gr-libs 0.1.6.post1__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- evaluation/analyze_results_cross_alg_cross_domain.py +236 -246
- evaluation/create_minigrid_map_image.py +10 -6
- evaluation/file_system.py +16 -5
- evaluation/generate_experiments_results.py +123 -74
- evaluation/generate_experiments_results_new_ver1.py +227 -243
- evaluation/generate_experiments_results_new_ver2.py +317 -317
- evaluation/generate_task_specific_statistics_plots.py +481 -253
- evaluation/get_plans_images.py +41 -26
- evaluation/increasing_and_decreasing_.py +97 -56
- gr_libs/__init__.py +6 -1
- gr_libs/_version.py +2 -2
- gr_libs/environment/__init__.py +17 -9
- gr_libs/environment/environment.py +167 -39
- gr_libs/environment/utils/utils.py +22 -12
- gr_libs/metrics/__init__.py +5 -0
- gr_libs/metrics/metrics.py +76 -34
- gr_libs/ml/__init__.py +2 -0
- gr_libs/ml/agent.py +21 -6
- gr_libs/ml/base/__init__.py +1 -1
- gr_libs/ml/base/rl_agent.py +13 -10
- gr_libs/ml/consts.py +1 -1
- gr_libs/ml/neural/deep_rl_learner.py +433 -352
- gr_libs/ml/neural/utils/__init__.py +1 -1
- gr_libs/ml/neural/utils/dictlist.py +3 -3
- gr_libs/ml/neural/utils/penv.py +5 -2
- gr_libs/ml/planner/mcts/mcts_model.py +524 -302
- gr_libs/ml/planner/mcts/utils/__init__.py +1 -1
- gr_libs/ml/planner/mcts/utils/node.py +11 -7
- gr_libs/ml/planner/mcts/utils/tree.py +14 -10
- gr_libs/ml/sequential/__init__.py +1 -1
- gr_libs/ml/sequential/lstm_model.py +256 -175
- gr_libs/ml/tabular/state.py +7 -7
- gr_libs/ml/tabular/tabular_q_learner.py +123 -73
- gr_libs/ml/tabular/tabular_rl_agent.py +20 -19
- gr_libs/ml/utils/__init__.py +8 -2
- gr_libs/ml/utils/format.py +78 -70
- gr_libs/ml/utils/math.py +2 -1
- gr_libs/ml/utils/other.py +1 -1
- gr_libs/ml/utils/storage.py +95 -28
- gr_libs/problems/consts.py +1549 -1227
- gr_libs/recognizer/gr_as_rl/gr_as_rl_recognizer.py +145 -80
- gr_libs/recognizer/graml/gr_dataset.py +209 -110
- gr_libs/recognizer/graml/graml_recognizer.py +431 -231
- gr_libs/recognizer/recognizer.py +38 -27
- gr_libs/recognizer/utils/__init__.py +1 -1
- gr_libs/recognizer/utils/format.py +8 -3
- {gr_libs-0.1.6.post1.dist-info → gr_libs-0.1.8.dist-info}/METADATA +1 -1
- gr_libs-0.1.8.dist-info/RECORD +70 -0
- {gr_libs-0.1.6.post1.dist-info → gr_libs-0.1.8.dist-info}/WHEEL +1 -1
- {gr_libs-0.1.6.post1.dist-info → gr_libs-0.1.8.dist-info}/top_level.txt +0 -1
- tests/test_gcdraco.py +10 -0
- tests/test_graml.py +8 -4
- tests/test_graql.py +2 -1
- tutorials/gcdraco_panda_tutorial.py +66 -0
- tutorials/gcdraco_parking_tutorial.py +61 -0
- tutorials/graml_minigrid_tutorial.py +42 -12
- tutorials/graml_panda_tutorial.py +35 -14
- tutorials/graml_parking_tutorial.py +37 -19
- tutorials/graml_point_maze_tutorial.py +33 -13
- tutorials/graql_minigrid_tutorial.py +31 -15
- CI/README.md +0 -12
- CI/docker_build_context/Dockerfile +0 -15
- gr_libs/recognizer/recognizer_doc.md +0 -61
- gr_libs-0.1.6.post1.dist-info/RECORD +0 -70
gr_libs/problems/consts.py
CHANGED
@@ -1,1244 +1,1566 @@
|
|
1
1
|
import numpy as np
|
2
2
|
from stable_baselines3 import PPO, SAC, TD3
|
3
|
-
from gr_libs.environment.environment import
|
3
|
+
from gr_libs.environment.environment import (
|
4
|
+
MINIGRID,
|
5
|
+
PARKING,
|
6
|
+
PANDA,
|
7
|
+
POINT_MAZE,
|
8
|
+
QLEARNING,
|
9
|
+
PandaProperty,
|
10
|
+
)
|
4
11
|
|
5
12
|
|
6
13
|
PROBLEMS = {
|
7
|
-
|
14
|
+
PARKING: {
|
8
15
|
"Parking-S-14-PC-": {
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
16
|
+
"L1": {
|
17
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
18
|
+
"goals": [i for i in range(1, 21)],
|
19
|
+
"train_configs": [(PPO, 200000)],
|
20
|
+
},
|
21
|
+
"G_0": {
|
22
|
+
"goals": ["1", "11", "21"],
|
23
|
+
"train_configs": [
|
24
|
+
(SAC, 200000) for _ in range(3)
|
25
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
26
|
+
},
|
27
|
+
},
|
28
|
+
"L2": {
|
29
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
30
|
+
"goals": [i for i in range(1, 21)],
|
31
|
+
"train_configs": [(PPO, 200000)],
|
32
|
+
},
|
33
|
+
"G_0": {
|
34
|
+
"goals": ["1", "8", "14", "21"],
|
35
|
+
"train_configs": [(SAC, 200000) for _ in range(4)],
|
36
|
+
},
|
37
|
+
},
|
38
|
+
"L3": {
|
39
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
40
|
+
"goals": [i for i in range(1, 21)],
|
41
|
+
"train_configs": [(PPO, 200000)],
|
42
|
+
},
|
43
|
+
"G_0": {
|
44
|
+
"goals": ["1", "8", "11", "18"],
|
45
|
+
"train_configs": [(SAC, 200000) for _ in range(4)],
|
46
|
+
},
|
47
|
+
},
|
48
|
+
"L4": {
|
49
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
50
|
+
"goals": [i for i in range(1, 21)],
|
51
|
+
"train_configs": [(PPO, 200000)],
|
52
|
+
},
|
53
|
+
"G_0": {
|
54
|
+
"goals": ["4", "8", "11", "14", "18"],
|
55
|
+
"train_configs": [(SAC, 200000) for _ in range(5)],
|
56
|
+
},
|
57
|
+
},
|
58
|
+
"L5": {
|
59
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
60
|
+
"goals": [i for i in range(1, 21)],
|
61
|
+
"train_configs": [(PPO, 200000)],
|
62
|
+
},
|
63
|
+
"G_0": {
|
64
|
+
"goals": ["1", "4", "8", "11", "14", "18", "21"],
|
65
|
+
"train_configs": [(SAC, 200000) for _ in range(7)],
|
66
|
+
},
|
67
|
+
},
|
68
|
+
}
|
69
|
+
}, # PARKING
|
70
|
+
PANDA: {
|
71
|
+
"PandaMyReachDense": {
|
72
|
+
"L1": {
|
73
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
74
|
+
"goals": [
|
75
|
+
np.array([PandaProperty.sample_goal()]) for _ in range(1, 30)
|
76
|
+
],
|
77
|
+
"train_configs": [(SAC, 800000)],
|
78
|
+
},
|
79
|
+
"G_0": {
|
80
|
+
"goals": [
|
81
|
+
np.array([[-0.1, -0.1, 0.1]]),
|
82
|
+
np.array([[-0.1, 0.1, 0.1]]),
|
83
|
+
np.array([[0.2, 0.2, 0.1]]),
|
84
|
+
],
|
85
|
+
"train_configs": [
|
86
|
+
(SAC, 00000),
|
87
|
+
(SAC, 200000),
|
88
|
+
(SAC, 300000),
|
89
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
90
|
+
},
|
91
|
+
},
|
92
|
+
"L2": {
|
93
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
94
|
+
"goals": [
|
95
|
+
np.array([PandaProperty.sample_goal()]) for _ in range(1, 30)
|
96
|
+
],
|
97
|
+
"train_configs": [(SAC, 800000)],
|
98
|
+
},
|
99
|
+
"G_0": {
|
100
|
+
"goals": [
|
101
|
+
np.array([[-0.5, -0.5, 0.1]]),
|
102
|
+
np.array([[-0.5, 0.2, 0.1]]),
|
103
|
+
np.array([[-0.1, 0.1, 0.1]]),
|
104
|
+
np.array([[0.1, -0.1, 0.1]]),
|
105
|
+
],
|
106
|
+
"train_configs": [
|
107
|
+
(SAC, 400000),
|
108
|
+
(SAC, 400000),
|
109
|
+
(SAC, 400000),
|
110
|
+
(SAC, 400000),
|
111
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
112
|
+
},
|
113
|
+
},
|
114
|
+
"L3": {
|
115
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
116
|
+
"goals": [
|
117
|
+
np.array([PandaProperty.sample_goal()]) for _ in range(1, 30)
|
118
|
+
],
|
119
|
+
"train_configs": [(SAC, 800000)],
|
120
|
+
},
|
121
|
+
"G_0": {
|
122
|
+
"goals": [
|
123
|
+
np.array([[-0.5, -0.5, 0.1]]),
|
124
|
+
np.array([[-0.1, -0.1, 0.1]]),
|
125
|
+
np.array([[-0.5, 0.2, 0.1]]),
|
126
|
+
np.array([[-0.1, 0.1, 0.1]]),
|
127
|
+
np.array([[0.2, -0.2, 0.1]]),
|
128
|
+
np.array([[0.2, 0.2, 0.1]]),
|
129
|
+
],
|
130
|
+
"train_configs": [
|
131
|
+
(SAC, 400000) for _ in range(6)
|
132
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
133
|
+
},
|
134
|
+
},
|
135
|
+
"L4": {
|
136
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
137
|
+
"goals": [
|
138
|
+
np.array([PandaProperty.sample_goal()]) for _ in range(1, 30)
|
139
|
+
],
|
140
|
+
"train_configs": [(SAC, 800000)],
|
141
|
+
},
|
142
|
+
"G_0": {
|
143
|
+
"goals": [
|
144
|
+
np.array([[-0.3, -0.3, 0.1]]),
|
145
|
+
np.array([[-0.1, -0.1, 0.1]]),
|
146
|
+
np.array([[-0.3, 0.2, 0.1]]),
|
147
|
+
np.array([[-0.1, 0.1, 0.1]]),
|
148
|
+
np.array([[0.1, -0.1, 0.1]]),
|
149
|
+
np.array([[0.2, 0.2, 0.1]]),
|
150
|
+
],
|
151
|
+
"train_configs": [
|
152
|
+
(SAC, 400000) for _ in range(6)
|
153
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
154
|
+
},
|
155
|
+
},
|
156
|
+
"L5": {
|
157
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
158
|
+
"goals": [
|
159
|
+
np.array([PandaProperty.sample_goal()]) for _ in range(1, 30)
|
160
|
+
],
|
161
|
+
"train_configs": [(SAC, 800000)],
|
162
|
+
},
|
163
|
+
"G_0": {
|
164
|
+
"goals": [
|
165
|
+
np.array([[-0.5, -0.5, 0.1]]),
|
166
|
+
np.array([[-0.3, -0.3, 0.1]]),
|
167
|
+
np.array([[-0.1, -0.1, 0.1]]),
|
168
|
+
np.array([[-0.5, 0.2, 0.1]]),
|
169
|
+
np.array([[-0.3, 0.2, 0.1]]),
|
170
|
+
np.array([[-0.1, 0.1, 0.1]]),
|
171
|
+
np.array([[0.2, -0.2, 0.1]]),
|
172
|
+
np.array([[0.1, -0.1, 0.1]]),
|
173
|
+
np.array([[0.2, 0.2, 0.1]]),
|
174
|
+
],
|
175
|
+
"train_configs": [
|
176
|
+
(SAC, 400000) for _ in range(9)
|
177
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
178
|
+
},
|
179
|
+
},
|
180
|
+
}
|
181
|
+
}, # PANDA
|
182
|
+
POINT_MAZE: {
|
116
183
|
"PointMaze-FourRoomsEnvDense-11x11": {
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
184
|
+
"L1": {
|
185
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
186
|
+
"goals": [
|
187
|
+
(9, 1),
|
188
|
+
(9, 9),
|
189
|
+
(1, 9),
|
190
|
+
(3, 3),
|
191
|
+
(3, 4),
|
192
|
+
(8, 2),
|
193
|
+
(3, 7),
|
194
|
+
(2, 8),
|
195
|
+
],
|
196
|
+
"train_configs": [(SAC, 400000) for _ in range(8)],
|
197
|
+
},
|
198
|
+
"G_0": {
|
199
|
+
"goals": [(4, 4), (7, 3), (3, 7)],
|
200
|
+
"train_configs": [
|
201
|
+
(SAC, 400000) for _ in range(3)
|
202
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
203
|
+
},
|
204
|
+
},
|
205
|
+
"L2": {
|
206
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
207
|
+
"goals": [
|
208
|
+
(9, 1),
|
209
|
+
(9, 9),
|
210
|
+
(1, 9),
|
211
|
+
(3, 3),
|
212
|
+
(3, 4),
|
213
|
+
(8, 2),
|
214
|
+
(3, 7),
|
215
|
+
(2, 8),
|
216
|
+
],
|
217
|
+
"train_configs": [(SAC, 400000) for _ in range(8)],
|
218
|
+
},
|
219
|
+
"G_0": {
|
220
|
+
"goals": [(4, 4), (7, 3), (3, 7), (8, 2)],
|
221
|
+
"train_configs": [
|
222
|
+
(SAC, 400000) for _ in range(4)
|
223
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
224
|
+
},
|
225
|
+
},
|
226
|
+
"L3": {
|
227
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
228
|
+
"goals": [
|
229
|
+
(9, 1),
|
230
|
+
(9, 9),
|
231
|
+
(1, 9),
|
232
|
+
(3, 3),
|
233
|
+
(3, 4),
|
234
|
+
(8, 2),
|
235
|
+
(3, 7),
|
236
|
+
(2, 8),
|
237
|
+
],
|
238
|
+
"train_configs": [(SAC, 400000) for _ in range(8)],
|
239
|
+
},
|
240
|
+
"G_0": {
|
241
|
+
"goals": [(4, 4), (7, 3), (3, 7), (8, 2), (2, 8)],
|
242
|
+
"train_configs": [
|
243
|
+
(SAC, 400000) for _ in range(5)
|
244
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
245
|
+
},
|
246
|
+
},
|
247
|
+
"L4": {
|
248
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
249
|
+
"goals": [
|
250
|
+
(9, 1),
|
251
|
+
(9, 9),
|
252
|
+
(1, 9),
|
253
|
+
(3, 3),
|
254
|
+
(3, 4),
|
255
|
+
(8, 2),
|
256
|
+
(3, 7),
|
257
|
+
(2, 8),
|
258
|
+
],
|
259
|
+
"train_configs": [(SAC, 400000) for _ in range(8)],
|
260
|
+
},
|
261
|
+
"G_0": {
|
262
|
+
"goals": [(4, 4), (7, 3), (3, 7), (8, 2), (2, 8), (3, 4)],
|
263
|
+
"train_configs": [
|
264
|
+
(SAC, 400000) for _ in range(6)
|
265
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
266
|
+
},
|
267
|
+
},
|
268
|
+
"L5": {
|
269
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
270
|
+
"goals": [
|
271
|
+
(9, 1),
|
272
|
+
(9, 9),
|
273
|
+
(1, 9),
|
274
|
+
(3, 3),
|
275
|
+
(3, 4),
|
276
|
+
(8, 2),
|
277
|
+
(3, 7),
|
278
|
+
(2, 8),
|
279
|
+
],
|
280
|
+
"train_configs": [(SAC, 400000) for _ in range(8)],
|
281
|
+
},
|
282
|
+
"G_0": {
|
283
|
+
"goals": [(4, 4), (7, 3), (3, 7), (8, 2), (2, 8), (3, 4), (4, 3)],
|
284
|
+
"train_configs": [
|
285
|
+
(SAC, 400000) for _ in range(7)
|
286
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
287
|
+
},
|
288
|
+
},
|
289
|
+
},
|
290
|
+
"PointMaze-ObstaclesEnvDense-11x11": {
|
291
|
+
"L1": {
|
292
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
293
|
+
"goals": [(5, 1), (9, 9), (1, 5), (6, 4), (4, 6), (6, 6), (7, 7)],
|
294
|
+
"train_configs": [(SAC, 400000) for _ in range(7)],
|
295
|
+
},
|
296
|
+
"G_0": {
|
297
|
+
"goals": [(5, 5), (7, 4), (4, 7)],
|
298
|
+
"train_configs": [
|
299
|
+
(SAC, 400000) for _ in range(3)
|
300
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
301
|
+
},
|
302
|
+
},
|
303
|
+
"L2": {
|
304
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
305
|
+
"goals": [(5, 1), (9, 9), (1, 5), (6, 4), (4, 6), (6, 6), (7, 7)],
|
306
|
+
"train_configs": [(SAC, 400000) for _ in range(7)],
|
307
|
+
},
|
308
|
+
"G_0": {
|
309
|
+
"goals": [(5, 5), (3, 6), (7, 4)],
|
310
|
+
"train_configs": [
|
311
|
+
(SAC, 400000) for _ in range(3)
|
312
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
313
|
+
},
|
314
|
+
},
|
315
|
+
"L3": {
|
316
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
317
|
+
"goals": [(5, 1), (9, 9), (1, 5), (6, 4), (4, 6), (6, 6), (7, 7)],
|
318
|
+
"train_configs": [(SAC, 400000) for _ in range(7)],
|
319
|
+
},
|
320
|
+
"G_0": {
|
321
|
+
"goals": [(5, 5), (3, 6), (7, 4), (4, 7)],
|
322
|
+
"train_configs": [
|
323
|
+
(SAC, 400000) for _ in range(4)
|
324
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
325
|
+
},
|
326
|
+
},
|
327
|
+
"L4": {
|
328
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
329
|
+
"goals": [(5, 1), (9, 9), (1, 5), (6, 4), (4, 6), (6, 6), (7, 7)],
|
330
|
+
"train_configs": [(SAC, 400000) for _ in range(7)],
|
331
|
+
},
|
332
|
+
"G_0": {
|
333
|
+
"goals": [(3, 6), (6, 3), (7, 4), (4, 7), (8, 8)],
|
334
|
+
"train_configs": [
|
335
|
+
(SAC, 400000) for _ in range(5)
|
336
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
337
|
+
},
|
338
|
+
},
|
339
|
+
"L5": {
|
340
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
341
|
+
"goals": [(5, 1), (9, 9), (1, 5), (6, 4), (4, 6), (6, 6), (7, 7)],
|
342
|
+
"train_configs": [(SAC, 400000) for _ in range(7)],
|
343
|
+
},
|
344
|
+
"G_0": {
|
345
|
+
"goals": [(5, 5), (3, 6), (6, 3), (7, 4), (4, 7), (8, 8)],
|
346
|
+
"train_configs": [
|
347
|
+
(SAC, 400000) for _ in range(6)
|
348
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
349
|
+
},
|
350
|
+
},
|
351
|
+
},
|
352
|
+
}, # POINT_MAZE
|
353
|
+
MINIGRID: {
|
222
354
|
"MiniGrid-SimpleCrossingS13N4": {
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
355
|
+
"L1": {
|
356
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
357
|
+
"goals": [
|
358
|
+
(11, 1),
|
359
|
+
(11, 11),
|
360
|
+
(1, 11),
|
361
|
+
(7, 11),
|
362
|
+
(8, 1),
|
363
|
+
(10, 6),
|
364
|
+
(6, 9),
|
365
|
+
(11, 3),
|
366
|
+
(11, 5),
|
367
|
+
],
|
368
|
+
"train_configs": [
|
369
|
+
(QLEARNING, 100000) for _ in range(9)
|
370
|
+
], # TODO Find a way to prevent the 'none' or simply accept only a Q-learning algorithm and assert everything else
|
371
|
+
},
|
372
|
+
"G_0": {
|
373
|
+
"goals": [(11, 1), (11, 11), (1, 11)],
|
374
|
+
"train_configs": [
|
375
|
+
(QLEARNING, 100000) for _ in range(3)
|
376
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
377
|
+
},
|
378
|
+
},
|
379
|
+
"L2": {
|
380
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
381
|
+
"goals": [
|
382
|
+
(11, 1),
|
383
|
+
(11, 11),
|
384
|
+
(1, 11),
|
385
|
+
(7, 11),
|
386
|
+
(8, 1),
|
387
|
+
(10, 6),
|
388
|
+
(6, 9),
|
389
|
+
(11, 3),
|
390
|
+
(11, 5),
|
391
|
+
],
|
392
|
+
"train_configs": [
|
393
|
+
(QLEARNING, 100000) for _ in range(9)
|
394
|
+
], # TODO Find a way to prevent the 'none' or simply accept only a Q-learning algorithm and assert everything else
|
395
|
+
},
|
396
|
+
"G_0": {
|
397
|
+
"goals": [(11, 1), (11, 11), (1, 11), (5, 9)],
|
398
|
+
"train_configs": [
|
399
|
+
(QLEARNING, 100000) for _ in range(4)
|
400
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
401
|
+
},
|
402
|
+
},
|
403
|
+
"L3": {
|
404
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
405
|
+
"goals": [
|
406
|
+
(11, 1),
|
407
|
+
(11, 11),
|
408
|
+
(1, 11),
|
409
|
+
(7, 11),
|
410
|
+
(8, 1),
|
411
|
+
(10, 6),
|
412
|
+
(6, 9),
|
413
|
+
(11, 3),
|
414
|
+
(11, 5),
|
415
|
+
],
|
416
|
+
"train_configs": [
|
417
|
+
(QLEARNING, 100000) for _ in range(9)
|
418
|
+
], # TODO Find a way to prevent the 'none' or simply accept only a Q-learning algorithm and assert everything else
|
419
|
+
},
|
420
|
+
"G_0": {
|
421
|
+
"goals": [(11, 1), (11, 11), (1, 11), (5, 9), (6, 1)],
|
422
|
+
"train_configs": [
|
423
|
+
(QLEARNING, 100000) for _ in range(5)
|
424
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
425
|
+
},
|
426
|
+
},
|
427
|
+
"L4": {
|
428
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
429
|
+
"goals": [
|
430
|
+
(11, 1),
|
431
|
+
(11, 11),
|
432
|
+
(1, 11),
|
433
|
+
(7, 11),
|
434
|
+
(8, 1),
|
435
|
+
(10, 6),
|
436
|
+
(6, 9),
|
437
|
+
(11, 3),
|
438
|
+
(11, 5),
|
439
|
+
],
|
440
|
+
"train_configs": [
|
441
|
+
(QLEARNING, 100000) for _ in range(9)
|
442
|
+
], # TODO Find a way to prevent the 'none' or simply accept only a Q-learning algorithm and assert everything else
|
443
|
+
},
|
444
|
+
"G_0": {
|
445
|
+
"goals": [(11, 1), (11, 11), (1, 11), (5, 9), (6, 1), (11, 3)],
|
446
|
+
"train_configs": [
|
447
|
+
(QLEARNING, 100000) for _ in range(6)
|
448
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
449
|
+
},
|
450
|
+
},
|
451
|
+
"L5": {
|
452
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
453
|
+
"goals": [
|
454
|
+
(11, 1),
|
455
|
+
(11, 11),
|
456
|
+
(1, 11),
|
457
|
+
(7, 11),
|
458
|
+
(8, 1),
|
459
|
+
(10, 6),
|
460
|
+
(6, 9),
|
461
|
+
(11, 3),
|
462
|
+
(11, 5),
|
463
|
+
],
|
464
|
+
"train_configs": [
|
465
|
+
(QLEARNING, 100000) for _ in range(9)
|
466
|
+
], # TODO Find a way to prevent the 'none' or simply accept only a Q-learning algorithm and assert everything else
|
467
|
+
},
|
468
|
+
"G_0": {
|
469
|
+
"goals": [
|
470
|
+
(11, 1),
|
471
|
+
(11, 11),
|
472
|
+
(1, 11),
|
473
|
+
(5, 9),
|
474
|
+
(6, 1),
|
475
|
+
(11, 3),
|
476
|
+
(11, 5),
|
477
|
+
],
|
478
|
+
"train_configs": [
|
479
|
+
(QLEARNING, 100000) for _ in range(7)
|
480
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
481
|
+
},
|
482
|
+
},
|
483
|
+
},
|
484
|
+
"MiniGrid-LavaCrossingS9N2": {
|
485
|
+
"L1": {
|
486
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
487
|
+
"goals": [(7, 7), (1, 7), (7, 1), (1, 3), (2, 5), (5, 2), (6, 5)],
|
488
|
+
"train_configs": [
|
489
|
+
(QLEARNING, 100000) for _ in range(7)
|
490
|
+
], # TODO Find a way to prevent the 'none' or simply accept only a Q-learning algorithm and assert everything else
|
491
|
+
},
|
492
|
+
"G_0": {
|
493
|
+
"goals": [(1, 3), (6, 5), (4, 7)],
|
494
|
+
"train_configs": [
|
495
|
+
(QLEARNING, 100000) for _ in range(3)
|
496
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
497
|
+
},
|
498
|
+
},
|
499
|
+
"L2": {
|
500
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
501
|
+
"goals": [(7, 7), (1, 7), (7, 1), (1, 3), (2, 5), (5, 2), (6, 5)],
|
502
|
+
"train_configs": [
|
503
|
+
(QLEARNING, 100000) for _ in range(7)
|
504
|
+
], # TODO Find a way to prevent the 'none' or simply accept only a Q-learning algorithm and assert everything else
|
505
|
+
},
|
506
|
+
"G_0": {
|
507
|
+
"goals": [(1, 3), (6, 5), (4, 7), (2, 5)],
|
508
|
+
"train_configs": [
|
509
|
+
(QLEARNING, 100000) for _ in range(4)
|
510
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
511
|
+
},
|
512
|
+
},
|
513
|
+
"L3": {
|
514
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
515
|
+
"goals": [(7, 7), (1, 7), (7, 1), (1, 3), (2, 5), (5, 2), (6, 5)],
|
516
|
+
"train_configs": [
|
517
|
+
(QLEARNING, 100000) for _ in range(7)
|
518
|
+
], # TODO Find a way to prevent the 'none' or simply accept only a Q-learning algorithm and assert everything else
|
519
|
+
},
|
520
|
+
"G_0": {
|
521
|
+
"goals": [(1, 3), (6, 5), (4, 7), (2, 5), (5, 2)],
|
522
|
+
"train_configs": [
|
523
|
+
(QLEARNING, 100000) for _ in range(5)
|
524
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
525
|
+
},
|
526
|
+
},
|
527
|
+
"L4": {
|
528
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
529
|
+
"goals": [(7, 7), (1, 7), (7, 1), (1, 3), (2, 5), (5, 2), (6, 5)],
|
530
|
+
"train_configs": [
|
531
|
+
(QLEARNING, 100000) for _ in range(7)
|
532
|
+
], # TODO Find a way to prevent the 'none' or simply accept only a Q-learning algorithm and assert everything else
|
533
|
+
},
|
534
|
+
"G_0": {
|
535
|
+
"goals": [(1, 3), (6, 5), (4, 7), (2, 5), (5, 2), (4, 5)],
|
536
|
+
"train_configs": [
|
537
|
+
(QLEARNING, 100000) for _ in range(6)
|
538
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
539
|
+
},
|
540
|
+
},
|
541
|
+
"L5": {
|
542
|
+
"base": { # only 1 train_config for the GC agent. the goals are samples of possible goals in the env.
|
543
|
+
"goals": [(7, 7), (1, 7), (7, 1), (1, 3), (2, 5), (5, 2), (6, 5)],
|
544
|
+
"train_configs": [
|
545
|
+
(QLEARNING, 100000) for _ in range(7)
|
546
|
+
], # TODO Find a way to prevent the 'none' or simply accept only a Q-learning algorithm and assert everything else
|
547
|
+
},
|
548
|
+
"G_0": {
|
549
|
+
"goals": [(1, 3), (6, 5), (4, 7), (2, 5), (5, 2), (4, 5), (1, 1)],
|
550
|
+
"train_configs": [
|
551
|
+
(QLEARNING, 100000) for _ in range(7)
|
552
|
+
], # algorithms that use GC agent to generate sequences don't use this
|
553
|
+
},
|
554
|
+
},
|
555
|
+
},
|
556
|
+
}, # MINIGRID
|
557
|
+
} # PROBLEMS
|
328
558
|
|
329
|
-
for i,perc in enumerate([0.3, 0.5, 0.7, 0.9, 1]):
|
330
|
-
|
331
|
-
|
332
|
-
### PARKING ###
|
559
|
+
for i, perc in enumerate([0.3, 0.5, 0.7, 0.9, 1]):
|
560
|
+
for j, cons in enumerate([True, False]):
|
333
561
|
|
334
|
-
|
335
|
-
{f"I_0_{i*6+j*3}": {
|
336
|
-
"goal": "1",
|
337
|
-
"train_config": (TD3, 200000),
|
338
|
-
"consecutive": cons,
|
339
|
-
"percentage": perc
|
340
|
-
},
|
341
|
-
f"I_0_{i*6+j*3+1}": {
|
342
|
-
"goal": "11",
|
343
|
-
"train_config": (TD3, 200000),
|
344
|
-
"consecutive": cons,
|
345
|
-
"percentage": perc
|
346
|
-
},
|
347
|
-
f"I_0_{i*6+j*3+2}": {
|
348
|
-
"goal": "21",
|
349
|
-
"train_config": (TD3, 300000),
|
350
|
-
"consecutive": cons,
|
351
|
-
"percentage": perc
|
352
|
-
}})
|
353
|
-
PROBLEMS[PARKING]["Parking-S-14-PC-"]["L2"].update(
|
354
|
-
{f"I_0_{i*8+j*4}": {
|
355
|
-
"goal": "1",
|
356
|
-
"train_config": (TD3, 200000),
|
357
|
-
"consecutive": cons,
|
358
|
-
"percentage": perc
|
359
|
-
},
|
360
|
-
f"I_0_{i*8+j*4+1}": {
|
361
|
-
"goal": "8",
|
362
|
-
"train_config": (TD3, 200000),
|
363
|
-
"consecutive": cons,
|
364
|
-
"percentage": perc
|
365
|
-
},
|
366
|
-
f"I_0_{i*8+j*4+2}": {
|
367
|
-
"goal": "14",
|
368
|
-
"train_config": (TD3, 400000),
|
369
|
-
"consecutive": cons,
|
370
|
-
"percentage": perc
|
371
|
-
},
|
372
|
-
f"I_0_{i*8+j*4+3}": {
|
373
|
-
"goal": "21",
|
374
|
-
"train_config": (TD3, 300000),
|
375
|
-
"consecutive": cons,
|
376
|
-
"percentage": perc
|
377
|
-
}})
|
378
|
-
PROBLEMS[PARKING]["Parking-S-14-PC-"]["L3"].update(
|
379
|
-
{f"I_0_{i*8+j*4}": {
|
380
|
-
"goal": "1",
|
381
|
-
"train_config": (TD3, 200000),
|
382
|
-
"consecutive": cons,
|
383
|
-
"percentage": perc
|
384
|
-
},
|
385
|
-
f"I_0_{i*8+j*4+1}": {
|
386
|
-
"goal": "8",
|
387
|
-
"train_config": (TD3, 200000),
|
388
|
-
"consecutive": cons,
|
389
|
-
"percentage": perc
|
390
|
-
},
|
391
|
-
f"I_0_{i*8+j*4+2}": {
|
392
|
-
"goal": "11",
|
393
|
-
"train_config": (TD3, 400000),
|
394
|
-
"consecutive": cons,
|
395
|
-
"percentage": perc
|
396
|
-
},
|
397
|
-
f"I_0_{i*8+j*4+3}": {
|
398
|
-
"goal": "18",
|
399
|
-
"train_config": (TD3, 300000),
|
400
|
-
"consecutive": cons,
|
401
|
-
"percentage": perc
|
402
|
-
}})
|
403
|
-
PROBLEMS[PARKING]["Parking-S-14-PC-"]["L4"].update(
|
404
|
-
{f"I_0_{i*10+j*5}": {
|
405
|
-
"goal": "4",
|
406
|
-
"train_config": (TD3, 200000),
|
407
|
-
"consecutive": cons,
|
408
|
-
"percentage": perc
|
409
|
-
},
|
410
|
-
f"I_0_{i*10+j*5+1}": {
|
411
|
-
"goal": "8",
|
412
|
-
"train_config": (TD3, 200000),
|
413
|
-
"consecutive": cons,
|
414
|
-
"percentage": perc
|
415
|
-
},
|
416
|
-
f"I_0_{i*10+j*5+2}": {
|
417
|
-
"goal": "11",
|
418
|
-
"train_config": (TD3, 400000),
|
419
|
-
"consecutive": cons,
|
420
|
-
"percentage": perc
|
421
|
-
},
|
422
|
-
f"I_0_{i*10+j*5+3}": {
|
423
|
-
"goal": "14",
|
424
|
-
"train_config": (TD3, 300000),
|
425
|
-
"consecutive": cons,
|
426
|
-
"percentage": perc
|
427
|
-
},
|
428
|
-
f"I_0_{i*10+j*5+4}": {
|
429
|
-
"goal": "18",
|
430
|
-
"train_config": (TD3, 300000),
|
431
|
-
"consecutive": cons,
|
432
|
-
"percentage": perc
|
433
|
-
}})
|
434
|
-
PROBLEMS[PARKING]["Parking-S-14-PC-"]["L5"].update(
|
435
|
-
{f"I_0_{i*14+j*7}": {
|
436
|
-
"goal": "1",
|
437
|
-
"train_config": (TD3, 200000),
|
438
|
-
"consecutive": cons,
|
439
|
-
"percentage": perc
|
440
|
-
},
|
441
|
-
f"I_0_{i*14+j*7+1}": {
|
442
|
-
"goal": "4",
|
443
|
-
"train_config": (TD3, 200000),
|
444
|
-
"consecutive": cons,
|
445
|
-
"percentage": perc
|
446
|
-
},
|
447
|
-
f"I_0_{i*14+j*7+2}": {
|
448
|
-
"goal": "8",
|
449
|
-
"train_config": (TD3, 400000),
|
450
|
-
"consecutive": cons,
|
451
|
-
"percentage": perc
|
452
|
-
},
|
453
|
-
f"I_0_{i*14+j*7+3}": {
|
454
|
-
"goal": "11",
|
455
|
-
"train_config": (TD3, 300000),
|
456
|
-
"consecutive": cons,
|
457
|
-
"percentage": perc
|
458
|
-
},
|
459
|
-
f"I_0_{i*14+j*7+4}": {
|
460
|
-
"goal": "14",
|
461
|
-
"train_config": (TD3, 300000),
|
462
|
-
"consecutive": cons,
|
463
|
-
"percentage": perc
|
464
|
-
},
|
465
|
-
f"I_0_{i*14+j*7+5}": {
|
466
|
-
"goal": "18",
|
467
|
-
"train_config": (TD3, 300000),
|
468
|
-
"consecutive": cons,
|
469
|
-
"percentage": perc
|
470
|
-
},
|
471
|
-
f"I_0_{i*14+j*7+6}": {
|
472
|
-
"goal": "21",
|
473
|
-
"train_config": (TD3, 300000),
|
474
|
-
"consecutive": cons,
|
475
|
-
"percentage": perc
|
476
|
-
}})
|
562
|
+
### PARKING ###
|
477
563
|
|
478
|
-
|
564
|
+
PROBLEMS[PARKING]["Parking-S-14-PC-"]["L1"].update(
|
565
|
+
{
|
566
|
+
f"I_0_{i*6+j*3}": {
|
567
|
+
"goal": "1",
|
568
|
+
"train_config": (TD3, 200000),
|
569
|
+
"consecutive": cons,
|
570
|
+
"percentage": perc,
|
571
|
+
},
|
572
|
+
f"I_0_{i*6+j*3+1}": {
|
573
|
+
"goal": "11",
|
574
|
+
"train_config": (TD3, 200000),
|
575
|
+
"consecutive": cons,
|
576
|
+
"percentage": perc,
|
577
|
+
},
|
578
|
+
f"I_0_{i*6+j*3+2}": {
|
579
|
+
"goal": "21",
|
580
|
+
"train_config": (TD3, 300000),
|
581
|
+
"consecutive": cons,
|
582
|
+
"percentage": perc,
|
583
|
+
},
|
584
|
+
}
|
585
|
+
)
|
586
|
+
PROBLEMS[PARKING]["Parking-S-14-PC-"]["L2"].update(
|
587
|
+
{
|
588
|
+
f"I_0_{i*8+j*4}": {
|
589
|
+
"goal": "1",
|
590
|
+
"train_config": (TD3, 200000),
|
591
|
+
"consecutive": cons,
|
592
|
+
"percentage": perc,
|
593
|
+
},
|
594
|
+
f"I_0_{i*8+j*4+1}": {
|
595
|
+
"goal": "8",
|
596
|
+
"train_config": (TD3, 200000),
|
597
|
+
"consecutive": cons,
|
598
|
+
"percentage": perc,
|
599
|
+
},
|
600
|
+
f"I_0_{i*8+j*4+2}": {
|
601
|
+
"goal": "14",
|
602
|
+
"train_config": (TD3, 400000),
|
603
|
+
"consecutive": cons,
|
604
|
+
"percentage": perc,
|
605
|
+
},
|
606
|
+
f"I_0_{i*8+j*4+3}": {
|
607
|
+
"goal": "21",
|
608
|
+
"train_config": (TD3, 300000),
|
609
|
+
"consecutive": cons,
|
610
|
+
"percentage": perc,
|
611
|
+
},
|
612
|
+
}
|
613
|
+
)
|
614
|
+
PROBLEMS[PARKING]["Parking-S-14-PC-"]["L3"].update(
|
615
|
+
{
|
616
|
+
f"I_0_{i*8+j*4}": {
|
617
|
+
"goal": "1",
|
618
|
+
"train_config": (TD3, 200000),
|
619
|
+
"consecutive": cons,
|
620
|
+
"percentage": perc,
|
621
|
+
},
|
622
|
+
f"I_0_{i*8+j*4+1}": {
|
623
|
+
"goal": "8",
|
624
|
+
"train_config": (TD3, 200000),
|
625
|
+
"consecutive": cons,
|
626
|
+
"percentage": perc,
|
627
|
+
},
|
628
|
+
f"I_0_{i*8+j*4+2}": {
|
629
|
+
"goal": "11",
|
630
|
+
"train_config": (TD3, 400000),
|
631
|
+
"consecutive": cons,
|
632
|
+
"percentage": perc,
|
633
|
+
},
|
634
|
+
f"I_0_{i*8+j*4+3}": {
|
635
|
+
"goal": "18",
|
636
|
+
"train_config": (TD3, 300000),
|
637
|
+
"consecutive": cons,
|
638
|
+
"percentage": perc,
|
639
|
+
},
|
640
|
+
}
|
641
|
+
)
|
642
|
+
PROBLEMS[PARKING]["Parking-S-14-PC-"]["L4"].update(
|
643
|
+
{
|
644
|
+
f"I_0_{i*10+j*5}": {
|
645
|
+
"goal": "4",
|
646
|
+
"train_config": (TD3, 200000),
|
647
|
+
"consecutive": cons,
|
648
|
+
"percentage": perc,
|
649
|
+
},
|
650
|
+
f"I_0_{i*10+j*5+1}": {
|
651
|
+
"goal": "8",
|
652
|
+
"train_config": (TD3, 200000),
|
653
|
+
"consecutive": cons,
|
654
|
+
"percentage": perc,
|
655
|
+
},
|
656
|
+
f"I_0_{i*10+j*5+2}": {
|
657
|
+
"goal": "11",
|
658
|
+
"train_config": (TD3, 400000),
|
659
|
+
"consecutive": cons,
|
660
|
+
"percentage": perc,
|
661
|
+
},
|
662
|
+
f"I_0_{i*10+j*5+3}": {
|
663
|
+
"goal": "14",
|
664
|
+
"train_config": (TD3, 300000),
|
665
|
+
"consecutive": cons,
|
666
|
+
"percentage": perc,
|
667
|
+
},
|
668
|
+
f"I_0_{i*10+j*5+4}": {
|
669
|
+
"goal": "18",
|
670
|
+
"train_config": (TD3, 300000),
|
671
|
+
"consecutive": cons,
|
672
|
+
"percentage": perc,
|
673
|
+
},
|
674
|
+
}
|
675
|
+
)
|
676
|
+
PROBLEMS[PARKING]["Parking-S-14-PC-"]["L5"].update(
|
677
|
+
{
|
678
|
+
f"I_0_{i*14+j*7}": {
|
679
|
+
"goal": "1",
|
680
|
+
"train_config": (TD3, 200000),
|
681
|
+
"consecutive": cons,
|
682
|
+
"percentage": perc,
|
683
|
+
},
|
684
|
+
f"I_0_{i*14+j*7+1}": {
|
685
|
+
"goal": "4",
|
686
|
+
"train_config": (TD3, 200000),
|
687
|
+
"consecutive": cons,
|
688
|
+
"percentage": perc,
|
689
|
+
},
|
690
|
+
f"I_0_{i*14+j*7+2}": {
|
691
|
+
"goal": "8",
|
692
|
+
"train_config": (TD3, 400000),
|
693
|
+
"consecutive": cons,
|
694
|
+
"percentage": perc,
|
695
|
+
},
|
696
|
+
f"I_0_{i*14+j*7+3}": {
|
697
|
+
"goal": "11",
|
698
|
+
"train_config": (TD3, 300000),
|
699
|
+
"consecutive": cons,
|
700
|
+
"percentage": perc,
|
701
|
+
},
|
702
|
+
f"I_0_{i*14+j*7+4}": {
|
703
|
+
"goal": "14",
|
704
|
+
"train_config": (TD3, 300000),
|
705
|
+
"consecutive": cons,
|
706
|
+
"percentage": perc,
|
707
|
+
},
|
708
|
+
f"I_0_{i*14+j*7+5}": {
|
709
|
+
"goal": "18",
|
710
|
+
"train_config": (TD3, 300000),
|
711
|
+
"consecutive": cons,
|
712
|
+
"percentage": perc,
|
713
|
+
},
|
714
|
+
f"I_0_{i*14+j*7+6}": {
|
715
|
+
"goal": "21",
|
716
|
+
"train_config": (TD3, 300000),
|
717
|
+
"consecutive": cons,
|
718
|
+
"percentage": perc,
|
719
|
+
},
|
720
|
+
}
|
721
|
+
)
|
479
722
|
|
480
|
-
|
481
|
-
{f"I_0_{i*6+j*3}": {
|
482
|
-
"goal": np.array([[-0.1, -0.1, 0.1]]),
|
483
|
-
"train_config": (PPO, 200000),
|
484
|
-
"consecutive": cons,
|
485
|
-
"percentage": perc
|
486
|
-
},
|
487
|
-
f"I_0_{i*6+j*3+1}": {
|
488
|
-
"goal": np.array([[-0.1, 0.1, 0.1]]),
|
489
|
-
"train_config": (PPO, 200000),
|
490
|
-
"consecutive": cons,
|
491
|
-
"percentage": perc
|
492
|
-
},
|
493
|
-
f"I_0_{i*6+j*3+2}": {
|
494
|
-
"goal": np.array([[0.2, 0.2, 0.1]]),
|
495
|
-
"train_config": (PPO, 200000),
|
496
|
-
"consecutive": cons,
|
497
|
-
"percentage": perc
|
498
|
-
}})
|
499
|
-
PROBLEMS[PANDA]["PandaMyReachDense"]["L2"].update(
|
500
|
-
{f"I_0_{i*8+j*4}": {
|
501
|
-
"goal": np.array([[-0.5, -0.5, 0.1]]),
|
502
|
-
"train_config": (PPO, 200000),
|
503
|
-
"consecutive": cons,
|
504
|
-
"percentage": perc
|
505
|
-
},
|
506
|
-
f"I_0_{i*8+j*4+1}": {
|
507
|
-
"goal": np.array([[-0.5, 0.2, 0.1]]),
|
508
|
-
"train_config": (PPO, 200000),
|
509
|
-
"consecutive": cons,
|
510
|
-
"percentage": perc
|
511
|
-
},
|
512
|
-
f"I_0_{i*8+j*4+2}": {
|
513
|
-
"goal": np.array([[-0.1, 0.1, 0.1]]),
|
514
|
-
"train_config": (PPO, 200000),
|
515
|
-
"consecutive": cons,
|
516
|
-
"percentage": perc
|
517
|
-
},
|
518
|
-
f"I_0_{i*8+j*4+3}": {
|
519
|
-
"goal": np.array([[0.1, -0.1, 0.1]]),
|
520
|
-
"train_config": (PPO, 200000),
|
521
|
-
"consecutive": cons,
|
522
|
-
"percentage": perc
|
523
|
-
}})
|
524
|
-
PROBLEMS[PANDA]["PandaMyReachDense"]["L3"].update(
|
525
|
-
{f"I_0_{i*12+j*6}": {
|
526
|
-
"goal": np.array([[-0.5, -0.5, 0.1]]),
|
527
|
-
"train_config": (PPO, 200000),
|
528
|
-
"consecutive": cons,
|
529
|
-
"percentage": perc
|
530
|
-
},
|
531
|
-
f"I_0_{i*12+j*6+1}": {
|
532
|
-
"goal": np.array([[-0.1, -0.1, 0.1]]),
|
533
|
-
"train_config": (PPO, 200000),
|
534
|
-
"consecutive": cons,
|
535
|
-
"percentage": perc
|
536
|
-
},
|
537
|
-
f"I_0_{i*12+j*6+2}": {
|
538
|
-
"goal": np.array([[-0.5, 0.2, 0.1]]),
|
539
|
-
"train_config": (PPO, 200000),
|
540
|
-
"consecutive": cons,
|
541
|
-
"percentage": perc
|
542
|
-
},
|
543
|
-
f"I_0_{i*12+j*6+3}": {
|
544
|
-
"goal": np.array([[-0.1, 0.1, 0.1]]),
|
545
|
-
"train_config": (PPO, 200000),
|
546
|
-
"consecutive": cons,
|
547
|
-
"percentage": perc
|
548
|
-
},
|
549
|
-
f"I_0_{i*12+j*6+4}": {
|
550
|
-
"goal": np.array([[0.2, -0.2, 0.1]]),
|
551
|
-
"train_config": (PPO, 200000),
|
552
|
-
"consecutive": cons,
|
553
|
-
"percentage": perc
|
554
|
-
},
|
555
|
-
f"I_0_{i*12+j*6+5}": {
|
556
|
-
"goal": np.array([[0.2, 0.2, 0.1]]),
|
557
|
-
"train_config": (PPO, 200000),
|
558
|
-
"consecutive": cons,
|
559
|
-
"percentage": perc
|
560
|
-
}})
|
561
|
-
PROBLEMS[PANDA]["PandaMyReachDense"]["L4"].update(
|
562
|
-
{f"I_0_{i*12+j*6}": {
|
563
|
-
"goal": np.array([[-0.3, -0.3, 0.1]]),
|
564
|
-
"train_config": (SAC, 200000),
|
565
|
-
"consecutive": cons,
|
566
|
-
"percentage": perc
|
567
|
-
},
|
568
|
-
f"I_0_{i*12+j*6+1}": {
|
569
|
-
"goal": np.array([[-0.1, -0.1, 0.1]]),
|
570
|
-
"train_config": (PPO, 200000),
|
571
|
-
"consecutive": cons,
|
572
|
-
"percentage": perc
|
573
|
-
},
|
574
|
-
f"I_0_{i*12+j*6+2}": {
|
575
|
-
"goal": np.array([[-0.3, 0.2, 0.1]]),
|
576
|
-
"train_config": (PPO, 200000),
|
577
|
-
"consecutive": cons,
|
578
|
-
"percentage": perc
|
579
|
-
},
|
580
|
-
f"I_0_{i*12+j*6+3}": {
|
581
|
-
"goal": np.array([[-0.1, 0.1, 0.1]]),
|
582
|
-
"train_config": (PPO, 200000),
|
583
|
-
"consecutive": cons,
|
584
|
-
"percentage": perc
|
585
|
-
},
|
586
|
-
f"I_0_{i*12+j*6+4}": {
|
587
|
-
"goal": np.array([[0.1, -0.1, 0.1]]),
|
588
|
-
"train_config": (PPO, 200000),
|
589
|
-
"consecutive": cons,
|
590
|
-
"percentage": perc
|
591
|
-
},
|
592
|
-
f"I_0_{i*12+j*6+5}": {
|
593
|
-
"goal": np.array([[0.2, 0.2, 0.1]]),
|
594
|
-
"train_config": (PPO, 200000),
|
595
|
-
"consecutive": cons,
|
596
|
-
"percentage": perc
|
597
|
-
}})
|
598
|
-
PROBLEMS[PANDA]["PandaMyReachDense"]["L5"].update(
|
599
|
-
{f"I_0_{i*18+j*9}": {
|
600
|
-
"goal": np.array([[-0.5, -0.5, 0.1]]),
|
601
|
-
"train_config": (PPO, 200000),
|
602
|
-
"consecutive": cons,
|
603
|
-
"percentage": perc
|
604
|
-
},
|
605
|
-
f"I_0_{i*18+j*9+1}": {
|
606
|
-
"goal": np.array([[-0.3, -0.3, 0.1]]),
|
607
|
-
"train_config": (SAC, 200000),
|
608
|
-
"consecutive": cons,
|
609
|
-
"percentage": perc
|
610
|
-
},
|
611
|
-
f"I_0_{i*18+j*9+2}": {
|
612
|
-
"goal": np.array([[-0.1, -0.1, 0.1]]),
|
613
|
-
"train_config": (PPO, 200000),
|
614
|
-
"consecutive": cons,
|
615
|
-
"percentage": perc
|
616
|
-
},
|
617
|
-
f"I_0_{i*18+j*9+3}": {
|
618
|
-
"goal": np.array([[-0.5, 0.2, 0.1]]),
|
619
|
-
"train_config": (PPO, 200000),
|
620
|
-
"consecutive": cons,
|
621
|
-
"percentage": perc
|
622
|
-
},
|
623
|
-
f"I_0_{i*18+j*9+4}": {
|
624
|
-
"goal": np.array([[-0.3, 0.2, 0.1]]),
|
625
|
-
"train_config": (PPO, 200000),
|
626
|
-
"consecutive": cons,
|
627
|
-
"percentage": perc
|
628
|
-
},
|
629
|
-
f"I_0_{i*18+j*9+5}": {
|
630
|
-
"goal": np.array([[-0.1, 0.1, 0.1]]),
|
631
|
-
"train_config": (PPO, 200000),
|
632
|
-
"consecutive": cons,
|
633
|
-
"percentage": perc
|
634
|
-
},
|
635
|
-
f"I_0_{i*18+j*9+6}": {
|
636
|
-
"goal": np.array([[0.2, -0.2, 0.1]]),
|
637
|
-
"train_config": (PPO, 200000),
|
638
|
-
"consecutive": cons,
|
639
|
-
"percentage": perc
|
640
|
-
},
|
641
|
-
f"I_0_{i*18+j*9+7}": {
|
642
|
-
"goal": np.array([[0.1, -0.1, 0.1]]),
|
643
|
-
"train_config": (PPO, 200000),
|
644
|
-
"consecutive": cons,
|
645
|
-
"percentage": perc
|
646
|
-
},
|
647
|
-
f"I_0_{i*18+j*9+8}": {
|
648
|
-
"goal": np.array([[0.2, 0.2, 0.1]]),
|
649
|
-
"train_config": (PPO, 200000),
|
650
|
-
"consecutive": cons,
|
651
|
-
"percentage": perc
|
652
|
-
}})
|
653
|
-
|
654
|
-
### POINT_MAZE ###
|
723
|
+
### PANDA ###
|
655
724
|
|
656
|
-
|
657
|
-
|
658
|
-
|
659
|
-
|
660
|
-
|
661
|
-
|
662
|
-
|
663
|
-
|
664
|
-
|
665
|
-
|
666
|
-
|
667
|
-
|
668
|
-
|
669
|
-
|
670
|
-
|
671
|
-
|
672
|
-
|
673
|
-
|
674
|
-
|
675
|
-
|
676
|
-
|
677
|
-
|
678
|
-
|
679
|
-
|
680
|
-
|
681
|
-
|
682
|
-
|
683
|
-
|
684
|
-
|
685
|
-
|
686
|
-
|
687
|
-
|
688
|
-
|
689
|
-
|
690
|
-
|
691
|
-
|
692
|
-
|
693
|
-
|
694
|
-
|
695
|
-
|
696
|
-
|
697
|
-
|
698
|
-
|
699
|
-
|
700
|
-
|
701
|
-
|
702
|
-
|
703
|
-
|
704
|
-
|
705
|
-
|
706
|
-
|
707
|
-
|
708
|
-
|
709
|
-
|
710
|
-
|
711
|
-
|
712
|
-
|
713
|
-
|
714
|
-
|
715
|
-
|
716
|
-
|
717
|
-
|
718
|
-
|
719
|
-
|
720
|
-
|
721
|
-
|
722
|
-
|
723
|
-
|
724
|
-
|
725
|
-
|
726
|
-
|
727
|
-
|
728
|
-
|
729
|
-
|
730
|
-
|
731
|
-
|
732
|
-
|
733
|
-
|
734
|
-
|
735
|
-
|
736
|
-
|
737
|
-
|
738
|
-
|
739
|
-
|
740
|
-
|
741
|
-
|
742
|
-
|
743
|
-
|
744
|
-
|
745
|
-
|
746
|
-
|
747
|
-
|
748
|
-
|
749
|
-
|
750
|
-
|
751
|
-
|
752
|
-
|
753
|
-
|
754
|
-
|
755
|
-
|
756
|
-
|
757
|
-
|
758
|
-
|
759
|
-
|
760
|
-
|
761
|
-
|
762
|
-
|
763
|
-
|
764
|
-
|
765
|
-
|
766
|
-
|
767
|
-
|
768
|
-
|
769
|
-
|
770
|
-
|
771
|
-
|
772
|
-
|
773
|
-
|
774
|
-
|
775
|
-
|
776
|
-
|
777
|
-
|
778
|
-
|
779
|
-
|
780
|
-
|
781
|
-
|
782
|
-
|
783
|
-
|
784
|
-
|
785
|
-
|
786
|
-
|
787
|
-
|
788
|
-
|
789
|
-
|
790
|
-
|
791
|
-
|
792
|
-
|
793
|
-
|
794
|
-
|
795
|
-
|
796
|
-
|
797
|
-
|
798
|
-
|
799
|
-
|
800
|
-
|
801
|
-
|
802
|
-
|
803
|
-
|
804
|
-
|
805
|
-
|
806
|
-
|
807
|
-
|
808
|
-
|
809
|
-
|
810
|
-
|
725
|
+
PROBLEMS[PANDA]["PandaMyReachDense"]["L1"].update(
|
726
|
+
{
|
727
|
+
f"I_0_{i*6+j*3}": {
|
728
|
+
"goal": np.array([[-0.1, -0.1, 0.1]]),
|
729
|
+
"train_config": (PPO, 200000),
|
730
|
+
"consecutive": cons,
|
731
|
+
"percentage": perc,
|
732
|
+
},
|
733
|
+
f"I_0_{i*6+j*3+1}": {
|
734
|
+
"goal": np.array([[-0.1, 0.1, 0.1]]),
|
735
|
+
"train_config": (PPO, 200000),
|
736
|
+
"consecutive": cons,
|
737
|
+
"percentage": perc,
|
738
|
+
},
|
739
|
+
f"I_0_{i*6+j*3+2}": {
|
740
|
+
"goal": np.array([[0.2, 0.2, 0.1]]),
|
741
|
+
"train_config": (PPO, 200000),
|
742
|
+
"consecutive": cons,
|
743
|
+
"percentage": perc,
|
744
|
+
},
|
745
|
+
}
|
746
|
+
)
|
747
|
+
PROBLEMS[PANDA]["PandaMyReachDense"]["L2"].update(
|
748
|
+
{
|
749
|
+
f"I_0_{i*8+j*4}": {
|
750
|
+
"goal": np.array([[-0.5, -0.5, 0.1]]),
|
751
|
+
"train_config": (PPO, 200000),
|
752
|
+
"consecutive": cons,
|
753
|
+
"percentage": perc,
|
754
|
+
},
|
755
|
+
f"I_0_{i*8+j*4+1}": {
|
756
|
+
"goal": np.array([[-0.5, 0.2, 0.1]]),
|
757
|
+
"train_config": (PPO, 200000),
|
758
|
+
"consecutive": cons,
|
759
|
+
"percentage": perc,
|
760
|
+
},
|
761
|
+
f"I_0_{i*8+j*4+2}": {
|
762
|
+
"goal": np.array([[-0.1, 0.1, 0.1]]),
|
763
|
+
"train_config": (PPO, 200000),
|
764
|
+
"consecutive": cons,
|
765
|
+
"percentage": perc,
|
766
|
+
},
|
767
|
+
f"I_0_{i*8+j*4+3}": {
|
768
|
+
"goal": np.array([[0.1, -0.1, 0.1]]),
|
769
|
+
"train_config": (PPO, 200000),
|
770
|
+
"consecutive": cons,
|
771
|
+
"percentage": perc,
|
772
|
+
},
|
773
|
+
}
|
774
|
+
)
|
775
|
+
PROBLEMS[PANDA]["PandaMyReachDense"]["L3"].update(
|
776
|
+
{
|
777
|
+
f"I_0_{i*12+j*6}": {
|
778
|
+
"goal": np.array([[-0.5, -0.5, 0.1]]),
|
779
|
+
"train_config": (PPO, 200000),
|
780
|
+
"consecutive": cons,
|
781
|
+
"percentage": perc,
|
782
|
+
},
|
783
|
+
f"I_0_{i*12+j*6+1}": {
|
784
|
+
"goal": np.array([[-0.1, -0.1, 0.1]]),
|
785
|
+
"train_config": (PPO, 200000),
|
786
|
+
"consecutive": cons,
|
787
|
+
"percentage": perc,
|
788
|
+
},
|
789
|
+
f"I_0_{i*12+j*6+2}": {
|
790
|
+
"goal": np.array([[-0.5, 0.2, 0.1]]),
|
791
|
+
"train_config": (PPO, 200000),
|
792
|
+
"consecutive": cons,
|
793
|
+
"percentage": perc,
|
794
|
+
},
|
795
|
+
f"I_0_{i*12+j*6+3}": {
|
796
|
+
"goal": np.array([[-0.1, 0.1, 0.1]]),
|
797
|
+
"train_config": (PPO, 200000),
|
798
|
+
"consecutive": cons,
|
799
|
+
"percentage": perc,
|
800
|
+
},
|
801
|
+
f"I_0_{i*12+j*6+4}": {
|
802
|
+
"goal": np.array([[0.2, -0.2, 0.1]]),
|
803
|
+
"train_config": (PPO, 200000),
|
804
|
+
"consecutive": cons,
|
805
|
+
"percentage": perc,
|
806
|
+
},
|
807
|
+
f"I_0_{i*12+j*6+5}": {
|
808
|
+
"goal": np.array([[0.2, 0.2, 0.1]]),
|
809
|
+
"train_config": (PPO, 200000),
|
810
|
+
"consecutive": cons,
|
811
|
+
"percentage": perc,
|
812
|
+
},
|
813
|
+
}
|
814
|
+
)
|
815
|
+
PROBLEMS[PANDA]["PandaMyReachDense"]["L4"].update(
|
816
|
+
{
|
817
|
+
f"I_0_{i*12+j*6}": {
|
818
|
+
"goal": np.array([[-0.3, -0.3, 0.1]]),
|
819
|
+
"train_config": (SAC, 200000),
|
820
|
+
"consecutive": cons,
|
821
|
+
"percentage": perc,
|
822
|
+
},
|
823
|
+
f"I_0_{i*12+j*6+1}": {
|
824
|
+
"goal": np.array([[-0.1, -0.1, 0.1]]),
|
825
|
+
"train_config": (PPO, 200000),
|
826
|
+
"consecutive": cons,
|
827
|
+
"percentage": perc,
|
828
|
+
},
|
829
|
+
f"I_0_{i*12+j*6+2}": {
|
830
|
+
"goal": np.array([[-0.3, 0.2, 0.1]]),
|
831
|
+
"train_config": (PPO, 200000),
|
832
|
+
"consecutive": cons,
|
833
|
+
"percentage": perc,
|
834
|
+
},
|
835
|
+
f"I_0_{i*12+j*6+3}": {
|
836
|
+
"goal": np.array([[-0.1, 0.1, 0.1]]),
|
837
|
+
"train_config": (PPO, 200000),
|
838
|
+
"consecutive": cons,
|
839
|
+
"percentage": perc,
|
840
|
+
},
|
841
|
+
f"I_0_{i*12+j*6+4}": {
|
842
|
+
"goal": np.array([[0.1, -0.1, 0.1]]),
|
843
|
+
"train_config": (PPO, 200000),
|
844
|
+
"consecutive": cons,
|
845
|
+
"percentage": perc,
|
846
|
+
},
|
847
|
+
f"I_0_{i*12+j*6+5}": {
|
848
|
+
"goal": np.array([[0.2, 0.2, 0.1]]),
|
849
|
+
"train_config": (PPO, 200000),
|
850
|
+
"consecutive": cons,
|
851
|
+
"percentage": perc,
|
852
|
+
},
|
853
|
+
}
|
854
|
+
)
|
855
|
+
PROBLEMS[PANDA]["PandaMyReachDense"]["L5"].update(
|
856
|
+
{
|
857
|
+
f"I_0_{i*18+j*9}": {
|
858
|
+
"goal": np.array([[-0.5, -0.5, 0.1]]),
|
859
|
+
"train_config": (PPO, 200000),
|
860
|
+
"consecutive": cons,
|
861
|
+
"percentage": perc,
|
862
|
+
},
|
863
|
+
f"I_0_{i*18+j*9+1}": {
|
864
|
+
"goal": np.array([[-0.3, -0.3, 0.1]]),
|
865
|
+
"train_config": (SAC, 200000),
|
866
|
+
"consecutive": cons,
|
867
|
+
"percentage": perc,
|
868
|
+
},
|
869
|
+
f"I_0_{i*18+j*9+2}": {
|
870
|
+
"goal": np.array([[-0.1, -0.1, 0.1]]),
|
871
|
+
"train_config": (PPO, 200000),
|
872
|
+
"consecutive": cons,
|
873
|
+
"percentage": perc,
|
874
|
+
},
|
875
|
+
f"I_0_{i*18+j*9+3}": {
|
876
|
+
"goal": np.array([[-0.5, 0.2, 0.1]]),
|
877
|
+
"train_config": (PPO, 200000),
|
878
|
+
"consecutive": cons,
|
879
|
+
"percentage": perc,
|
880
|
+
},
|
881
|
+
f"I_0_{i*18+j*9+4}": {
|
882
|
+
"goal": np.array([[-0.3, 0.2, 0.1]]),
|
883
|
+
"train_config": (PPO, 200000),
|
884
|
+
"consecutive": cons,
|
885
|
+
"percentage": perc,
|
886
|
+
},
|
887
|
+
f"I_0_{i*18+j*9+5}": {
|
888
|
+
"goal": np.array([[-0.1, 0.1, 0.1]]),
|
889
|
+
"train_config": (PPO, 200000),
|
890
|
+
"consecutive": cons,
|
891
|
+
"percentage": perc,
|
892
|
+
},
|
893
|
+
f"I_0_{i*18+j*9+6}": {
|
894
|
+
"goal": np.array([[0.2, -0.2, 0.1]]),
|
895
|
+
"train_config": (PPO, 200000),
|
896
|
+
"consecutive": cons,
|
897
|
+
"percentage": perc,
|
898
|
+
},
|
899
|
+
f"I_0_{i*18+j*9+7}": {
|
900
|
+
"goal": np.array([[0.1, -0.1, 0.1]]),
|
901
|
+
"train_config": (PPO, 200000),
|
902
|
+
"consecutive": cons,
|
903
|
+
"percentage": perc,
|
904
|
+
},
|
905
|
+
f"I_0_{i*18+j*9+8}": {
|
906
|
+
"goal": np.array([[0.2, 0.2, 0.1]]),
|
907
|
+
"train_config": (PPO, 200000),
|
908
|
+
"consecutive": cons,
|
909
|
+
"percentage": perc,
|
910
|
+
},
|
911
|
+
}
|
912
|
+
)
|
811
913
|
|
812
|
-
|
813
|
-
{f"I_0_{i*6+j*3}": {
|
814
|
-
"goal": (5,5),
|
815
|
-
"train_config": (TD3, 400000),
|
816
|
-
"consecutive": cons,
|
817
|
-
"percentage": perc
|
818
|
-
},
|
819
|
-
f"I_0_{i*6+j*3+1}": {
|
820
|
-
"goal": (7,4),
|
821
|
-
"train_config": (TD3, 400000),
|
822
|
-
"consecutive": cons,
|
823
|
-
"percentage": perc
|
824
|
-
},
|
825
|
-
f"I_0_{i*6+j*3+2}": {
|
826
|
-
"goal": (4,7),
|
827
|
-
"train_config": (TD3, 400000),
|
828
|
-
"consecutive": cons,
|
829
|
-
"percentage": perc
|
830
|
-
}})
|
831
|
-
PROBLEMS[POINT_MAZE]["PointMaze-ObstaclesEnvDense-11x11"]["L2"].update(
|
832
|
-
{f"I_0_{i*6+j*3}": {
|
833
|
-
"goal": (5,5),
|
834
|
-
"train_config": (TD3, 400000),
|
835
|
-
"consecutive": cons,
|
836
|
-
"percentage": perc
|
837
|
-
},
|
838
|
-
f"I_0_{i*6+j*3+1}": {
|
839
|
-
"goal": (3,6),
|
840
|
-
"train_config": (TD3, 400000),
|
841
|
-
"consecutive": cons,
|
842
|
-
"percentage": perc
|
843
|
-
},
|
844
|
-
f"I_0_{i*6+j*3+2}": {
|
845
|
-
"goal": (7,4),
|
846
|
-
"train_config": (TD3, 400000),
|
847
|
-
"consecutive": cons,
|
848
|
-
"percentage": perc
|
849
|
-
}})
|
850
|
-
PROBLEMS[POINT_MAZE]["PointMaze-ObstaclesEnvDense-11x11"]["L3"].update(
|
851
|
-
{f"I_0_{i*8+j*4}": {
|
852
|
-
"goal": (5,5),
|
853
|
-
"train_config": (TD3, 400000),
|
854
|
-
"consecutive": cons,
|
855
|
-
"percentage": perc
|
856
|
-
},
|
857
|
-
f"I_0_{i*8+j*4+1}": {
|
858
|
-
"goal": (3,6),
|
859
|
-
"train_config": (TD3, 400000),
|
860
|
-
"consecutive": cons,
|
861
|
-
"percentage": perc
|
862
|
-
},
|
863
|
-
f"I_0_{i*8+j*4+2}": {
|
864
|
-
"goal": (7,4),
|
865
|
-
"train_config": (TD3, 400000),
|
866
|
-
"consecutive": cons,
|
867
|
-
"percentage": perc
|
868
|
-
},
|
869
|
-
f"I_0_{i*8+j*4+3}": {
|
870
|
-
"goal": (4,7),
|
871
|
-
"train_config": (TD3, 400000),
|
872
|
-
"consecutive": cons,
|
873
|
-
"percentage": perc
|
874
|
-
}})
|
875
|
-
PROBLEMS[POINT_MAZE]["PointMaze-ObstaclesEnvDense-11x11"]["L4"].update(
|
876
|
-
{f"I_0_{i*10+j*5}": {
|
877
|
-
"goal": (5,5),
|
878
|
-
"train_config": (TD3, 400000),
|
879
|
-
"consecutive": cons,
|
880
|
-
"percentage": perc
|
881
|
-
},
|
882
|
-
f"I_0_{i*10+j*5+1}": {
|
883
|
-
"goal": (3,6),
|
884
|
-
"train_config": (TD3, 400000),
|
885
|
-
"consecutive": cons,
|
886
|
-
"percentage": perc
|
887
|
-
},
|
888
|
-
f"I_0_{i*10+j*5+2}": {
|
889
|
-
"goal": (7,4),
|
890
|
-
"train_config": (TD3, 400000),
|
891
|
-
"consecutive": cons,
|
892
|
-
"percentage": perc
|
893
|
-
},
|
894
|
-
f"I_0_{i*10+j*5+3}": {
|
895
|
-
"goal": (4,7),
|
896
|
-
"train_config": (TD3, 400000),
|
897
|
-
"consecutive": cons,
|
898
|
-
"percentage": perc
|
899
|
-
},
|
900
|
-
f"I_0_{i*10+j*5+4}": {
|
901
|
-
"goal": (8,8),
|
902
|
-
"train_config": (TD3, 400000),
|
903
|
-
"consecutive": cons,
|
904
|
-
"percentage": perc
|
905
|
-
}})
|
906
|
-
PROBLEMS[POINT_MAZE]["PointMaze-ObstaclesEnvDense-11x11"]["L5"].update(
|
907
|
-
{f"I_0_{i*12+j*6}": {
|
908
|
-
"goal": (5,5),
|
909
|
-
"train_config": (TD3, 400000),
|
910
|
-
"consecutive": cons,
|
911
|
-
"percentage": perc
|
912
|
-
},
|
913
|
-
f"I_0_{i*12+j*6+1}": {
|
914
|
-
"goal": (3,6),
|
915
|
-
"train_config": (TD3, 400000),
|
916
|
-
"consecutive": cons,
|
917
|
-
"percentage": perc
|
918
|
-
},
|
919
|
-
f"I_0_{i*12+j*6+2}": {
|
920
|
-
"goal": (6,3),
|
921
|
-
"train_config": (TD3, 400000),
|
922
|
-
"consecutive": cons,
|
923
|
-
"percentage": perc
|
924
|
-
},
|
925
|
-
f"I_0_{i*12+j*6+3}": {
|
926
|
-
"goal": (7,4),
|
927
|
-
"train_config": (TD3, 400000),
|
928
|
-
"consecutive": cons,
|
929
|
-
"percentage": perc
|
930
|
-
},
|
931
|
-
f"I_0_{i*12+j*6+4}": {
|
932
|
-
"goal": (4,7),
|
933
|
-
"train_config": (TD3, 400000),
|
934
|
-
"consecutive": cons,
|
935
|
-
"percentage": perc
|
936
|
-
},
|
937
|
-
f"I_0_{i*12+j*6+5}": {
|
938
|
-
"goal": (8,8),
|
939
|
-
"train_config": (TD3, 400000),
|
940
|
-
"consecutive": cons,
|
941
|
-
"percentage": perc
|
942
|
-
}})
|
914
|
+
### POINT_MAZE ###
|
943
915
|
|
944
|
-
|
916
|
+
PROBLEMS[POINT_MAZE]["PointMaze-FourRoomsEnvDense-11x11"][
|
917
|
+
"L1"
|
918
|
+
].update( # TODO the existing working 9x9 is not Dense. need to duplicate it for the dense one
|
919
|
+
{
|
920
|
+
f"I_0_{i*6+j*3}": {
|
921
|
+
"goal": (4, 4),
|
922
|
+
"train_config": (TD3, 400000),
|
923
|
+
"consecutive": cons,
|
924
|
+
"percentage": perc,
|
925
|
+
},
|
926
|
+
f"I_0_{i*6+j*3+1}": {
|
927
|
+
"goal": (7, 3),
|
928
|
+
"train_config": (TD3, 400000),
|
929
|
+
"consecutive": cons,
|
930
|
+
"percentage": perc,
|
931
|
+
},
|
932
|
+
f"I_0_{i*6+j*3+2}": {
|
933
|
+
"goal": (3, 7),
|
934
|
+
"train_config": (TD3, 400000),
|
935
|
+
"consecutive": cons,
|
936
|
+
"percentage": perc,
|
937
|
+
},
|
938
|
+
}
|
939
|
+
)
|
940
|
+
PROBLEMS[POINT_MAZE]["PointMaze-FourRoomsEnvDense-11x11"]["L2"].update(
|
941
|
+
{
|
942
|
+
f"I_0_{i*8+j*4}": {
|
943
|
+
"goal": (4, 4),
|
944
|
+
"train_config": (TD3, 400000),
|
945
|
+
"consecutive": cons,
|
946
|
+
"percentage": perc,
|
947
|
+
},
|
948
|
+
f"I_0_{i*8+j*4+1}": {
|
949
|
+
"goal": (7, 3),
|
950
|
+
"train_config": (TD3, 400000),
|
951
|
+
"consecutive": cons,
|
952
|
+
"percentage": perc,
|
953
|
+
},
|
954
|
+
f"I_0_{i*8+j*4+2}": {
|
955
|
+
"goal": (3, 7),
|
956
|
+
"train_config": (TD3, 400000),
|
957
|
+
"consecutive": cons,
|
958
|
+
"percentage": perc,
|
959
|
+
},
|
960
|
+
f"I_0_{i*8+j*4+3}": {
|
961
|
+
"goal": (8, 2),
|
962
|
+
"train_config": (TD3, 400000),
|
963
|
+
"consecutive": cons,
|
964
|
+
"percentage": perc,
|
965
|
+
},
|
966
|
+
}
|
967
|
+
)
|
968
|
+
PROBLEMS[POINT_MAZE]["PointMaze-FourRoomsEnvDense-11x11"]["L3"].update(
|
969
|
+
{
|
970
|
+
f"I_0_{i*10+j*5}": {
|
971
|
+
"goal": (4, 4),
|
972
|
+
"train_config": (TD3, 400000),
|
973
|
+
"consecutive": cons,
|
974
|
+
"percentage": perc,
|
975
|
+
},
|
976
|
+
f"I_0_{i*10+j*5+1}": {
|
977
|
+
"goal": (7, 3),
|
978
|
+
"train_config": (TD3, 400000),
|
979
|
+
"consecutive": cons,
|
980
|
+
"percentage": perc,
|
981
|
+
},
|
982
|
+
f"I_0_{i*10+j*5+2}": {
|
983
|
+
"goal": (3, 7),
|
984
|
+
"train_config": (TD3, 400000),
|
985
|
+
"consecutive": cons,
|
986
|
+
"percentage": perc,
|
987
|
+
},
|
988
|
+
f"I_0_{i*10+j*5+3}": {
|
989
|
+
"goal": (8, 2),
|
990
|
+
"train_config": (TD3, 400000),
|
991
|
+
"consecutive": cons,
|
992
|
+
"percentage": perc,
|
993
|
+
},
|
994
|
+
f"I_0_{i*10+j*5+4}": {
|
995
|
+
"goal": (2, 8),
|
996
|
+
"train_config": (TD3, 400000),
|
997
|
+
"consecutive": cons,
|
998
|
+
"percentage": perc,
|
999
|
+
},
|
1000
|
+
}
|
1001
|
+
)
|
1002
|
+
PROBLEMS[POINT_MAZE]["PointMaze-FourRoomsEnvDense-11x11"]["L4"].update(
|
1003
|
+
{
|
1004
|
+
f"I_0_{i*12+j*6}": {
|
1005
|
+
"goal": (4, 4),
|
1006
|
+
"train_config": (TD3, 400000),
|
1007
|
+
"consecutive": cons,
|
1008
|
+
"percentage": perc,
|
1009
|
+
},
|
1010
|
+
f"I_0_{i*12+j*6+1}": {
|
1011
|
+
"goal": (7, 3),
|
1012
|
+
"train_config": (TD3, 400000),
|
1013
|
+
"consecutive": cons,
|
1014
|
+
"percentage": perc,
|
1015
|
+
},
|
1016
|
+
f"I_0_{i*12+j*6+2}": {
|
1017
|
+
"goal": (3, 7),
|
1018
|
+
"train_config": (TD3, 400000),
|
1019
|
+
"consecutive": cons,
|
1020
|
+
"percentage": perc,
|
1021
|
+
},
|
1022
|
+
f"I_0_{i*12+j*6+3}": {
|
1023
|
+
"goal": (8, 2),
|
1024
|
+
"train_config": (TD3, 400000),
|
1025
|
+
"consecutive": cons,
|
1026
|
+
"percentage": perc,
|
1027
|
+
},
|
1028
|
+
f"I_0_{i*12+j*6+4}": {
|
1029
|
+
"goal": (2, 8),
|
1030
|
+
"train_config": (TD3, 400000),
|
1031
|
+
"consecutive": cons,
|
1032
|
+
"percentage": perc,
|
1033
|
+
},
|
1034
|
+
f"I_0_{i*12+j*6+5}": {
|
1035
|
+
"goal": (3, 4),
|
1036
|
+
"train_config": (TD3, 400000),
|
1037
|
+
"consecutive": cons,
|
1038
|
+
"percentage": perc,
|
1039
|
+
},
|
1040
|
+
}
|
1041
|
+
)
|
1042
|
+
PROBLEMS[POINT_MAZE]["PointMaze-FourRoomsEnvDense-11x11"]["L5"].update(
|
1043
|
+
{
|
1044
|
+
f"I_0_{i*14+j*7}": {
|
1045
|
+
"goal": (4, 4),
|
1046
|
+
"train_config": (TD3, 400000),
|
1047
|
+
"consecutive": cons,
|
1048
|
+
"percentage": perc,
|
1049
|
+
},
|
1050
|
+
f"I_0_{i*14+j*7+1}": {
|
1051
|
+
"goal": (7, 3),
|
1052
|
+
"train_config": (TD3, 400000),
|
1053
|
+
"consecutive": cons,
|
1054
|
+
"percentage": perc,
|
1055
|
+
},
|
1056
|
+
f"I_0_{i*14+j*7+2}": {
|
1057
|
+
"goal": (3, 7),
|
1058
|
+
"train_config": (TD3, 400000),
|
1059
|
+
"consecutive": cons,
|
1060
|
+
"percentage": perc,
|
1061
|
+
},
|
1062
|
+
f"I_0_{i*14+j*7+3}": {
|
1063
|
+
"goal": (8, 2),
|
1064
|
+
"train_config": (TD3, 400000),
|
1065
|
+
"consecutive": cons,
|
1066
|
+
"percentage": perc,
|
1067
|
+
},
|
1068
|
+
f"I_0_{i*14+j*7+4}": {
|
1069
|
+
"goal": (2, 8),
|
1070
|
+
"train_config": (TD3, 400000),
|
1071
|
+
"consecutive": cons,
|
1072
|
+
"percentage": perc,
|
1073
|
+
},
|
1074
|
+
f"I_0_{i*14+j*7+5}": {
|
1075
|
+
"goal": (3, 4),
|
1076
|
+
"train_config": (TD3, 400000),
|
1077
|
+
"consecutive": cons,
|
1078
|
+
"percentage": perc,
|
1079
|
+
},
|
1080
|
+
f"I_0_{i*14+j*7+6}": {
|
1081
|
+
"goal": (4, 3),
|
1082
|
+
"train_config": (TD3, 400000),
|
1083
|
+
"consecutive": cons,
|
1084
|
+
"percentage": perc,
|
1085
|
+
},
|
1086
|
+
}
|
1087
|
+
)
|
945
1088
|
|
946
|
-
|
947
|
-
|
948
|
-
|
949
|
-
|
950
|
-
|
951
|
-
|
952
|
-
|
953
|
-
|
954
|
-
|
955
|
-
|
956
|
-
|
957
|
-
|
958
|
-
|
959
|
-
|
960
|
-
|
961
|
-
|
962
|
-
|
963
|
-
|
964
|
-
|
965
|
-
|
966
|
-
|
967
|
-
|
968
|
-
|
969
|
-
|
970
|
-
|
971
|
-
|
972
|
-
|
973
|
-
|
974
|
-
|
975
|
-
|
976
|
-
|
977
|
-
|
978
|
-
|
979
|
-
|
980
|
-
|
981
|
-
|
982
|
-
|
983
|
-
|
984
|
-
|
985
|
-
|
986
|
-
|
987
|
-
|
988
|
-
|
989
|
-
|
990
|
-
|
991
|
-
|
992
|
-
|
993
|
-
|
994
|
-
|
995
|
-
|
996
|
-
|
997
|
-
|
998
|
-
|
999
|
-
|
1000
|
-
|
1001
|
-
|
1002
|
-
|
1003
|
-
|
1004
|
-
|
1005
|
-
|
1006
|
-
|
1007
|
-
|
1008
|
-
|
1009
|
-
|
1010
|
-
|
1011
|
-
|
1012
|
-
|
1013
|
-
|
1014
|
-
|
1015
|
-
|
1016
|
-
|
1017
|
-
|
1018
|
-
|
1019
|
-
|
1020
|
-
|
1021
|
-
|
1022
|
-
|
1023
|
-
|
1024
|
-
|
1025
|
-
|
1026
|
-
|
1027
|
-
|
1028
|
-
|
1029
|
-
|
1030
|
-
|
1031
|
-
|
1032
|
-
|
1033
|
-
|
1034
|
-
|
1035
|
-
|
1036
|
-
|
1037
|
-
|
1038
|
-
|
1039
|
-
|
1040
|
-
|
1041
|
-
|
1042
|
-
|
1043
|
-
|
1044
|
-
|
1045
|
-
|
1046
|
-
|
1047
|
-
|
1048
|
-
|
1049
|
-
|
1050
|
-
|
1051
|
-
|
1052
|
-
|
1053
|
-
|
1054
|
-
|
1055
|
-
|
1056
|
-
|
1057
|
-
|
1058
|
-
|
1059
|
-
|
1060
|
-
|
1061
|
-
|
1062
|
-
|
1063
|
-
|
1064
|
-
|
1065
|
-
|
1066
|
-
|
1067
|
-
|
1068
|
-
|
1069
|
-
|
1070
|
-
|
1071
|
-
|
1072
|
-
|
1073
|
-
|
1074
|
-
|
1075
|
-
|
1076
|
-
|
1077
|
-
|
1078
|
-
|
1079
|
-
|
1080
|
-
|
1081
|
-
|
1082
|
-
|
1083
|
-
|
1084
|
-
|
1085
|
-
|
1086
|
-
|
1087
|
-
|
1088
|
-
|
1089
|
+
PROBLEMS[POINT_MAZE]["PointMaze-ObstaclesEnvDense-11x11"]["L1"].update(
|
1090
|
+
{
|
1091
|
+
f"I_0_{i*6+j*3}": {
|
1092
|
+
"goal": (5, 5),
|
1093
|
+
"train_config": (TD3, 400000),
|
1094
|
+
"consecutive": cons,
|
1095
|
+
"percentage": perc,
|
1096
|
+
},
|
1097
|
+
f"I_0_{i*6+j*3+1}": {
|
1098
|
+
"goal": (7, 4),
|
1099
|
+
"train_config": (TD3, 400000),
|
1100
|
+
"consecutive": cons,
|
1101
|
+
"percentage": perc,
|
1102
|
+
},
|
1103
|
+
f"I_0_{i*6+j*3+2}": {
|
1104
|
+
"goal": (4, 7),
|
1105
|
+
"train_config": (TD3, 400000),
|
1106
|
+
"consecutive": cons,
|
1107
|
+
"percentage": perc,
|
1108
|
+
},
|
1109
|
+
}
|
1110
|
+
)
|
1111
|
+
PROBLEMS[POINT_MAZE]["PointMaze-ObstaclesEnvDense-11x11"]["L2"].update(
|
1112
|
+
{
|
1113
|
+
f"I_0_{i*6+j*3}": {
|
1114
|
+
"goal": (5, 5),
|
1115
|
+
"train_config": (TD3, 400000),
|
1116
|
+
"consecutive": cons,
|
1117
|
+
"percentage": perc,
|
1118
|
+
},
|
1119
|
+
f"I_0_{i*6+j*3+1}": {
|
1120
|
+
"goal": (3, 6),
|
1121
|
+
"train_config": (TD3, 400000),
|
1122
|
+
"consecutive": cons,
|
1123
|
+
"percentage": perc,
|
1124
|
+
},
|
1125
|
+
f"I_0_{i*6+j*3+2}": {
|
1126
|
+
"goal": (7, 4),
|
1127
|
+
"train_config": (TD3, 400000),
|
1128
|
+
"consecutive": cons,
|
1129
|
+
"percentage": perc,
|
1130
|
+
},
|
1131
|
+
}
|
1132
|
+
)
|
1133
|
+
PROBLEMS[POINT_MAZE]["PointMaze-ObstaclesEnvDense-11x11"]["L3"].update(
|
1134
|
+
{
|
1135
|
+
f"I_0_{i*8+j*4}": {
|
1136
|
+
"goal": (5, 5),
|
1137
|
+
"train_config": (TD3, 400000),
|
1138
|
+
"consecutive": cons,
|
1139
|
+
"percentage": perc,
|
1140
|
+
},
|
1141
|
+
f"I_0_{i*8+j*4+1}": {
|
1142
|
+
"goal": (3, 6),
|
1143
|
+
"train_config": (TD3, 400000),
|
1144
|
+
"consecutive": cons,
|
1145
|
+
"percentage": perc,
|
1146
|
+
},
|
1147
|
+
f"I_0_{i*8+j*4+2}": {
|
1148
|
+
"goal": (7, 4),
|
1149
|
+
"train_config": (TD3, 400000),
|
1150
|
+
"consecutive": cons,
|
1151
|
+
"percentage": perc,
|
1152
|
+
},
|
1153
|
+
f"I_0_{i*8+j*4+3}": {
|
1154
|
+
"goal": (4, 7),
|
1155
|
+
"train_config": (TD3, 400000),
|
1156
|
+
"consecutive": cons,
|
1157
|
+
"percentage": perc,
|
1158
|
+
},
|
1159
|
+
}
|
1160
|
+
)
|
1161
|
+
PROBLEMS[POINT_MAZE]["PointMaze-ObstaclesEnvDense-11x11"]["L4"].update(
|
1162
|
+
{
|
1163
|
+
f"I_0_{i*10+j*5}": {
|
1164
|
+
"goal": (5, 5),
|
1165
|
+
"train_config": (TD3, 400000),
|
1166
|
+
"consecutive": cons,
|
1167
|
+
"percentage": perc,
|
1168
|
+
},
|
1169
|
+
f"I_0_{i*10+j*5+1}": {
|
1170
|
+
"goal": (3, 6),
|
1171
|
+
"train_config": (TD3, 400000),
|
1172
|
+
"consecutive": cons,
|
1173
|
+
"percentage": perc,
|
1174
|
+
},
|
1175
|
+
f"I_0_{i*10+j*5+2}": {
|
1176
|
+
"goal": (7, 4),
|
1177
|
+
"train_config": (TD3, 400000),
|
1178
|
+
"consecutive": cons,
|
1179
|
+
"percentage": perc,
|
1180
|
+
},
|
1181
|
+
f"I_0_{i*10+j*5+3}": {
|
1182
|
+
"goal": (4, 7),
|
1183
|
+
"train_config": (TD3, 400000),
|
1184
|
+
"consecutive": cons,
|
1185
|
+
"percentage": perc,
|
1186
|
+
},
|
1187
|
+
f"I_0_{i*10+j*5+4}": {
|
1188
|
+
"goal": (8, 8),
|
1189
|
+
"train_config": (TD3, 400000),
|
1190
|
+
"consecutive": cons,
|
1191
|
+
"percentage": perc,
|
1192
|
+
},
|
1193
|
+
}
|
1194
|
+
)
|
1195
|
+
PROBLEMS[POINT_MAZE]["PointMaze-ObstaclesEnvDense-11x11"]["L5"].update(
|
1196
|
+
{
|
1197
|
+
f"I_0_{i*12+j*6}": {
|
1198
|
+
"goal": (5, 5),
|
1199
|
+
"train_config": (TD3, 400000),
|
1200
|
+
"consecutive": cons,
|
1201
|
+
"percentage": perc,
|
1202
|
+
},
|
1203
|
+
f"I_0_{i*12+j*6+1}": {
|
1204
|
+
"goal": (3, 6),
|
1205
|
+
"train_config": (TD3, 400000),
|
1206
|
+
"consecutive": cons,
|
1207
|
+
"percentage": perc,
|
1208
|
+
},
|
1209
|
+
f"I_0_{i*12+j*6+2}": {
|
1210
|
+
"goal": (6, 3),
|
1211
|
+
"train_config": (TD3, 400000),
|
1212
|
+
"consecutive": cons,
|
1213
|
+
"percentage": perc,
|
1214
|
+
},
|
1215
|
+
f"I_0_{i*12+j*6+3}": {
|
1216
|
+
"goal": (7, 4),
|
1217
|
+
"train_config": (TD3, 400000),
|
1218
|
+
"consecutive": cons,
|
1219
|
+
"percentage": perc,
|
1220
|
+
},
|
1221
|
+
f"I_0_{i*12+j*6+4}": {
|
1222
|
+
"goal": (4, 7),
|
1223
|
+
"train_config": (TD3, 400000),
|
1224
|
+
"consecutive": cons,
|
1225
|
+
"percentage": perc,
|
1226
|
+
},
|
1227
|
+
f"I_0_{i*12+j*6+5}": {
|
1228
|
+
"goal": (8, 8),
|
1229
|
+
"train_config": (TD3, 400000),
|
1230
|
+
"consecutive": cons,
|
1231
|
+
"percentage": perc,
|
1232
|
+
},
|
1233
|
+
}
|
1234
|
+
)
|
1089
1235
|
|
1090
|
-
|
1091
|
-
|
1092
|
-
|
1093
|
-
|
1094
|
-
|
1095
|
-
|
1096
|
-
|
1097
|
-
|
1098
|
-
|
1099
|
-
|
1100
|
-
|
1101
|
-
|
1102
|
-
|
1103
|
-
|
1104
|
-
|
1105
|
-
|
1106
|
-
|
1107
|
-
|
1108
|
-
|
1109
|
-
|
1110
|
-
|
1111
|
-
|
1112
|
-
|
1113
|
-
|
1114
|
-
|
1115
|
-
|
1116
|
-
|
1117
|
-
|
1118
|
-
|
1119
|
-
|
1120
|
-
|
1121
|
-
|
1122
|
-
|
1123
|
-
|
1124
|
-
|
1125
|
-
|
1126
|
-
|
1127
|
-
|
1128
|
-
|
1129
|
-
|
1130
|
-
|
1131
|
-
|
1132
|
-
|
1133
|
-
|
1134
|
-
|
1135
|
-
|
1136
|
-
|
1137
|
-
|
1138
|
-
|
1139
|
-
|
1140
|
-
|
1141
|
-
|
1142
|
-
|
1143
|
-
|
1144
|
-
|
1145
|
-
|
1146
|
-
|
1147
|
-
|
1148
|
-
|
1149
|
-
|
1150
|
-
|
1151
|
-
|
1152
|
-
|
1153
|
-
|
1154
|
-
|
1155
|
-
|
1156
|
-
|
1157
|
-
|
1158
|
-
|
1159
|
-
|
1160
|
-
|
1161
|
-
|
1162
|
-
|
1163
|
-
|
1164
|
-
|
1165
|
-
|
1166
|
-
|
1167
|
-
|
1168
|
-
|
1169
|
-
|
1170
|
-
|
1171
|
-
|
1172
|
-
|
1173
|
-
|
1174
|
-
|
1175
|
-
|
1176
|
-
|
1177
|
-
|
1178
|
-
|
1179
|
-
|
1180
|
-
|
1181
|
-
|
1182
|
-
|
1183
|
-
|
1184
|
-
|
1185
|
-
|
1186
|
-
|
1187
|
-
|
1188
|
-
|
1189
|
-
|
1190
|
-
|
1191
|
-
|
1192
|
-
|
1193
|
-
|
1194
|
-
|
1195
|
-
|
1196
|
-
|
1197
|
-
|
1198
|
-
|
1199
|
-
|
1200
|
-
|
1201
|
-
|
1202
|
-
|
1203
|
-
|
1204
|
-
|
1205
|
-
|
1206
|
-
|
1207
|
-
|
1208
|
-
|
1209
|
-
|
1210
|
-
|
1211
|
-
|
1212
|
-
|
1213
|
-
|
1214
|
-
|
1215
|
-
|
1216
|
-
|
1217
|
-
|
1218
|
-
|
1219
|
-
|
1220
|
-
|
1221
|
-
|
1222
|
-
|
1223
|
-
|
1224
|
-
|
1225
|
-
|
1226
|
-
|
1227
|
-
|
1228
|
-
|
1229
|
-
|
1230
|
-
|
1231
|
-
|
1232
|
-
|
1233
|
-
|
1234
|
-
|
1235
|
-
|
1236
|
-
|
1237
|
-
|
1238
|
-
|
1239
|
-
|
1240
|
-
|
1241
|
-
|
1242
|
-
|
1243
|
-
|
1244
|
-
|
1236
|
+
### MINIGRID ###
|
1237
|
+
|
1238
|
+
PROBLEMS[MINIGRID]["MiniGrid-SimpleCrossingS13N4"]["L1"].update(
|
1239
|
+
{
|
1240
|
+
f"I_0_{i*6+j*3}": {
|
1241
|
+
"goal": (11, 1),
|
1242
|
+
"train_config": (QLEARNING, 100000),
|
1243
|
+
"consecutive": cons,
|
1244
|
+
"percentage": perc,
|
1245
|
+
},
|
1246
|
+
f"I_0_{i*6+j*3+1}": {
|
1247
|
+
"goal": (1, 11),
|
1248
|
+
"train_config": (QLEARNING, 100000),
|
1249
|
+
"consecutive": cons,
|
1250
|
+
"percentage": perc,
|
1251
|
+
},
|
1252
|
+
f"I_0_{i*6+j*3+2}": {
|
1253
|
+
"goal": (11, 11),
|
1254
|
+
"train_config": (QLEARNING, 100000),
|
1255
|
+
"consecutive": cons,
|
1256
|
+
"percentage": perc,
|
1257
|
+
},
|
1258
|
+
}
|
1259
|
+
)
|
1260
|
+
PROBLEMS[MINIGRID]["MiniGrid-SimpleCrossingS13N4"]["L2"].update(
|
1261
|
+
{
|
1262
|
+
f"I_0_{i*8+j*4}": {
|
1263
|
+
"goal": (11, 1),
|
1264
|
+
"train_config": (QLEARNING, 100000),
|
1265
|
+
"consecutive": cons,
|
1266
|
+
"percentage": perc,
|
1267
|
+
},
|
1268
|
+
f"I_0_{i*8+j*4+1}": {
|
1269
|
+
"goal": (1, 11),
|
1270
|
+
"train_config": (QLEARNING, 100000),
|
1271
|
+
"consecutive": cons,
|
1272
|
+
"percentage": perc,
|
1273
|
+
},
|
1274
|
+
f"I_0_{i*8+j*4+2}": {
|
1275
|
+
"goal": (11, 11),
|
1276
|
+
"train_config": (QLEARNING, 100000),
|
1277
|
+
"consecutive": cons,
|
1278
|
+
"percentage": perc,
|
1279
|
+
},
|
1280
|
+
f"I_0_{i*8+j*4+3}": {
|
1281
|
+
"goal": (5, 9),
|
1282
|
+
"train_config": (QLEARNING, 100000),
|
1283
|
+
"consecutive": cons,
|
1284
|
+
"percentage": perc,
|
1285
|
+
},
|
1286
|
+
}
|
1287
|
+
)
|
1288
|
+
PROBLEMS[MINIGRID]["MiniGrid-SimpleCrossingS13N4"]["L3"].update(
|
1289
|
+
{
|
1290
|
+
f"I_0_{i*10+j*5}": {
|
1291
|
+
"goal": (11, 1),
|
1292
|
+
"train_config": (QLEARNING, 100000),
|
1293
|
+
"consecutive": cons,
|
1294
|
+
"percentage": perc,
|
1295
|
+
},
|
1296
|
+
f"I_0_{i*10+j*5+1}": {
|
1297
|
+
"goal": (1, 11),
|
1298
|
+
"train_config": (QLEARNING, 100000),
|
1299
|
+
"consecutive": cons,
|
1300
|
+
"percentage": perc,
|
1301
|
+
},
|
1302
|
+
f"I_0_{i*10+j*5+2}": {
|
1303
|
+
"goal": (11, 11),
|
1304
|
+
"train_config": (QLEARNING, 100000),
|
1305
|
+
"consecutive": cons,
|
1306
|
+
"percentage": perc,
|
1307
|
+
},
|
1308
|
+
f"I_0_{i*10+j*5+3}": {
|
1309
|
+
"goal": (5, 9),
|
1310
|
+
"train_config": (QLEARNING, 100000),
|
1311
|
+
"consecutive": cons,
|
1312
|
+
"percentage": perc,
|
1313
|
+
},
|
1314
|
+
f"I_0_{i*10+j*5+4}": {
|
1315
|
+
"goal": (6, 1),
|
1316
|
+
"train_config": (QLEARNING, 100000),
|
1317
|
+
"consecutive": cons,
|
1318
|
+
"percentage": perc,
|
1319
|
+
},
|
1320
|
+
}
|
1321
|
+
)
|
1322
|
+
PROBLEMS[MINIGRID]["MiniGrid-SimpleCrossingS13N4"]["L4"].update(
|
1323
|
+
{
|
1324
|
+
f"I_0_{i*12+j*6}": {
|
1325
|
+
"goal": (11, 1),
|
1326
|
+
"train_config": (QLEARNING, 100000),
|
1327
|
+
"consecutive": cons,
|
1328
|
+
"percentage": perc,
|
1329
|
+
},
|
1330
|
+
f"I_0_{i*12+j*6+1}": {
|
1331
|
+
"goal": (1, 11),
|
1332
|
+
"train_config": (QLEARNING, 100000),
|
1333
|
+
"consecutive": cons,
|
1334
|
+
"percentage": perc,
|
1335
|
+
},
|
1336
|
+
f"I_0_{i*12+j*6+2}": {
|
1337
|
+
"goal": (11, 11),
|
1338
|
+
"train_config": (QLEARNING, 100000),
|
1339
|
+
"consecutive": cons,
|
1340
|
+
"percentage": perc,
|
1341
|
+
},
|
1342
|
+
f"I_0_{i*12+j*6+3}": {
|
1343
|
+
"goal": (5, 9),
|
1344
|
+
"train_config": (QLEARNING, 100000),
|
1345
|
+
"consecutive": cons,
|
1346
|
+
"percentage": perc,
|
1347
|
+
},
|
1348
|
+
f"I_0_{i*12+j*6+5}": {
|
1349
|
+
"goal": (11, 3),
|
1350
|
+
"train_config": (QLEARNING, 100000),
|
1351
|
+
"consecutive": cons,
|
1352
|
+
"percentage": perc,
|
1353
|
+
},
|
1354
|
+
}
|
1355
|
+
)
|
1356
|
+
PROBLEMS[MINIGRID]["MiniGrid-SimpleCrossingS13N4"]["L5"].update(
|
1357
|
+
{
|
1358
|
+
f"I_0_{i*14+j*7}": {
|
1359
|
+
"goal": (11, 1),
|
1360
|
+
"train_config": (QLEARNING, 100000),
|
1361
|
+
"consecutive": cons,
|
1362
|
+
"percentage": perc,
|
1363
|
+
},
|
1364
|
+
f"I_0_{i*14+j*7+1}": {
|
1365
|
+
"goal": (1, 11),
|
1366
|
+
"train_config": (QLEARNING, 100000),
|
1367
|
+
"consecutive": cons,
|
1368
|
+
"percentage": perc,
|
1369
|
+
},
|
1370
|
+
f"I_0_{i*14+j*7+2}": {
|
1371
|
+
"goal": (11, 11),
|
1372
|
+
"train_config": (QLEARNING, 100000),
|
1373
|
+
"consecutive": cons,
|
1374
|
+
"percentage": perc,
|
1375
|
+
},
|
1376
|
+
f"I_0_{i*14+j*7+3}": {
|
1377
|
+
"goal": (5, 9),
|
1378
|
+
"train_config": (QLEARNING, 100000),
|
1379
|
+
"consecutive": cons,
|
1380
|
+
"percentage": perc,
|
1381
|
+
},
|
1382
|
+
f"I_0_{i*14+j*7+5}": {
|
1383
|
+
"goal": (11, 3),
|
1384
|
+
"train_config": (QLEARNING, 100000),
|
1385
|
+
"consecutive": cons,
|
1386
|
+
"percentage": perc,
|
1387
|
+
},
|
1388
|
+
f"I_0_{i*14+j*7+6}": {
|
1389
|
+
"goal": (11, 5),
|
1390
|
+
"train_config": (QLEARNING, 100000),
|
1391
|
+
"consecutive": cons,
|
1392
|
+
"percentage": perc,
|
1393
|
+
},
|
1394
|
+
}
|
1395
|
+
)
|
1396
|
+
|
1397
|
+
PROBLEMS[MINIGRID]["MiniGrid-LavaCrossingS9N2"]["L1"].update(
|
1398
|
+
{
|
1399
|
+
f"I_0_{i*6+j*3}": {
|
1400
|
+
"goal": (1, 3),
|
1401
|
+
"train_config": (QLEARNING, 100000),
|
1402
|
+
"consecutive": cons,
|
1403
|
+
"percentage": perc,
|
1404
|
+
},
|
1405
|
+
f"I_0_{i*6+j*3+1}": {
|
1406
|
+
"goal": (6, 5),
|
1407
|
+
"train_config": (QLEARNING, 100000),
|
1408
|
+
"consecutive": cons,
|
1409
|
+
"percentage": perc,
|
1410
|
+
},
|
1411
|
+
f"I_0_{i*6+j*3+2}": {
|
1412
|
+
"goal": (4, 7),
|
1413
|
+
"train_config": (QLEARNING, 100000),
|
1414
|
+
"consecutive": cons,
|
1415
|
+
"percentage": perc,
|
1416
|
+
},
|
1417
|
+
}
|
1418
|
+
)
|
1419
|
+
PROBLEMS[MINIGRID]["MiniGrid-LavaCrossingS9N2"]["L2"].update(
|
1420
|
+
{
|
1421
|
+
f"I_0_{i*8+j*4}": {
|
1422
|
+
"goal": (1, 3),
|
1423
|
+
"train_config": (QLEARNING, 100000),
|
1424
|
+
"consecutive": cons,
|
1425
|
+
"percentage": perc,
|
1426
|
+
},
|
1427
|
+
f"I_0_{i*8+j*4+1}": {
|
1428
|
+
"goal": (6, 5),
|
1429
|
+
"train_config": (QLEARNING, 100000),
|
1430
|
+
"consecutive": cons,
|
1431
|
+
"percentage": perc,
|
1432
|
+
},
|
1433
|
+
f"I_0_{i*8+j*4+2}": {
|
1434
|
+
"goal": (4, 7),
|
1435
|
+
"train_config": (QLEARNING, 100000),
|
1436
|
+
"consecutive": cons,
|
1437
|
+
"percentage": perc,
|
1438
|
+
},
|
1439
|
+
f"I_0_{i*8+j*4+3}": {
|
1440
|
+
"goal": (2, 5),
|
1441
|
+
"train_config": (QLEARNING, 100000),
|
1442
|
+
"consecutive": cons,
|
1443
|
+
"percentage": perc,
|
1444
|
+
},
|
1445
|
+
}
|
1446
|
+
)
|
1447
|
+
PROBLEMS[MINIGRID]["MiniGrid-LavaCrossingS9N2"]["L3"].update(
|
1448
|
+
{
|
1449
|
+
f"I_0_{i*10+j*5}": {
|
1450
|
+
"goal": (1, 3),
|
1451
|
+
"train_config": (QLEARNING, 100000),
|
1452
|
+
"consecutive": cons,
|
1453
|
+
"percentage": perc,
|
1454
|
+
},
|
1455
|
+
f"I_0_{i*10+j*5+1}": {
|
1456
|
+
"goal": (6, 5),
|
1457
|
+
"train_config": (QLEARNING, 100000),
|
1458
|
+
"consecutive": cons,
|
1459
|
+
"percentage": perc,
|
1460
|
+
},
|
1461
|
+
f"I_0_{i*10+j*5+2}": {
|
1462
|
+
"goal": (4, 7),
|
1463
|
+
"train_config": (QLEARNING, 100000),
|
1464
|
+
"consecutive": cons,
|
1465
|
+
"percentage": perc,
|
1466
|
+
},
|
1467
|
+
f"I_0_{i*10+j*5+3}": {
|
1468
|
+
"goal": (2, 5),
|
1469
|
+
"train_config": (QLEARNING, 100000),
|
1470
|
+
"consecutive": cons,
|
1471
|
+
"percentage": perc,
|
1472
|
+
},
|
1473
|
+
f"I_0_{i*10+j*5+4}": {
|
1474
|
+
"goal": (5, 2),
|
1475
|
+
"train_config": (QLEARNING, 100000),
|
1476
|
+
"consecutive": cons,
|
1477
|
+
"percentage": perc,
|
1478
|
+
},
|
1479
|
+
}
|
1480
|
+
)
|
1481
|
+
PROBLEMS[MINIGRID]["MiniGrid-LavaCrossingS9N2"]["L4"].update(
|
1482
|
+
{
|
1483
|
+
f"I_0_{i*12+j*6}": {
|
1484
|
+
"goal": (1, 3),
|
1485
|
+
"train_config": (QLEARNING, 100000),
|
1486
|
+
"consecutive": cons,
|
1487
|
+
"percentage": perc,
|
1488
|
+
},
|
1489
|
+
f"I_0_{i*12+j*6+1}": {
|
1490
|
+
"goal": (6, 5),
|
1491
|
+
"train_config": (QLEARNING, 100000),
|
1492
|
+
"consecutive": cons,
|
1493
|
+
"percentage": perc,
|
1494
|
+
},
|
1495
|
+
f"I_0_{i*12+j*6+2}": {
|
1496
|
+
"goal": (4, 7),
|
1497
|
+
"train_config": (QLEARNING, 100000),
|
1498
|
+
"consecutive": cons,
|
1499
|
+
"percentage": perc,
|
1500
|
+
},
|
1501
|
+
f"I_0_{i*12+j*6+3}": {
|
1502
|
+
"goal": (2, 5),
|
1503
|
+
"train_config": (QLEARNING, 100000),
|
1504
|
+
"consecutive": cons,
|
1505
|
+
"percentage": perc,
|
1506
|
+
},
|
1507
|
+
f"I_0_{i*12+j*6+4}": {
|
1508
|
+
"goal": (5, 2),
|
1509
|
+
"train_config": (QLEARNING, 100000),
|
1510
|
+
"consecutive": cons,
|
1511
|
+
"percentage": perc,
|
1512
|
+
},
|
1513
|
+
f"I_0_{i*12+j*6+5}": {
|
1514
|
+
"goal": (4, 5),
|
1515
|
+
"train_config": (QLEARNING, 100000),
|
1516
|
+
"consecutive": cons,
|
1517
|
+
"percentage": perc,
|
1518
|
+
},
|
1519
|
+
}
|
1520
|
+
)
|
1521
|
+
PROBLEMS[MINIGRID]["MiniGrid-LavaCrossingS9N2"]["L5"].update(
|
1522
|
+
{
|
1523
|
+
f"I_0_{i*14+j*7}": {
|
1524
|
+
"goal": (1, 3),
|
1525
|
+
"train_config": (QLEARNING, 100000),
|
1526
|
+
"consecutive": cons,
|
1527
|
+
"percentage": perc,
|
1528
|
+
},
|
1529
|
+
f"I_0_{i*14+j*7+1}": {
|
1530
|
+
"goal": (6, 5),
|
1531
|
+
"train_config": (QLEARNING, 100000),
|
1532
|
+
"consecutive": cons,
|
1533
|
+
"percentage": perc,
|
1534
|
+
},
|
1535
|
+
f"I_0_{i*14+j*7+2}": {
|
1536
|
+
"goal": (4, 7),
|
1537
|
+
"train_config": (QLEARNING, 100000),
|
1538
|
+
"consecutive": cons,
|
1539
|
+
"percentage": perc,
|
1540
|
+
},
|
1541
|
+
f"I_0_{i*14+j*7+3}": {
|
1542
|
+
"goal": (2, 5),
|
1543
|
+
"train_config": (QLEARNING, 100000),
|
1544
|
+
"consecutive": cons,
|
1545
|
+
"percentage": perc,
|
1546
|
+
},
|
1547
|
+
f"I_0_{i*14+j*7+4}": {
|
1548
|
+
"goal": (5, 2),
|
1549
|
+
"train_config": (QLEARNING, 100000),
|
1550
|
+
"consecutive": cons,
|
1551
|
+
"percentage": perc,
|
1552
|
+
},
|
1553
|
+
f"I_0_{i*14+j*7+5}": {
|
1554
|
+
"goal": (4, 5),
|
1555
|
+
"train_config": (QLEARNING, 100000),
|
1556
|
+
"consecutive": cons,
|
1557
|
+
"percentage": perc,
|
1558
|
+
},
|
1559
|
+
f"I_0_{i*14+j*7+6}": {
|
1560
|
+
"goal": (1, 1),
|
1561
|
+
"train_config": (QLEARNING, 100000),
|
1562
|
+
"consecutive": cons,
|
1563
|
+
"percentage": perc,
|
1564
|
+
},
|
1565
|
+
}
|
1566
|
+
)
|