pass
1303
+ del cv_net
1304
+ gc.collect()
1305
+ if torch.cuda.is_available():
1306
+ torch.cuda.empty_cache()
1307
+
1308
+ return loss / int(1 / self.ctx.prop_test)
1309
+
1310
+ # ========= Optuna 调参 =========
1311
+ def tune(self, max_evals: int = 50) -> None:
1312
+ """
1313
+ 使用 Optuna 对 ResNet 做贝叶斯优化。
1314
+ 每个 trial 完成以后再做一次全局的显存清理。
1315
+ """
1316
+ def objective(trial: optuna.trial.Trial) -> float:
1317
+ result = self.cross_val(trial)
1318
+ # trial 级别兜底清理
1319
+ gc.collect()
1320
+ if torch.cuda.is_available():
1321
+ torch.cuda.empty_cache()
1322
+ return result
1323
+
1324
+ study = optuna.create_study(
1325
+ direction='minimize',
1326
+ sampler=optuna.samplers.TPESampler(seed=self.ctx.rand_seed)
1327
+ )
1328
+ study.optimize(objective, n_trials=max_evals)
1329
+
1330
+ self.best_params = study.best_params
1331
+ self.best_trial = study.best_trial
1332
+
1333
+ params_path = self.output.result_path(
1334
+ f'{self.ctx.model_nme}_bestparams_resn.csv'
1335
+ )
1336
+ pd.DataFrame(self.best_params, index=[0]).to_csv(params_path)
1337
+
1338
+ # ========= 用最优超参训练最终 ResNet =========
1339
+ def train(self) -> None:
1340
+ if not self.best_params:
1341
+ raise RuntimeError('请先运行 tune() 以获得 ResNet 最优参数。')
1342
+
1343
+ self.model = ResNetSklearn(
1344
+ model_nme=self.ctx.model_nme,
1345
+ input_dim=self.ctx.train_oht_scl_data[self.ctx.var_nmes].shape[1]
1346
+ )
1347
+ self.model.set_params(self.best_params)
1348
+
1349
+ # 在全量 one-hot + 标准化数据上训练最终模型
1350
+ self.model.fit(
1351
+ self.ctx.train_oht_scl_data[self.ctx.var_nmes],
1352
+ self.ctx.train_oht_scl_data[self.ctx.resp_nme],
1353
+ self.ctx.train_oht_scl_data[self.ctx.weight_nme]
1354
+ )
1355
+
1356
+ # 记录标签
1357
+ self.ctx.model_label += [self.label]
1358
+
1359
+ # 训练集 / 测试集预测
1360
+ self.ctx.train_data['pred_resn'] = self.model.predict(
1361
+ self.ctx.train_oht_scl_data[self.ctx.var_nmes]
1362
+ )
1363
+ self.ctx.test_data['pred_resn'] = self.model.predict(
1364
+ self.ctx.test_oht_scl_data[self.ctx.var_nmes]
1365
+ )
1366
+
1367
+ # 加权赔付
1368
+ self.ctx.train_data.loc[:, 'w_pred_resn'] = (
1369
+ self.ctx.train_data['pred_resn'] *
1370
+ self.ctx.train_data[self.ctx.weight_nme]
1371
+ )
1372
+ self.ctx.test_data.loc[:, 'w_pred_resn'] = (
1373
+ self.ctx.test_data['pred_resn'] *
1374
+ self.ctx.test_data[self.ctx.weight_nme]
1375
+ )
1376
+
1377
+ # 方便外部调用
1378
+ self.ctx.resn_best = self.model
1379
+
1380
+ # ========= 保存 / 加载 =========
1381
+ def save(self) -> None:
1382
+ """
1383
+ 只保存 ResNet 的 state_dict(轻量,不含优化器)。
1384
+ """
1385
+ if self.model is not None:
1386
+ path = self.output.model_path(
1387
+ f'01_{self.ctx.model_nme}_ResNet.pth'
1388
+ )
1389
+ torch.save(self.model.resnet.state_dict(), path)
1390
+
1391
+ def load(self) -> None:
1392
+ """
1393
+ 从文件加载 ResNet 模型到合适的 device。
1394
+ """
1395
+ path = self.output.model_path(
1396
+ f'01_{self.ctx.model_nme}_ResNet.pth'
1397
+ )
1398
+ if os.path.exists(path):
1399
+ resn_loaded = ResNetSklearn(
1400
+ model_nme=self.ctx.model_nme,
1401
+ input_dim=self.ctx.train_oht_scl_data[self.ctx.var_nmes].shape[1]
1402
+ )
1403
+ state_dict = torch.load(path, map_location='cpu')
1404
+ resn_loaded.resnet.load_state_dict(state_dict)
1405
+
1406
+ # 根据当前环境设置 device
1407
+ if torch.cuda.is_available():
1408
+ resn_loaded.device = torch.device('cuda')
1409
+ elif torch.backends.mps.is_available():
1410
+ resn_loaded.device = torch.device('mps')
1411
+ else:
1412
+ resn_loaded.device = torch.device('cpu')
1413
+
1414
+ resn_loaded.resnet.to(resn_loaded.device)
1415
+ self.model = resn_loaded
1416
+ self.ctx.resn_best = self.model
1417
+ else:
1418
+ print(f"[ResNetTrainer.load] 未找到模型文件:{path}")
1419
+
1420
+
1421
+ class FTTrainer(TrainerBase):
1422
+ def __init__(self, context: "BayesOptModel") -> None:
1423
+ super().__init__(context, 'FTTransformer')
1424
+ self.model: Optional[FTTransformerSklearn] = None
1425
+ self.best_params: Optional[Dict[str, Any]] = None
1426
+ self.best_trial = None
1427
+
1428
+ def cross_val(self, trial: optuna.trial.Trial) -> float:
1429
+ """
1430
+ 对 FT-Transformer 做交叉验证。
1431
+ 这里是显存最容易爆的地方,所以加入了:
1432
+ - 较保守的超参搜索空间
1433
+ - 每个 fold 结束后强制释放 GPU 显存
1434
+ """
1435
+ # 超参空间适当缩小一点,避免特别大的模型
1436
+ learning_rate = trial.suggest_float(
1437
+ 'learning_rate', 1e-5, 5e-4, log=True
1438
+ )
1439
+ d_model = trial.suggest_int('d_model', 32, 96, step=32)
1440
+ n_heads = trial.suggest_categorical('n_heads', [2, 4])
1441
+ n_layers = trial.suggest_int('n_layers', 2, 4)
1442
+ dropout = trial.suggest_float('dropout', 0.0, 0.2)
1443
+ batch_num = trial.suggest_int(
1444
+ 'batch_num',
1445
+ 5 if self.ctx.obj == 'reg:gamma' else 10,
1446
+ 10 if self.ctx.obj == 'reg:gamma' else 50,
1447
+ step=1 if self.ctx.obj == 'reg:gamma' else 10
1448
+ )
1449
+
1450
+ if self.ctx.obj == 'reg:tweedie':
1451
+ tw_power = trial.suggest_float('tw_power', 1.0, 2.0)
1452
+ elif self.ctx.obj == 'count:poisson':
1453
+ tw_power = 1.0
1454
+ elif self.ctx.obj == 'reg:gamma':
1455
+ tw_power = 2.0
1456
+ else:
1457
+ tw_power = 1.5
1458
+
1459
+ loss = 0.0
1460
+
1461
+ # 👉 可选:只在子样本上做 BO,避免大数据直接压垮显存
1462
+ data_for_cv = self.ctx.train_data
1463
+ max_rows_for_ft_bo = min(100000, int(
1464
+ len(data_for_cv)/5)) # 你可以根据显存情况调小或调大
1465
+ if len(data_for_cv) > max_rows_for_ft_bo:
1466
+ data_for_cv = data_for_cv.sample(
1467
+ max_rows_for_ft_bo,
1468
+ random_state=self.ctx.rand_seed
1469
+ )
1470
+
1471
+ for _, (train_idx, test_idx) in enumerate(
1472
+ self.ctx.cv.split(data_for_cv[self.ctx.factor_nmes])
1473
+ ):
1474
+ X_train_fold = data_for_cv.iloc[train_idx][self.ctx.factor_nmes]
1475
+ y_train_fold = data_for_cv.iloc[train_idx][self.ctx.resp_nme]
1476
+ w_train_fold = data_for_cv.iloc[train_idx][self.ctx.weight_nme]
1477
+ X_val_fold = data_for_cv.iloc[test_idx][self.ctx.factor_nmes]
1478
+ y_val_fold = data_for_cv.iloc[test_idx][self.ctx.resp_nme]
1479
+ w_val_fold = data_for_cv.iloc[test_idx][self.ctx.weight_nme]
1480
+
1481
+ cv_ft = FTTransformerSklearn(
1482
+ model_nme=self.ctx.model_nme,
1483
+ num_cols=self.ctx.num_features,
1484
+ cat_cols=self.ctx.cate_list,
1485
+ d_model=d_model,
1486
+ n_heads=n_heads,
1487
+ n_layers=n_layers,
1488
+ dropout=dropout,
1489
+ batch_num=batch_num,
1490
+ epochs=self.ctx.epochs,
1491
+ tweedie_power=tw_power,
1492
+ learning_rate=learning_rate,
1493
+ patience=5
1494
+ )
1495
+
1496
+ try:
1497
+ cv_ft.fit(
1498
+ X_train_fold, y_train_fold, w_train_fold,
1499
+ X_val_fold, y_val_fold, w_val_fold
1500
+ )
1501
+ y_pred_fold = cv_ft.predict(X_val_fold)
1502
+ loss += mean_tweedie_deviance(
1503
+ y_val_fold,
1504
+ y_pred_fold,
1505
+ sample_weight=w_val_fold,
1506
+ power=tw_power
1507
+ )
1508
+ finally:
1509
+ # 🧹 每个 fold 用完就立即释放 GPU 资源
1510
+ try:
1511
+ # 如果模型在 GPU 上,先挪回 CPU
1512
+ if hasattr(cv_ft, "ft"):
1513
+ cv_ft.ft.to("cpu")
1514
+ except Exception:
1515
+ pass
1516
+ del cv_ft
1517
+ gc.collect()
1518
+ if torch.cuda.is_available():
1519
+ torch.cuda.empty_cache()
1520
+
1521
+ return loss / int(1 / self.ctx.prop_test)
1522
+
1523
+ def tune(self, max_evals: int = 50) -> None:
1524
+ """
1525
+ 用 Optuna 做超参搜索。
1526
+ 在每个 trial 结束后再做一次显存清理,避免 trial 间显存碎片堆积。
1527
+ """
1528
+ def objective(trial: optuna.trial.Trial) -> float:
1529
+ result = self.cross_val(trial)
1530
+ # trial 级别的兜底清理
1531
+ gc.collect()
1532
+ if torch.cuda.is_available():
1533
+ torch.cuda.empty_cache()
1534
+ return result
1535
+
1536
+ study = optuna.create_study(
1537
+ direction='minimize',
1538
+ sampler=optuna.samplers.TPESampler(seed=self.ctx.rand_seed)
1539
+ )
1540
+ study.optimize(objective, n_trials=max_evals)
1541
+ self.best_params = study.best_params
1542
+ self.best_trial = study.best_trial
1543
+ params_path = self.output.result_path(
1544
+ f'{self.ctx.model_nme}_bestparams_ft.csv'
1545
+ )
1546
+ pd.DataFrame(self.best_params, index=[0]).to_csv(params_path)
1547
+
1548
+ def train(self) -> None:
1549
+ if not self.best_params:
1550
+ raise RuntimeError('请先运行 tune() 以获得 FT-Transformer 最优参数。')
1551
+ self.model = FTTransformerSklearn(
1552
+ model_nme=self.ctx.model_nme,
1553
+ num_cols=self.ctx.num_features,
1554
+ cat_cols=self.ctx.cate_list
1555
+ )
1556
+ self.model.set_params(self.best_params)
1557
+ self.model.fit(
1558
+ self.ctx.train_data[self.ctx.factor_nmes],
1559
+ self.ctx.train_data[self.ctx.resp_nme],
1560
+ self.ctx.train_data[self.ctx.weight_nme]
1561
+ )
1562
+ self.ctx.model_label += [self.label]
1563
+ self.ctx.train_data['pred_ft'] = self.model.predict(
1564
+ self.ctx.train_data[self.ctx.factor_nmes]
1565
+ )
1566
+ self.ctx.test_data['pred_ft'] = self.model.predict(
1567
+ self.ctx.test_data[self.ctx.factor_nmes]
1568
+ )
1569
+ self.ctx.train_data.loc[:, 'w_pred_ft'] = (
1570
+ self.ctx.train_data['pred_ft'] *
1571
+ self.ctx.train_data[self.ctx.weight_nme]
1572
+ )
1573
+ self.ctx.test_data.loc[:, 'w_pred_ft'] = (
1574
+ self.ctx.test_data['pred_ft'] *
1575
+ self.ctx.test_data[self.ctx.weight_nme]
1576
+ )
1577
+ self.ctx.ft_best = self.model
1578
+
1579
+ def save(self) -> None:
1580
+ if self.model is not None:
1581
+ torch.save(
1582
+ self.model,
1583
+ self.output.model_path(
1584
+ f'01_{self.ctx.model_nme}_FTTransformer.pth')
1585
+ )
1586
+
1587
+ def load(self) -> None:
1588
+ path = self.output.model_path(
1589
+ f'01_{self.ctx.model_nme}_FTTransformer.pth')
1590
+ if os.path.exists(path):
1591
+ ft_loaded = torch.load(path, map_location='cpu')
1592
+ if torch.cuda.is_available():
1593
+ ft_loaded.device = torch.device('cuda')
1594
+ elif torch.backends.mps.is_available():
1595
+ ft_loaded.device = torch.device('mps')
1596
+ else:
1597
+ ft_loaded.device = torch.device('cpu')
1598
+ ft_loaded.ft.to(ft_loaded.device)
1599
+ self.model = ft_loaded
1600
+ self.ctx.ft_best = self.model
1601
+ else:
1602
+ print(f"[load_model] Warning: 未找到 FT-Transformer 模型文件:{path}")
1603
+
1604
+
1605
+ class BayesOptModel:
1606
+ def __init__(self, train_data, test_data,
1607
+ model_nme, resp_nme, weight_nme, factor_nmes,
1608
+ cate_list=None, prop_test=0.25, rand_seed=None,
1609
+ epochs=100, use_gpu=True):
1610
+ cfg = BayesOptConfig(
1611
+ model_nme=model_nme,
1612
+ resp_nme=resp_nme,
1613
+ weight_nme=weight_nme,
1614
+ factor_nmes=list(factor_nmes),
1615
+ cate_list=list(cate_list) if cate_list else None,
1616
+ prop_test=prop_test,
1617
+ rand_seed=rand_seed,
1618
+ epochs=epochs,
1619
+ use_gpu=use_gpu
1620
+ )
1621
+ self.config = cfg
1622
+ self.model_nme = cfg.model_nme
1623
+ self.resp_nme = cfg.resp_nme
1624
+ self.weight_nme = cfg.weight_nme
1625
+ self.factor_nmes = cfg.factor_nmes
1626
+ self.cate_list = list(cfg.cate_list or [])
1627
+ self.prop_test = cfg.prop_test
1628
+ self.epochs = cfg.epochs
1629
+ self.rand_seed = cfg.rand_seed if cfg.rand_seed is not None else np.random.randint(
1630
+ 1, 10000)
1631
+ self.use_gpu = bool(cfg.use_gpu and torch.cuda.is_available())
1632
+ self.output_manager = OutputManager(os.getcwd(), self.model_nme)
1633
+
1634
+ preprocessor = DatasetPreprocessor(train_data, test_data, cfg).run()
1635
+ self.train_data = preprocessor.train_data
1636
+ self.test_data = preprocessor.test_data
1637
+ self.train_oht_scl_data = preprocessor.train_oht_scl_data
1638
+ self.test_oht_scl_data = preprocessor.test_oht_scl_data
1639
+ self.var_nmes = preprocessor.var_nmes
1640
+ self.num_features = preprocessor.num_features
1641
+ self.cat_categories_for_shap = preprocessor.cat_categories_for_shap
1642
+
1643
+ self.cv = ShuffleSplit(n_splits=int(1/self.prop_test),
1644
+ test_size=self.prop_test,
1645
+ random_state=self.rand_seed)
1646
+ if self.model_nme.find('f') != -1:
1647
+ self.obj = 'count:poisson'
1648
+ elif self.model_nme.find('s') != -1:
1649
+ self.obj = 'reg:gamma'
1650
+ elif self.model_nme.find('bc') != -1:
1651
+ self.obj = 'reg:tweedie'
1652
+ else:
1653
+ self.obj = 'reg:tweedie'
1654
+ self.fit_params = {
1655
+ 'sample_weight': self.train_data[self.weight_nme].values
1656
+ }
1657
+ self.model_label: List[str] = []
1658
+
1659
+ # 记录各模型训练器,后续统一通过标签访问,方便扩展新模型
1660
+ self.trainers: Dict[str, TrainerBase] = {
1661
+ 'xgb': XGBTrainer(self),
1662
+ 'resn': ResNetTrainer(self),
1663
+ 'ft': FTTrainer(self)
1664
+ }
1665
+ self.xgb_best = None
1666
+ self.resn_best = None
1667
+ self.ft_best = None
1668
+ self.best_xgb_params = None
1669
+ self.best_resn_params = None
1670
+ self.best_ft_params = None
1671
+ self.best_xgb_trial = None
1672
+ self.best_resn_trial = None
1673
+ self.best_ft_trial = None
1674
+ self.xgb_load = None
1675
+ self.resn_load = None
1676
+ self.ft_load = None
1677
+
1678
+ # 定义单因素画图函数
1679
+ def plot_oneway(self, n_bins=10):
1680
+ for c in self.factor_nmes:
1681
+ fig = plt.figure(figsize=(7, 5))
1682
+ if c in self.cate_list:
1683
+ group_col = c
1684
+ plot_source = self.train_data
1685
+ else:
1686
+ group_col = f'{c}_bins'
1687
+ bins = pd.qcut(
1688
+ self.train_data[c],
1689
+ n_bins,
1690
+ duplicates='drop' # 注意:如果分位数重复会丢 bin,避免异常终止
1691
+ )
1692
+ plot_source = self.train_data.assign(**{group_col: bins})
1693
+ plot_data = plot_source.groupby(
1694
+ [group_col], observed=True).sum(numeric_only=True)
1695
+ plot_data.reset_index(inplace=True)
1696
+ plot_data['act_v'] = plot_data['w_act'] / \
1697
+ plot_data[self.weight_nme]
1698
+ plot_data.head()
1699
+ ax = fig.add_subplot(111)
1700
+ ax.plot(plot_data.index, plot_data['act_v'],
1701
+ label='Actual', color='red')
1702
+ ax.set_title(
1703
+ 'Analysis of %s : Train Data' % group_col,
1704
+ fontsize=8)
1705
+ plt.xticks(plot_data.index,
1706
+ list(plot_data[group_col].astype(str)),
1707
+ rotation=90)
1708
+ if len(list(plot_data[group_col].astype(str))) > 50:
1709
+ plt.xticks(fontsize=3)
1710
+ else:
1711
+ plt.xticks(fontsize=6)
1712
+ plt.yticks(fontsize=6)
1713
+ ax2 = ax.twinx()
1714
+ ax2.bar(plot_data.index,
1715
+ plot_data[self.weight_nme],
1716
+ alpha=0.5, color='seagreen')
1717
+ plt.yticks(fontsize=6)
1718
+ plt.margins(0.05)
1719
+ plt.subplots_adjust(wspace=0.3)
1720
+ save_path = self.output_manager.plot_path(
1721
+ f'00_{self.model_nme}_{group_col}_oneway.png')
1722
+ plt.savefig(save_path, dpi=300)
1723
+ plt.close(fig)
1724
+
1725
+ # 定义Xgboost贝叶斯优化函数
1726
+ def bayesopt_xgb(self, max_evals=100):
1727
+ trainer = self.trainers['xgb']
1728
+ trainer.tune(max_evals)
1729
+ trainer.train()
1730
+ self.xgb_best = trainer.model
1731
+ # 记录最优参数及 trial 以便排查或复现结果
1732
+ self.best_xgb_params = trainer.best_params
1733
+ self.best_xgb_trial = trainer.best_trial
1734
+
1735
+ # 定义ResNet贝叶斯优化函数
1736
+ def bayesopt_resnet(self, max_evals=100):
1737
+ trainer = self.trainers['resn']
1738
+ trainer.tune(max_evals)
1739
+ trainer.train()
1740
+ self.resn_best = trainer.model
1741
+ # 保存最优 trial 相关信息,方便后续调参分析
1742
+ self.best_resn_params = trainer.best_params
1743
+ self.best_resn_trial = trainer.best_trial
1744
+
1745
+ # 定义 FT-Transformer 贝叶斯优化函数
1746
+ def bayesopt_ft(self, max_evals=50):
1747
+ trainer = self.trainers['ft']
1748
+ trainer.tune(max_evals)
1749
+ trainer.train()
1750
+ self.ft_best = trainer.model
1751
+ # FT-Transformer 参数较多,留存配置信息尤其重要
1752
+ self.best_ft_params = trainer.best_params
1753
+ self.best_ft_trial = trainer.best_trial
1754
+
1755
+ # 定义分箱函数
1756
+
1757
+ def _split_data(self, data, col_nme, wgt_nme, n_bins=10):
1758
+ # 先按得分排序再按累计权重等分,能保证每个分箱曝光量接近
1759
+ data.sort_values(by=col_nme, ascending=True, inplace=True)
1760
+ data['cum_weight'] = data[wgt_nme].cumsum()
1761
+ w_sum = data[wgt_nme].sum()
1762
+ data.loc[:, 'bins'] = np.floor(
1763
+ data['cum_weight']*float(n_bins)/w_sum)
1764
+ data.loc[(data['bins'] == n_bins), 'bins'] = n_bins-1
1765
+ return data.groupby(['bins'], observed=True).sum(numeric_only=True)
1766
+
1767
+ # 构建提纯曲线所需的数据
1768
+ def _plot_data_lift(self,
1769
+ pred_list, w_pred_list,
1770
+ w_act_list, weight_list, n_bins=10):
1771
+ lift_data = pd.DataFrame()
1772
+ lift_data.loc[:, 'pred'] = pred_list
1773
+ lift_data.loc[:, 'w_pred'] = w_pred_list
1774
+ lift_data.loc[:, 'act'] = w_act_list
1775
+ lift_data.loc[:, 'weight'] = weight_list
1776
+ plot_data = self._split_data(
1777
+ lift_data, 'pred', 'weight', n_bins)
1778
+ plot_data['exp_v'] = plot_data['w_pred'] / plot_data['weight']
1779
+ plot_data['act_v'] = plot_data['act'] / plot_data['weight']
1780
+ plot_data.reset_index(inplace=True)
1781
+ return plot_data
1782
+
1783
+ # 绘制提纯曲线
1784
+ def plot_lift(self, model_label, pred_nme, n_bins=10):
1785
+ # 绘制建模集上结果
1786
+ figpos_list = [121, 122]
1787
+ plot_dict = {
1788
+ 121: self.train_data,
1789
+ 122: self.test_data
1790
+ }
1791
+ name_list = {
1792
+ 121: 'Train Data',
1793
+ 122: 'Test Data'
1794
+ }
1795
+ if model_label == 'Xgboost':
1796
+ pred_nme = 'pred_xgb'
1797
+ elif model_label == 'ResNet':
1798
+ pred_nme = 'pred_resn'
1799
+ elif model_label == 'FTTransformer':
1800
+ pred_nme = 'pred_ft'
1801
+ # pred_nme 映射保证后续取列统一,否则新模型加入时需同步更新
1802
+
1803
+ fig = plt.figure(figsize=(11, 5))
1804
+ for figpos in figpos_list:
1805
+ plot_data = self._plot_data_lift(
1806
+ plot_dict[figpos][pred_nme].values,
1807
+ plot_dict[figpos]['w_'+pred_nme].values,
1808
+ plot_dict[figpos]['w_act'].values,
1809
+ plot_dict[figpos][self.weight_nme].values,
1810
+ n_bins)
1811
+ ax = fig.add_subplot(figpos)
1812
+ ax.plot(plot_data.index, plot_data['act_v'],
1813
+ label='Actual', color='red')
1814
+ ax.plot(plot_data.index, plot_data['exp_v'],
1815
+ label='Predicted', color='blue')
1816
+ ax.set_title(
1817
+ 'Lift Chart on %s' % name_list[figpos], fontsize=8)
1818
+ plt.xticks(plot_data.index,
1819
+ plot_data.index,
1820
+ rotation=90, fontsize=6)
1821
+ plt.yticks(fontsize=6)
1822
+ plt.legend(loc='upper left',
1823
+ fontsize=5, frameon=False)
1824
+ plt.margins(0.05)
1825
+ ax2 = ax.twinx()
1826
+ ax2.bar(plot_data.index, plot_data['weight'],
1827
+ alpha=0.5, color='seagreen',
1828
+ label='Earned Exposure')
1829
+ plt.yticks(fontsize=6)
1830
+ plt.legend(loc='upper right',
1831
+ fontsize=5, frameon=False)
1832
+ plt.subplots_adjust(wspace=0.3)
1833
+ save_path = self.output_manager.plot_path(
1834
+ f'01_{self.model_nme}_{model_label}_lift.png')
1835
+ plt.savefig(save_path, dpi=300)
1836
+ plt.show()
1837
+ plt.close(fig)
1838
+
1839
+ # 构建双提纯曲线所需的数据
1840
+ def _plot_data_dlift(self,
1841
+ pred_list_model1, pred_list_model2,
1842
+ w_list, w_act_list, n_bins=10):
1843
+ lift_data = pd.DataFrame()
1844
+ lift_data.loc[:, 'pred1'] = pred_list_model1
1845
+ lift_data.loc[:, 'pred2'] = pred_list_model2
1846
+ lift_data.loc[:, 'diff_ly'] = lift_data['pred1'] / lift_data['pred2']
1847
+ lift_data.loc[:, 'act'] = w_act_list
1848
+ lift_data.loc[:, 'weight'] = w_list
1849
+ plot_data = self._split_data(lift_data, 'diff_ly', 'weight', n_bins)
1850
+ plot_data['exp_v1'] = plot_data['pred1'] / plot_data['act']
1851
+ plot_data['exp_v2'] = plot_data['pred2'] / plot_data['act']
1852
+ plot_data['act_v'] = plot_data['act'] / plot_data['act']
1853
+ plot_data.reset_index(inplace=True)
1854
+ return plot_data
1855
+
1856
+ # 绘制双提纯曲线
1857
+ def plot_dlift(self, model_comp=['xgb', 'resn'], n_bins=10):
1858
+ # 指标名称
1859
+ # xgb 表示 XGBoost
1860
+ # resn 表示 ResNet
1861
+ # ft 表示 FT-Transformer
1862
+ figpos_list = [121, 122]
1863
+ plot_dict = {
1864
+ 121: self.train_data,
1865
+ 122: self.test_data
1866
+ }
1867
+ name_list = {
1868
+ 121: 'Train Data',
1869
+ 122: 'Test Data'
1870
+ }
1871
+ fig = plt.figure(figsize=(11, 5))
1872
+ for figpos in figpos_list:
1873
+ plot_data = self._plot_data_dlift(
1874
+ plot_dict[figpos]['w_pred_'+model_comp[0]].values,
1875
+ plot_dict[figpos]['w_pred_'+model_comp[1]].values,
1876
+ plot_dict[figpos][self.weight_nme].values,
1877
+ plot_dict[figpos]['w_act'].values,
1878
+ n_bins)
1879
+ ax = fig.add_subplot(figpos)
1880
+ tt1 = 'Xgboost'
1881
+ tt2 = 'ResNet'
1882
+ ax.plot(plot_data.index, plot_data['act_v'],
1883
+ label='Actual', color='red')
1884
+ ax.plot(plot_data.index, plot_data['exp_v1'],
1885
+ label=tt1, color='blue')
1886
+ ax.plot(plot_data.index, plot_data['exp_v2'],
1887
+ label=tt2, color='black')
1888
+ ax.set_title(
1889
+ 'Double Lift Chart on %s' % name_list[figpos], fontsize=8)
1890
+ plt.xticks(plot_data.index,
1891
+ plot_data.index,
1892
+ rotation=90, fontsize=6)
1893
+ plt.xlabel('%s / %s' % (tt1, tt2), fontsize=6)
1894
+ plt.yticks(fontsize=6)
1895
+ plt.legend(loc='upper left',
1896
+ fontsize=5, frameon=False)
1897
+ plt.margins(0.1)
1898
+ plt.subplots_adjust(bottom=0.25, top=0.95, right=0.8)
1899
+ ax2 = ax.twinx()
1900
+ ax2.bar(plot_data.index, plot_data['weight'],
1901
+ alpha=0.5, color='seagreen',
1902
+ label='Earned Exposure')
1903
+ plt.yticks(fontsize=6)
1904
+ plt.legend(loc='upper right',
1905
+ fontsize=5, frameon=False)
1906
+ plt.subplots_adjust(wspace=0.3)
1907
+ save_path = self.output_manager.plot_path(
1908
+ f'02_{self.model_nme}_dlift.png')
1909
+ plt.savefig(save_path, dpi=300)
1910
+ plt.show()
1911
+ plt.close(fig)
1912
+
1913
+ # 保存模型
1914
+
1915
+ def save_model(self, model_name=None):
1916
+
1917
+ # model_name 可以是:
1918
+ # - None: 保存全部可用模型
1919
+ # - 'xgb': 只保存 Xgboost
1920
+ # - 'resn': 只保存 ResNet
1921
+ # - 'ft': 只保存 FT-Transformer
1922
+ if model_name in (None, 'xgb'):
1923
+ trainer = self.trainers['xgb']
1924
+ if trainer.model is not None:
1925
+ trainer.save()
1926
+ else:
1927
+ print("[save_model] Warning: xgb_best 不存在,未保存 Xgboost 模型。")
1928
+
1929
+ if model_name in (None, 'resn'):
1930
+ trainer = self.trainers['resn']
1931
+ if trainer.model is not None:
1932
+ trainer.save()
1933
+ else:
1934
+ print("[save_model] Warning: resn_best 不存在,未保存 ResNet 模型。")
1935
+
1936
+ if model_name in (None, 'ft'):
1937
+ trainer = self.trainers['ft']
1938
+ if trainer.model is not None:
1939
+ trainer.save()
1940
+ else:
1941
+ print("[save_model] Warning: ft_best 不存在,未保存 FT-Transformer 模型。")
1942
+
1943
+ def load_model(self, model_name=None):
1944
+ # model_name 可以是:
1945
+ # - None: 加载全部能找到的模型
1946
+ # - 'xgb': 只加载 Xgboost
1947
+ # - 'resn': 只加载 ResNet
1948
+ # - 'ft': 只加载 FT-Transformer
1949
+
1950
+ if model_name in (None, 'xgb'):
1951
+ trainer = self.trainers['xgb']
1952
+ trainer.load()
1953
+ self.xgb_best = trainer.model
1954
+ self.xgb_load = trainer.model
1955
+
1956
+ if model_name in (None, 'resn'):
1957
+ trainer = self.trainers['resn']
1958
+ trainer.load()
1959
+ self.resn_best = trainer.model
1960
+ self.resn_load = trainer.model
1961
+
1962
+ if model_name in (None, 'ft'):
1963
+ trainer = self.trainers['ft']
1964
+ trainer.load()
1965
+ self.ft_best = trainer.model
1966
+ self.ft_load = trainer.model
1967
+
1968
+ def _build_ft_shap_matrix(self, data: pd.DataFrame) -> np.ndarray:
1969
+
1970
+ # 将原始特征 DataFrame (包含 self.factor_nmes) 转成
1971
+ # 纯数值矩阵: 数值列为 float64,类别列为整数 code(float64 存储)。
1972
+ # 列顺序与 self.factor_nmes 保持一致。
1973
+
1974
+ matrices = []
1975
+
1976
+ for col in self.factor_nmes:
1977
+ s = data[col]
1978
+
1979
+ if col in self.cate_list:
1980
+ # 类别列:按训练时的类别全集编码
1981
+ cats = pd.Categorical(
1982
+ s,
1983
+ categories=self.cat_categories_for_shap[col]
1984
+ )
1985
+ # cats.codes 是一个 Index / ndarray,用 np.asarray 包一下再 reshape
1986
+ codes = np.asarray(cats.codes, dtype=np.float64).reshape(-1, 1)
1987
+ matrices.append(codes)
1988
+ else:
1989
+ # 数值列:转成 Series -> numpy -> reshape
1990
+ vals = pd.to_numeric(s, errors="coerce")
1991
+ arr = vals.to_numpy(dtype=np.float64, copy=True).reshape(-1, 1)
1992
+ matrices.append(arr)
1993
+
1994
+ X_mat = np.concatenate(matrices, axis=1) # (N, F)
1995
+ return X_mat
1996
+
1997
+ def _decode_ft_shap_matrix_to_df(self, X_mat: np.ndarray) -> pd.DataFrame:
1998
+
1999
+ # 将 SHAP 的数值矩阵 (N, F) 还原为原始特征 DataFrame,
2000
+ # 数值列为 float,类别列还原为 pandas 的 category 类型,
2001
+ # 以便兼容 enable_categorical=True 的 XGBoost 和 FT-Transformer 的输入。
2002
+ # 列顺序 = self.factor_nmes
2003
+
2004
+ data_dict = {}
2005
+
2006
+ for j, col in enumerate(self.factor_nmes):
2007
+ col_vals = X_mat[:, j]
2008
+
2009
+ if col in self.cate_list:
2010
+ cats = self.cat_categories_for_shap[col]
2011
+
2012
+ # SHAP 会扰动成小数,这里 round 回整数 code
2013
+ codes = np.round(col_vals).astype(int)
2014
+ # 限制在 [-1, len(cats)-1]
2015
+ codes = np.clip(codes, -1, len(cats) - 1)
2016
+
2017
+ # 使用 pandas.Categorical.from_codes:
2018
+ # - codes = -1 被当成缺失 (NaN)
2019
+ # - 其他索引映射到 cats 中对应的类别
2020
+ cat_series = pd.Categorical.from_codes(
2021
+ codes,
2022
+ categories=cats
2023
+ )
2024
+ # 存的是 Categorical 类型,而不是 object
2025
+ data_dict[col] = cat_series
2026
+ else:
2027
+ # 数值列:直接 float
2028
+ data_dict[col] = col_vals.astype(float)
2029
+
2030
+ df = pd.DataFrame(data_dict, columns=self.factor_nmes)
2031
+
2032
+ # 再保险:确保所有类别列 dtype 真的是 category
2033
+ for col in self.cate_list:
2034
+ if col in df.columns:
2035
+ df[col] = df[col].astype("category")
2036
+ return df
2037
+
2038
+ # ========= XGBoost SHAP =========
2039
+
2040
+ def compute_shap_xgb(self, n_background: int = 500,
2041
+ n_samples: int = 200,
2042
+ on_train: bool = True):
2043
+ # 使用 KernelExplainer 计算 XGBoost 的 SHAP 值(黑盒方式)。
2044
+ #
2045
+ # - 对 SHAP:输入是一份纯数值矩阵:
2046
+ # * 数值特征:float64
2047
+ # * 类别特征:用 _build_ft_shap_matrix 编码后的整数 code(float64)
2048
+ # - 对模型:仍然用原始 DataFrame + xgb_best.predict(...)
2049
+
2050
+ if not hasattr(self, "xgb_best"):
2051
+ raise RuntimeError("请先运行 bayesopt_xgb() 训练好 self.xgb_best")
2052
+
2053
+ # 1) 选择数据源:训练集 or 测试集(原始特征空间)
2054
+ data = self.train_data if on_train else self.test_data
2055
+ X_raw = data[self.factor_nmes]
2056
+
2057
+ # 2) 构造背景矩阵(用和 FT 一样的数值编码)
2058
+ background_raw = X_raw.sample(
2059
+ min(len(X_raw), n_background),
2060
+ random_state=self.rand_seed
2061
+ )
2062
+ # KernelExplainer 计算量极大,务必控制背景样本规模,否则会拖慢调试
2063
+ background_mat = self._build_ft_shap_matrix(
2064
+ background_raw
2065
+ ).astype(np.float64, copy=True)
2066
+
2067
+ # 3) 定义黑盒预测函数:数值矩阵 -> DataFrame -> xgb_best.predict
2068
+ def f_predict(x_mat: np.ndarray) -> np.ndarray:
2069
+ # 把编码矩阵还原成原始 DataFrame(数值+类别)
2070
+ df_input = self._decode_ft_shap_matrix_to_df(x_mat)
2071
+ # 注意:这里用的是 self.xgb_best.predict,和你训练/预测时一致
2072
+ y_pred = self.xgb_best.predict(df_input)
2073
+ return y_pred
2074
+
2075
+ explainer = shap.KernelExplainer(f_predict, background_mat)
2076
+
2077
+ # 4) 要解释的样本:原始特征 + 数值编码
2078
+ X_explain_raw = X_raw.sample(
2079
+ min(len(X_raw), n_samples),
2080
+ random_state=self.rand_seed
2081
+ )
2082
+ X_explain_mat = self._build_ft_shap_matrix(
2083
+ X_explain_raw
2084
+ ).astype(np.float64, copy=True)
2085
+
2086
+ # 5) 计算 SHAP 值(注意用 nsamples='auto' 控制复杂度)
2087
+ shap_values = explainer.shap_values(X_explain_mat, nsamples="auto")
2088
+
2089
+ # 6) 保存结果:
2090
+ # - shap_values:数值编码空间,对应 factor_nmes 的每一列
2091
+ # - X_explain_raw:原始 DataFrame,方便画图时显示真实类别名
2092
+ self.shap_xgb = {
2093
+ "explainer": explainer,
2094
+ "X_explain": X_explain_raw,
2095
+ "shap_values": shap_values,
2096
+ "base_value": explainer.expected_value,
2097
+ }
2098
+ return self.shap_xgb
2099
+ # ========= ResNet SHAP =========
2100
+
2101
+ def _resn_predict_wrapper(self, X_np: np.ndarray) -> np.ndarray:
2102
+ # 用于 SHAP 的 ResNet 预测包装。
2103
+ # X_np: numpy array, shape = (N, n_features), 列顺序对应 self.var_nmes
2104
+ X_df = pd.DataFrame(X_np, columns=self.var_nmes)
2105
+ return self.resn_best.predict(X_df)
2106
+
2107
+ def compute_shap_resn(self, n_background: int = 500,
2108
+ n_samples: int = 200,
2109
+ on_train: bool = True):
2110
+
2111
+ # 使用 KernelExplainer 计算 ResNet 的 SHAP 值。
2112
+ # 解释空间:已 one-hot & 标准化后的特征 self.var_nmes。
2113
+
2114
+ if not hasattr(self, 'resn_best'):
2115
+ raise RuntimeError("请先运行 bayesopt_resnet() 训练好 resn_best")
2116
+
2117
+ # 选择数据集(已 one-hot & 标准化)
2118
+ data = self.train_oht_scl_data if on_train else self.test_oht_scl_data
2119
+ X = data[self.var_nmes]
2120
+
2121
+ # 背景样本:float64 numpy
2122
+ background_df = X.sample(
2123
+ min(len(X), n_background),
2124
+ random_state=self.rand_seed
2125
+ )
2126
+ background_np = background_df.to_numpy(dtype=np.float64, copy=True)
2127
+
2128
+ # 黑盒预测函数
2129
+ def f_predict(x):
2130
+ return self._resn_predict_wrapper(x)
2131
+
2132
+ explainer = shap.KernelExplainer(f_predict, background_np)
2133
+
2134
+ # 要解释的样本
2135
+ X_explain_df = X.sample(
2136
+ min(len(X), n_samples),
2137
+ random_state=self.rand_seed
2138
+ )
2139
+ X_explain_np = X_explain_df.to_numpy(dtype=np.float64, copy=True)
2140
+
2141
+ shap_values = explainer.shap_values(X_explain_np, nsamples="auto")
2142
+
2143
+ self.shap_resn = {
2144
+ "explainer": explainer,
2145
+ "X_explain": X_explain_df, # DataFrame: 用于画图(有列名)
2146
+ "shap_values": shap_values, # numpy: (n_samples, n_features)
2147
+ "base_value": explainer.expected_value,
2148
+ }
2149
+ return self.shap_resn
2150
+
2151
+ # ========= FT-Transformer SHAP =========
2152
+
2153
+ def _ft_shap_predict_wrapper(self, X_mat: np.ndarray) -> np.ndarray:
2154
+
2155
+ # SHAP 的预测包装:
2156
+ # 数值矩阵 -> 还原为原始特征 DataFrame -> 调用 ft_best.predict
2157
+
2158
+ df_input = self._decode_ft_shap_matrix_to_df(X_mat)
2159
+ y_pred = self.ft_best.predict(df_input)
2160
+ return y_pred
2161
+
2162
+ def compute_shap_ft(self, n_background: int = 500,
2163
+ n_samples: int = 200,
2164
+ on_train: bool = True):
2165
+
2166
+ # 使用 KernelExplainer 计算 FT-Transformer 的 SHAP 值。
2167
+ # 解释空间:数值+类别code 的混合数值矩阵(float64),
2168
+ # 但对外展示时仍使用原始特征名/取值(X_explain)。
2169
+
2170
+ if not hasattr(self, "ft_best"):
2171
+ raise RuntimeError("请先运行 bayesopt_ft() 训练好 ft_best")
2172
+
2173
+ # 选择数据源(原始特征空间)
2174
+ data = self.train_data if on_train else self.test_data
2175
+ X_raw = data[self.factor_nmes]
2176
+
2177
+ # 背景矩阵
2178
+ background_raw = X_raw.sample(
2179
+ min(len(X_raw), n_background),
2180
+ random_state=self.rand_seed
2181
+ )
2182
+ background_mat = self._build_ft_shap_matrix(
2183
+ background_raw
2184
+ ).astype(np.float64, copy=True)
2185
+
2186
+ # 黑盒预测函数(数值矩阵 → DataFrame → FT 模型)
2187
+ def f_predict(x):
2188
+ return self._ft_shap_predict_wrapper(x)
2189
+
2190
+ explainer = shap.KernelExplainer(f_predict, background_mat)
2191
+
2192
+ # 要解释的样本(原始特征空间)
2193
+ X_explain_raw = X_raw.sample(
2194
+ min(len(X_raw), n_samples),
2195
+ random_state=self.rand_seed
2196
+ )
2197
+ X_explain_mat = self._build_ft_shap_matrix(
2198
+ X_explain_raw
2199
+ ).astype(np.float64, copy=True)
2200
+
2201
+ shap_values = explainer.shap_values(X_explain_mat, nsamples="auto")
2202
+
2203
+ self.shap_ft = {
2204
+ "explainer": explainer,
2205
+ "X_explain": X_explain_raw, # 原始特征 DataFrame,用来画图
2206
+ "shap_values": shap_values, # numpy: (n_samples, n_features)
2207
+ "base_value": explainer.expected_value,
2208
+ }
2209
+ return self.shap_ft