gr-libs 0.1.6.post1__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- evaluation/analyze_results_cross_alg_cross_domain.py +236 -246
- evaluation/create_minigrid_map_image.py +10 -6
- evaluation/file_system.py +16 -5
- evaluation/generate_experiments_results.py +123 -74
- evaluation/generate_experiments_results_new_ver1.py +227 -243
- evaluation/generate_experiments_results_new_ver2.py +317 -317
- evaluation/generate_task_specific_statistics_plots.py +481 -253
- evaluation/get_plans_images.py +41 -26
- evaluation/increasing_and_decreasing_.py +97 -56
- gr_libs/__init__.py +6 -1
- gr_libs/_version.py +2 -2
- gr_libs/environment/__init__.py +17 -9
- gr_libs/environment/environment.py +167 -39
- gr_libs/environment/utils/utils.py +22 -12
- gr_libs/metrics/__init__.py +5 -0
- gr_libs/metrics/metrics.py +76 -34
- gr_libs/ml/__init__.py +2 -0
- gr_libs/ml/agent.py +21 -6
- gr_libs/ml/base/__init__.py +1 -1
- gr_libs/ml/base/rl_agent.py +13 -10
- gr_libs/ml/consts.py +1 -1
- gr_libs/ml/neural/deep_rl_learner.py +433 -352
- gr_libs/ml/neural/utils/__init__.py +1 -1
- gr_libs/ml/neural/utils/dictlist.py +3 -3
- gr_libs/ml/neural/utils/penv.py +5 -2
- gr_libs/ml/planner/mcts/mcts_model.py +524 -302
- gr_libs/ml/planner/mcts/utils/__init__.py +1 -1
- gr_libs/ml/planner/mcts/utils/node.py +11 -7
- gr_libs/ml/planner/mcts/utils/tree.py +14 -10
- gr_libs/ml/sequential/__init__.py +1 -1
- gr_libs/ml/sequential/lstm_model.py +256 -175
- gr_libs/ml/tabular/state.py +7 -7
- gr_libs/ml/tabular/tabular_q_learner.py +123 -73
- gr_libs/ml/tabular/tabular_rl_agent.py +20 -19
- gr_libs/ml/utils/__init__.py +8 -2
- gr_libs/ml/utils/format.py +78 -70
- gr_libs/ml/utils/math.py +2 -1
- gr_libs/ml/utils/other.py +1 -1
- gr_libs/ml/utils/storage.py +95 -28
- gr_libs/problems/consts.py +1549 -1227
- gr_libs/recognizer/gr_as_rl/gr_as_rl_recognizer.py +145 -80
- gr_libs/recognizer/graml/gr_dataset.py +209 -110
- gr_libs/recognizer/graml/graml_recognizer.py +431 -231
- gr_libs/recognizer/recognizer.py +38 -27
- gr_libs/recognizer/utils/__init__.py +1 -1
- gr_libs/recognizer/utils/format.py +8 -3
- {gr_libs-0.1.6.post1.dist-info → gr_libs-0.1.8.dist-info}/METADATA +1 -1
- gr_libs-0.1.8.dist-info/RECORD +70 -0
- {gr_libs-0.1.6.post1.dist-info → gr_libs-0.1.8.dist-info}/WHEEL +1 -1
- {gr_libs-0.1.6.post1.dist-info → gr_libs-0.1.8.dist-info}/top_level.txt +0 -1
- tests/test_gcdraco.py +10 -0
- tests/test_graml.py +8 -4
- tests/test_graql.py +2 -1
- tutorials/gcdraco_panda_tutorial.py +66 -0
- tutorials/gcdraco_parking_tutorial.py +61 -0
- tutorials/graml_minigrid_tutorial.py +42 -12
- tutorials/graml_panda_tutorial.py +35 -14
- tutorials/graml_parking_tutorial.py +37 -19
- tutorials/graml_point_maze_tutorial.py +33 -13
- tutorials/graql_minigrid_tutorial.py +31 -15
- CI/README.md +0 -12
- CI/docker_build_context/Dockerfile +0 -15
- gr_libs/recognizer/recognizer_doc.md +0 -61
- gr_libs-0.1.6.post1.dist-info/RECORD +0 -70
@@ -5,250 +5,234 @@ import numpy as np
|
|
5
5
|
import os
|
6
6
|
import dill
|
7
7
|
|
8
|
-
from gr_libs.ml.utils.storage import
|
8
|
+
from gr_libs.ml.utils.storage import (
|
9
|
+
get_experiment_results_path,
|
10
|
+
set_global_storage_configs,
|
11
|
+
)
|
9
12
|
from scripts.generate_task_specific_statistics_plots import get_figures_dir_path
|
10
13
|
|
11
14
|
if __name__ == "__main__":
|
12
15
|
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
fig, axes = plt.subplots(1, 4, figsize=(24, 6)) # Increase the figure size for better spacing (width 24, height 6)
|
237
|
-
|
238
|
-
# Generate each plot in a subplot, including both fragmented and continuing accuracies
|
239
|
-
for i, domain in enumerate(domains):
|
240
|
-
plot_domain_accuracies(axes[i], fragmented_accuracies, continuing_accuracies, domain)
|
241
|
-
|
242
|
-
# Set a single x-axis and y-axis label for the entire figure
|
243
|
-
fig.text(0.5, 0.04, 'Number of Goals', ha='center', fontsize=20) # Centered x-axis label
|
244
|
-
fig.text(0.04, 0.5, 'Accuracy', va='center', rotation='vertical', fontsize=20) # Reduced spacing for y-axis label
|
245
|
-
|
246
|
-
# Adjust subplot layout to avoid overlap
|
247
|
-
plt.subplots_adjust(left=0.09, right=0.91, top=0.76, bottom=0.24, wspace=0.3) # More space on top (top=0.82)
|
248
|
-
|
249
|
-
# Place the legend above the plots with more space between legend and plots
|
250
|
-
handles, labels = axes[0].get_legend_handles_labels()
|
251
|
-
fig.legend(handles, labels, loc='upper center', ncol=4, bbox_to_anchor=(0.5, 1.05), fontsize=12) # Moved above with bbox_to_anchor
|
252
|
-
|
253
|
-
# Save the figure and show it
|
254
|
-
plt.savefig('accuracy_plots.png', dpi=300)
|
16
|
+
fragmented_accuracies = {
|
17
|
+
"graml": {
|
18
|
+
"panda": {
|
19
|
+
"gd_agent": {
|
20
|
+
"0.3": [], # every list here should have number of tasks accuracies in it, since we done experiments for L111-L555. remember each accuracy is an average of #goals different tasks.
|
21
|
+
"0.5": [],
|
22
|
+
"0.7": [],
|
23
|
+
"0.9": [],
|
24
|
+
"1": [],
|
25
|
+
},
|
26
|
+
"gc_agent": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
27
|
+
},
|
28
|
+
"minigrid": {
|
29
|
+
"obstacles": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
30
|
+
"lava_crossing": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
31
|
+
},
|
32
|
+
"point_maze": {
|
33
|
+
"obstacles": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
34
|
+
"four_rooms": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
35
|
+
},
|
36
|
+
"parking": {
|
37
|
+
"gd_agent": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
38
|
+
"gc_agent": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
39
|
+
},
|
40
|
+
},
|
41
|
+
"graql": {
|
42
|
+
"panda": {
|
43
|
+
"gd_agent": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
44
|
+
"gc_agent": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
45
|
+
},
|
46
|
+
"minigrid": {
|
47
|
+
"obstacles": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
48
|
+
"lava_crossing": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
49
|
+
},
|
50
|
+
"point_maze": {
|
51
|
+
"obstacles": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
52
|
+
"four_rooms": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
53
|
+
},
|
54
|
+
"parking": {
|
55
|
+
"gd_agent": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
56
|
+
"gc_agent": {"0.3": [], "0.5": [], "0.7": [], "0.9": [], "1": []},
|
57
|
+
},
|
58
|
+
},
|
59
|
+
}
|
60
|
+
|
61
|
+
continuing_accuracies = copy.deepcopy(fragmented_accuracies)
|
62
|
+
|
63
|
+
# domains = ['panda', 'minigrid', 'point_maze', 'parking']
|
64
|
+
domains = ["minigrid", "point_maze", "parking"]
|
65
|
+
tasks = ["L111", "L222", "L333", "L444", "L555"]
|
66
|
+
percentages = ["0.3", "0.5", "0.7", "0.9", "1"]
|
67
|
+
|
68
|
+
for partial_obs_type, accuracies, is_same_learn in zip(
|
69
|
+
["fragmented", "continuing"],
|
70
|
+
[fragmented_accuracies, continuing_accuracies],
|
71
|
+
[False, True],
|
72
|
+
):
|
73
|
+
for domain in domains:
|
74
|
+
for env in accuracies["graml"][domain].keys():
|
75
|
+
for task in tasks:
|
76
|
+
set_global_storage_configs(
|
77
|
+
recognizer_str="graml",
|
78
|
+
is_fragmented=partial_obs_type,
|
79
|
+
is_inference_same_length_sequences=True,
|
80
|
+
is_learn_same_length_sequences=is_same_learn,
|
81
|
+
)
|
82
|
+
graml_res_file_path = (
|
83
|
+
f"{get_experiment_results_path(domain, env, task)}.pkl"
|
84
|
+
)
|
85
|
+
set_global_storage_configs(
|
86
|
+
recognizer_str="graql", is_fragmented=partial_obs_type
|
87
|
+
)
|
88
|
+
graql_res_file_path = (
|
89
|
+
f"{get_experiment_results_path(domain, env, task)}.pkl"
|
90
|
+
)
|
91
|
+
if os.path.exists(graml_res_file_path):
|
92
|
+
with open(graml_res_file_path, "rb") as results_file:
|
93
|
+
results = dill.load(results_file)
|
94
|
+
for percentage in accuracies["graml"][domain][env].keys():
|
95
|
+
accuracies["graml"][domain][env][percentage].append(
|
96
|
+
results[percentage]["accuracy"]
|
97
|
+
)
|
98
|
+
else:
|
99
|
+
assert (False, f"no file for {graml_res_file_path}")
|
100
|
+
if os.path.exists(graql_res_file_path):
|
101
|
+
with open(graql_res_file_path, "rb") as results_file:
|
102
|
+
results = dill.load(results_file)
|
103
|
+
for percentage in accuracies["graml"][domain][env].keys():
|
104
|
+
accuracies["graql"][domain][env][percentage].append(
|
105
|
+
results[percentage]["accuracy"]
|
106
|
+
)
|
107
|
+
else:
|
108
|
+
assert (False, f"no file for {graql_res_file_path}")
|
109
|
+
|
110
|
+
plot_styles = {
|
111
|
+
("graml", "fragmented", 0.3): "g--o", # Green dashed line with circle markers
|
112
|
+
("graml", "fragmented", 0.5): "g--s", # Green dashed line with square markers
|
113
|
+
(
|
114
|
+
"graml",
|
115
|
+
"fragmented",
|
116
|
+
0.7,
|
117
|
+
): "g--^", # Green dashed line with triangle-up markers
|
118
|
+
("graml", "fragmented", 0.9): "g--d", # Green dashed line with diamond markers
|
119
|
+
("graml", "fragmented", 1.0): "g--*", # Green dashed line with star markers
|
120
|
+
("graml", "continuing", 0.3): "g-o", # Green solid line with circle markers
|
121
|
+
("graml", "continuing", 0.5): "g-s", # Green solid line with square markers
|
122
|
+
(
|
123
|
+
"graml",
|
124
|
+
"continuing",
|
125
|
+
0.7,
|
126
|
+
): "g-^", # Green solid line with triangle-up markers
|
127
|
+
("graml", "continuing", 0.9): "g-d", # Green solid line with diamond markers
|
128
|
+
("graml", "continuing", 1.0): "g-*", # Green solid line with star markers
|
129
|
+
("graql", "fragmented", 0.3): "b--o", # Blue dashed line with circle markers
|
130
|
+
("graql", "fragmented", 0.5): "b--s", # Blue dashed line with square markers
|
131
|
+
(
|
132
|
+
"graql",
|
133
|
+
"fragmented",
|
134
|
+
0.7,
|
135
|
+
): "b--^", # Blue dashed line with triangle-up markers
|
136
|
+
("graql", "fragmented", 0.9): "b--d", # Blue dashed line with diamond markers
|
137
|
+
("graql", "fragmented", 1.0): "b--*", # Blue dashed line with star markers
|
138
|
+
("graql", "continuing", 0.3): "b-o", # Blue solid line with circle markers
|
139
|
+
("graql", "continuing", 0.5): "b-s", # Blue solid line with square markers
|
140
|
+
("graql", "continuing", 0.7): "b-^", # Blue solid line with triangle-up markers
|
141
|
+
("graql", "continuing", 0.9): "b-d", # Blue solid line with diamond markers
|
142
|
+
("graql", "continuing", 1.0): "b-*", # Blue solid line with star markers
|
143
|
+
}
|
144
|
+
|
145
|
+
def average_accuracies(accuracies, domain):
|
146
|
+
avg_acc = {
|
147
|
+
algo: {perc: [] for perc in percentages} for algo in ["graml", "graql"]
|
148
|
+
}
|
149
|
+
|
150
|
+
for algo in avg_acc.keys():
|
151
|
+
for perc in percentages:
|
152
|
+
for env in accuracies[algo][domain].keys():
|
153
|
+
env_acc = accuracies[algo][domain][env][
|
154
|
+
perc
|
155
|
+
] # list of 5, averages for L111 to L555.
|
156
|
+
if env_acc:
|
157
|
+
avg_acc[algo][perc].append(np.array(env_acc))
|
158
|
+
|
159
|
+
for algo in avg_acc.keys():
|
160
|
+
for perc in percentages:
|
161
|
+
if avg_acc[algo][perc]:
|
162
|
+
avg_acc[algo][perc] = np.mean(np.array(avg_acc[algo][perc]), axis=0)
|
163
|
+
|
164
|
+
return avg_acc
|
165
|
+
|
166
|
+
def plot_domain_accuracies(
|
167
|
+
ax, fragmented_accuracies, continuing_accuracies, domain
|
168
|
+
):
|
169
|
+
fragmented_avg_acc = average_accuracies(fragmented_accuracies, domain)
|
170
|
+
continuing_avg_acc = average_accuracies(continuing_accuracies, domain)
|
171
|
+
|
172
|
+
x_vals = np.arange(1, 6) # Number of goals
|
173
|
+
|
174
|
+
# Create "waves" (shaded regions) for each algorithm
|
175
|
+
for algo in ["graml", "graql"]:
|
176
|
+
for perc in percentages:
|
177
|
+
fragmented_y_vals = np.array(fragmented_avg_acc[algo][perc])
|
178
|
+
continuing_y_vals = np.array(continuing_avg_acc[algo][perc])
|
179
|
+
|
180
|
+
ax.plot(
|
181
|
+
x_vals,
|
182
|
+
fragmented_y_vals,
|
183
|
+
plot_styles[
|
184
|
+
(algo, "fragmented", float(perc))
|
185
|
+
], # Use the updated plot_styles dictionary with percentage
|
186
|
+
label=f"{algo}, non-consecutive, {perc}",
|
187
|
+
)
|
188
|
+
ax.plot(
|
189
|
+
x_vals,
|
190
|
+
continuing_y_vals,
|
191
|
+
plot_styles[
|
192
|
+
(algo, "continuing", float(perc))
|
193
|
+
], # Use the updated plot_styles dictionary with percentage
|
194
|
+
label=f"{algo}, consecutive, {perc}",
|
195
|
+
)
|
196
|
+
|
197
|
+
ax.set_xticks(x_vals)
|
198
|
+
ax.set_yticks(np.linspace(0, 1, 6))
|
199
|
+
ax.set_ylim([0, 1])
|
200
|
+
ax.set_title(f"{domain.capitalize()} Domain", fontsize=16)
|
201
|
+
ax.grid(True)
|
202
|
+
|
203
|
+
fig, axes = plt.subplots(
|
204
|
+
1, 4, figsize=(24, 6)
|
205
|
+
) # Increase the figure size for better spacing (width 24, height 6)
|
206
|
+
|
207
|
+
# Generate each plot in a subplot, including both fragmented and continuing accuracies
|
208
|
+
for i, domain in enumerate(domains):
|
209
|
+
plot_domain_accuracies(
|
210
|
+
axes[i], fragmented_accuracies, continuing_accuracies, domain
|
211
|
+
)
|
212
|
+
|
213
|
+
# Set a single x-axis and y-axis label for the entire figure
|
214
|
+
fig.text(
|
215
|
+
0.5, 0.04, "Number of Goals", ha="center", fontsize=20
|
216
|
+
) # Centered x-axis label
|
217
|
+
fig.text(
|
218
|
+
0.04, 0.5, "Accuracy", va="center", rotation="vertical", fontsize=20
|
219
|
+
) # Reduced spacing for y-axis label
|
220
|
+
|
221
|
+
# Adjust subplot layout to avoid overlap
|
222
|
+
plt.subplots_adjust(
|
223
|
+
left=0.09, right=0.91, top=0.76, bottom=0.24, wspace=0.3
|
224
|
+
) # More space on top (top=0.82)
|
225
|
+
|
226
|
+
# Place the legend above the plots with more space between legend and plots
|
227
|
+
handles, labels = axes[0].get_legend_handles_labels()
|
228
|
+
fig.legend(
|
229
|
+
handles,
|
230
|
+
labels,
|
231
|
+
loc="upper center",
|
232
|
+
ncol=4,
|
233
|
+
bbox_to_anchor=(0.5, 1.05),
|
234
|
+
fontsize=12,
|
235
|
+
) # Moved above with bbox_to_anchor
|
236
|
+
|
237
|
+
# Save the figure and show it
|
238
|
+
plt.savefig("accuracy_plots.png", dpi=300)
|