google-genai 0.3.0__py3-none-any.whl → 0.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- google/genai/__init__.py +2 -1
- google/genai/_api_client.py +161 -52
- google/genai/_automatic_function_calling_util.py +14 -14
- google/genai/_common.py +14 -29
- google/genai/_replay_api_client.py +13 -54
- google/genai/_transformers.py +38 -0
- google/genai/batches.py +80 -78
- google/genai/caches.py +112 -98
- google/genai/chats.py +7 -10
- google/genai/client.py +6 -3
- google/genai/files.py +91 -90
- google/genai/live.py +65 -34
- google/genai/models.py +374 -297
- google/genai/tunings.py +87 -85
- google/genai/types.py +167 -82
- google/genai/version.py +16 -0
- {google_genai-0.3.0.dist-info → google_genai-0.5.0.dist-info}/METADATA +57 -17
- google_genai-0.5.0.dist-info/RECORD +25 -0
- {google_genai-0.3.0.dist-info → google_genai-0.5.0.dist-info}/WHEEL +1 -1
- google_genai-0.3.0.dist-info/RECORD +0 -24
- {google_genai-0.3.0.dist-info → google_genai-0.5.0.dist-info}/LICENSE +0 -0
- {google_genai-0.3.0.dist-info → google_genai-0.5.0.dist-info}/top_level.txt +0 -0
google/genai/types.py
CHANGED
@@ -13,6 +13,8 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
#
|
15
15
|
|
16
|
+
# Code generated by the Google Gen AI SDK generator DO NOT EDIT.
|
17
|
+
|
16
18
|
import datetime
|
17
19
|
import inspect
|
18
20
|
import json
|
@@ -569,7 +571,9 @@ class Content(_common.BaseModel):
|
|
569
571
|
)
|
570
572
|
role: Optional[str] = Field(
|
571
573
|
default=None,
|
572
|
-
description="""Optional. The producer of the content. Must be either 'user' or
|
574
|
+
description="""Optional. The producer of the content. Must be either 'user' or
|
575
|
+
'model'. Useful to set for multi-turn conversations, otherwise can be
|
576
|
+
left blank or unset. If role is not specified, SDK will determine the role.""",
|
573
577
|
)
|
574
578
|
|
575
579
|
|
@@ -581,7 +585,9 @@ class ContentDict(TypedDict, total=False):
|
|
581
585
|
a different IANA MIME type."""
|
582
586
|
|
583
587
|
role: Optional[str]
|
584
|
-
"""Optional. The producer of the content. Must be either 'user' or
|
588
|
+
"""Optional. The producer of the content. Must be either 'user' or
|
589
|
+
'model'. Useful to set for multi-turn conversations, otherwise can be
|
590
|
+
left blank or unset. If role is not specified, SDK will determine the role."""
|
585
591
|
|
586
592
|
|
587
593
|
ContentOrDict = Union[Content, ContentDict]
|
@@ -598,7 +604,7 @@ class Schema(_common.BaseModel):
|
|
598
604
|
Represents a select subset of an OpenAPI 3.0 schema object.
|
599
605
|
"""
|
600
606
|
|
601
|
-
min_items: Optional[
|
607
|
+
min_items: Optional[int] = Field(
|
602
608
|
default=None,
|
603
609
|
description="""Optional. Minimum number of the elements for Type.ARRAY.""",
|
604
610
|
)
|
@@ -625,22 +631,22 @@ class Schema(_common.BaseModel):
|
|
625
631
|
default=None,
|
626
632
|
description="""Optional. The value should be validated against any (one or more) of the subschemas in the list.""",
|
627
633
|
)
|
628
|
-
max_length: Optional[
|
634
|
+
max_length: Optional[int] = Field(
|
629
635
|
default=None,
|
630
636
|
description="""Optional. Maximum length of the Type.STRING""",
|
631
637
|
)
|
632
638
|
title: Optional[str] = Field(
|
633
639
|
default=None, description="""Optional. The title of the Schema."""
|
634
640
|
)
|
635
|
-
min_length: Optional[
|
641
|
+
min_length: Optional[int] = Field(
|
636
642
|
default=None,
|
637
643
|
description="""Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING""",
|
638
644
|
)
|
639
|
-
min_properties: Optional[
|
645
|
+
min_properties: Optional[int] = Field(
|
640
646
|
default=None,
|
641
647
|
description="""Optional. Minimum number of the properties for Type.OBJECT.""",
|
642
648
|
)
|
643
|
-
max_items: Optional[
|
649
|
+
max_items: Optional[int] = Field(
|
644
650
|
default=None,
|
645
651
|
description="""Optional. Maximum number of the elements for Type.ARRAY.""",
|
646
652
|
)
|
@@ -652,7 +658,7 @@ class Schema(_common.BaseModel):
|
|
652
658
|
default=None,
|
653
659
|
description="""Optional. Indicates if the value may be null.""",
|
654
660
|
)
|
655
|
-
max_properties: Optional[
|
661
|
+
max_properties: Optional[int] = Field(
|
656
662
|
default=None,
|
657
663
|
description="""Optional. Maximum number of the properties for Type.OBJECT.""",
|
658
664
|
)
|
@@ -690,7 +696,7 @@ class SchemaDict(TypedDict, total=False):
|
|
690
696
|
Represents a select subset of an OpenAPI 3.0 schema object.
|
691
697
|
"""
|
692
698
|
|
693
|
-
min_items: Optional[
|
699
|
+
min_items: Optional[int]
|
694
700
|
"""Optional. Minimum number of the elements for Type.ARRAY."""
|
695
701
|
|
696
702
|
example: Optional[Any]
|
@@ -711,19 +717,19 @@ class SchemaDict(TypedDict, total=False):
|
|
711
717
|
any_of: list["SchemaDict"]
|
712
718
|
"""Optional. The value should be validated against any (one or more) of the subschemas in the list."""
|
713
719
|
|
714
|
-
max_length: Optional[
|
720
|
+
max_length: Optional[int]
|
715
721
|
"""Optional. Maximum length of the Type.STRING"""
|
716
722
|
|
717
723
|
title: Optional[str]
|
718
724
|
"""Optional. The title of the Schema."""
|
719
725
|
|
720
|
-
min_length: Optional[
|
726
|
+
min_length: Optional[int]
|
721
727
|
"""Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING"""
|
722
728
|
|
723
|
-
min_properties: Optional[
|
729
|
+
min_properties: Optional[int]
|
724
730
|
"""Optional. Minimum number of the properties for Type.OBJECT."""
|
725
731
|
|
726
|
-
max_items: Optional[
|
732
|
+
max_items: Optional[int]
|
727
733
|
"""Optional. Maximum number of the elements for Type.ARRAY."""
|
728
734
|
|
729
735
|
maximum: Optional[float]
|
@@ -732,7 +738,7 @@ class SchemaDict(TypedDict, total=False):
|
|
732
738
|
nullable: Optional[bool]
|
733
739
|
"""Optional. Indicates if the value may be null."""
|
734
740
|
|
735
|
-
max_properties: Optional[
|
741
|
+
max_properties: Optional[int]
|
736
742
|
"""Optional. Maximum number of the properties for Type.OBJECT."""
|
737
743
|
|
738
744
|
type: Optional[Type]
|
@@ -820,11 +826,35 @@ class FunctionDeclaration(_common.BaseModel):
|
|
820
826
|
description="""Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1""",
|
821
827
|
)
|
822
828
|
|
823
|
-
@
|
824
|
-
def
|
825
|
-
"""
|
829
|
+
@classmethod
|
830
|
+
def _get_variant(cls, client) -> str:
|
831
|
+
"""Returns the function variant based on the provided client object."""
|
832
|
+
if client.vertexai:
|
833
|
+
return "VERTEX_AI"
|
834
|
+
else:
|
835
|
+
return "GOOGLE_AI"
|
836
|
+
|
837
|
+
@classmethod
|
838
|
+
def from_function_with_options(
|
839
|
+
cls,
|
840
|
+
func: Callable,
|
841
|
+
variant: Literal["GOOGLE_AI", "VERTEX_AI", "DEFAULT"] = "GOOGLE_AI",
|
842
|
+
) -> "FunctionDeclaration":
|
843
|
+
"""Converts a function to a FunctionDeclaration based on an API endpoint.
|
844
|
+
|
845
|
+
Supported endpoints are: 'GOOGLE_AI', 'VERTEX_AI', or 'DEFAULT'.
|
846
|
+
"""
|
826
847
|
from . import _automatic_function_calling_util
|
827
848
|
|
849
|
+
supported_variants = ["GOOGLE_AI", "VERTEX_AI", "DEFAULT"]
|
850
|
+
if variant not in supported_variants:
|
851
|
+
raise ValueError(
|
852
|
+
f"Unsupported variant: {variant}. Supported variants are:"
|
853
|
+
f" {', '.join(supported_variants)}"
|
854
|
+
)
|
855
|
+
|
856
|
+
# TODO: b/382524014 - Add support for DEFAULT API endpoint.
|
857
|
+
|
828
858
|
parameters_properties = {}
|
829
859
|
for name, param in inspect.signature(func).parameters.items():
|
830
860
|
if param.kind in (
|
@@ -833,7 +863,7 @@ class FunctionDeclaration(_common.BaseModel):
|
|
833
863
|
inspect.Parameter.POSITIONAL_ONLY,
|
834
864
|
):
|
835
865
|
schema = _automatic_function_calling_util._parse_schema_from_parameter(
|
836
|
-
|
866
|
+
variant, param, func.__name__
|
837
867
|
)
|
838
868
|
parameters_properties[name] = schema
|
839
869
|
declaration = FunctionDeclaration(
|
@@ -845,13 +875,13 @@ class FunctionDeclaration(_common.BaseModel):
|
|
845
875
|
type="OBJECT",
|
846
876
|
properties=parameters_properties,
|
847
877
|
)
|
848
|
-
if
|
878
|
+
if variant == "VERTEX_AI":
|
849
879
|
declaration.parameters.required = (
|
850
880
|
_automatic_function_calling_util._get_required_fields(
|
851
881
|
declaration.parameters
|
852
882
|
)
|
853
883
|
)
|
854
|
-
if not
|
884
|
+
if not variant == "VERTEX_AI":
|
855
885
|
return declaration
|
856
886
|
|
857
887
|
return_annotation = inspect.signature(func).return_annotation
|
@@ -860,7 +890,7 @@ class FunctionDeclaration(_common.BaseModel):
|
|
860
890
|
|
861
891
|
declaration.response = (
|
862
892
|
_automatic_function_calling_util._parse_schema_from_parameter(
|
863
|
-
|
893
|
+
variant,
|
864
894
|
inspect.Parameter(
|
865
895
|
"return_value",
|
866
896
|
inspect.Parameter.POSITIONAL_OR_KEYWORD,
|
@@ -871,6 +901,14 @@ class FunctionDeclaration(_common.BaseModel):
|
|
871
901
|
)
|
872
902
|
return declaration
|
873
903
|
|
904
|
+
@classmethod
|
905
|
+
def from_function(cls, client, func: Callable) -> "FunctionDeclaration":
|
906
|
+
"""Converts a function to a FunctionDeclaration."""
|
907
|
+
return cls.from_function_with_options(
|
908
|
+
variant=cls._get_variant(client),
|
909
|
+
func=func,
|
910
|
+
)
|
911
|
+
|
874
912
|
|
875
913
|
class FunctionDeclarationDict(TypedDict, total=False):
|
876
914
|
"""Defines a function that the model can generate JSON inputs for.
|
@@ -2417,7 +2455,10 @@ class GenerateContentResponse(_common.BaseModel):
|
|
2417
2455
|
default=None, description="""Usage metadata about the response(s)."""
|
2418
2456
|
)
|
2419
2457
|
automatic_function_calling_history: Optional[list[Content]] = None
|
2420
|
-
parsed: Union[pydantic.BaseModel, dict] =
|
2458
|
+
parsed: Union[pydantic.BaseModel, dict] = Field(
|
2459
|
+
default=None,
|
2460
|
+
description="""Parsed response if response_schema is provided. Not available for streaming.""",
|
2461
|
+
)
|
2421
2462
|
|
2422
2463
|
@property
|
2423
2464
|
def text(self) -> Optional[str]:
|
@@ -2453,6 +2494,28 @@ class GenerateContentResponse(_common.BaseModel):
|
|
2453
2494
|
# part.text == '' is different from part.text is None
|
2454
2495
|
return text if any_text_part_text else None
|
2455
2496
|
|
2497
|
+
@property
|
2498
|
+
def function_calls(self) -> Optional[list[FunctionCall]]:
|
2499
|
+
"""Returns the list of function calls in the response."""
|
2500
|
+
if (
|
2501
|
+
not self.candidates
|
2502
|
+
or not self.candidates[0].content
|
2503
|
+
or not self.candidates[0].content.parts
|
2504
|
+
):
|
2505
|
+
return None
|
2506
|
+
if len(self.candidates) > 1:
|
2507
|
+
logging.warning(
|
2508
|
+
"Warning: there are multiple candidates in the response, returning"
|
2509
|
+
" function calls from the first one."
|
2510
|
+
)
|
2511
|
+
function_calls = [
|
2512
|
+
part.function_call
|
2513
|
+
for part in self.candidates[0].content.parts
|
2514
|
+
if part.function_call is not None
|
2515
|
+
]
|
2516
|
+
|
2517
|
+
return function_calls if function_calls else None
|
2518
|
+
|
2456
2519
|
@classmethod
|
2457
2520
|
def _from_response(
|
2458
2521
|
cls, response: dict[str, object], kwargs: dict[str, object]
|
@@ -2467,12 +2530,21 @@ class GenerateContentResponse(_common.BaseModel):
|
|
2467
2530
|
response_schema, pydantic.BaseModel
|
2468
2531
|
):
|
2469
2532
|
# Pydantic schema.
|
2470
|
-
|
2533
|
+
try:
|
2534
|
+
result.parsed = response_schema.model_validate_json(result.text)
|
2535
|
+
# may not be a valid json per stream response
|
2536
|
+
except pydantic.ValidationError:
|
2537
|
+
pass
|
2538
|
+
|
2471
2539
|
elif isinstance(response_schema, dict) or isinstance(
|
2472
2540
|
response_schema, pydantic.BaseModel
|
2473
2541
|
):
|
2474
2542
|
# JSON schema.
|
2475
|
-
|
2543
|
+
try:
|
2544
|
+
result.parsed = json.loads(result.text)
|
2545
|
+
# may not be a valid json per stream response
|
2546
|
+
except json.decoder.JSONDecodeError:
|
2547
|
+
pass
|
2476
2548
|
|
2477
2549
|
return result
|
2478
2550
|
|
@@ -3522,10 +3594,6 @@ class _UpscaleImageAPIConfig(_common.BaseModel):
|
|
3522
3594
|
http_options: Optional[dict[str, Any]] = Field(
|
3523
3595
|
default=None, description="""Used to override HTTP request options."""
|
3524
3596
|
)
|
3525
|
-
upscale_factor: Optional[str] = Field(
|
3526
|
-
default=None,
|
3527
|
-
description="""The factor to which the image will be upscaled.""",
|
3528
|
-
)
|
3529
3597
|
include_rai_reason: Optional[bool] = Field(
|
3530
3598
|
default=None,
|
3531
3599
|
description="""Whether to include a reason for filtered-out images in the
|
@@ -3554,9 +3622,6 @@ class _UpscaleImageAPIConfigDict(TypedDict, total=False):
|
|
3554
3622
|
http_options: Optional[dict[str, Any]]
|
3555
3623
|
"""Used to override HTTP request options."""
|
3556
3624
|
|
3557
|
-
upscale_factor: Optional[str]
|
3558
|
-
"""The factor to which the image will be upscaled."""
|
3559
|
-
|
3560
3625
|
include_rai_reason: Optional[bool]
|
3561
3626
|
"""Whether to include a reason for filtered-out images in the
|
3562
3627
|
response."""
|
@@ -3589,6 +3654,10 @@ class _UpscaleImageAPIParameters(_common.BaseModel):
|
|
3589
3654
|
image: Optional[Image] = Field(
|
3590
3655
|
default=None, description="""The input image to upscale."""
|
3591
3656
|
)
|
3657
|
+
upscale_factor: Optional[str] = Field(
|
3658
|
+
default=None,
|
3659
|
+
description="""The factor to upscale the image (x2 or x4).""",
|
3660
|
+
)
|
3592
3661
|
config: Optional[_UpscaleImageAPIConfig] = Field(
|
3593
3662
|
default=None, description="""Configuration for upscaling."""
|
3594
3663
|
)
|
@@ -3603,6 +3672,9 @@ class _UpscaleImageAPIParametersDict(TypedDict, total=False):
|
|
3603
3672
|
image: Optional[ImageDict]
|
3604
3673
|
"""The input image to upscale."""
|
3605
3674
|
|
3675
|
+
upscale_factor: Optional[str]
|
3676
|
+
"""The factor to upscale the image (x2 or x4)."""
|
3677
|
+
|
3606
3678
|
config: Optional[_UpscaleImageAPIConfigDict]
|
3607
3679
|
"""Configuration for upscaling."""
|
3608
3680
|
|
@@ -3791,13 +3863,23 @@ ModelOrDict = Union[Model, ModelDict]
|
|
3791
3863
|
|
3792
3864
|
class ListModelsConfig(_common.BaseModel):
|
3793
3865
|
|
3866
|
+
http_options: Optional[dict[str, Any]] = Field(
|
3867
|
+
default=None, description="""Used to override HTTP request options."""
|
3868
|
+
)
|
3794
3869
|
page_size: Optional[int] = Field(default=None, description="""""")
|
3795
3870
|
page_token: Optional[str] = Field(default=None, description="""""")
|
3796
3871
|
filter: Optional[str] = Field(default=None, description="""""")
|
3872
|
+
query_base: Optional[bool] = Field(
|
3873
|
+
default=None,
|
3874
|
+
description="""Set true to list base models, false to list tuned models.""",
|
3875
|
+
)
|
3797
3876
|
|
3798
3877
|
|
3799
3878
|
class ListModelsConfigDict(TypedDict, total=False):
|
3800
3879
|
|
3880
|
+
http_options: Optional[dict[str, Any]]
|
3881
|
+
"""Used to override HTTP request options."""
|
3882
|
+
|
3801
3883
|
page_size: Optional[int]
|
3802
3884
|
""""""
|
3803
3885
|
|
@@ -3807,6 +3889,9 @@ class ListModelsConfigDict(TypedDict, total=False):
|
|
3807
3889
|
filter: Optional[str]
|
3808
3890
|
""""""
|
3809
3891
|
|
3892
|
+
query_base: Optional[bool]
|
3893
|
+
"""Set true to list base models, false to list tuned models."""
|
3894
|
+
|
3810
3895
|
|
3811
3896
|
ListModelsConfigOrDict = Union[ListModelsConfig, ListModelsConfigDict]
|
3812
3897
|
|
@@ -4193,7 +4278,7 @@ class TokensInfo(_common.BaseModel):
|
|
4193
4278
|
default=None,
|
4194
4279
|
description="""Optional. Optional fields for the role from the corresponding Content.""",
|
4195
4280
|
)
|
4196
|
-
token_ids: Optional[list[
|
4281
|
+
token_ids: Optional[list[int]] = Field(
|
4197
4282
|
default=None, description="""A list of token ids from the input."""
|
4198
4283
|
)
|
4199
4284
|
tokens: Optional[list[bytes]] = Field(
|
@@ -4207,7 +4292,7 @@ class TokensInfoDict(TypedDict, total=False):
|
|
4207
4292
|
role: Optional[str]
|
4208
4293
|
"""Optional. Optional fields for the role from the corresponding Content."""
|
4209
4294
|
|
4210
|
-
token_ids: Optional[list[
|
4295
|
+
token_ids: Optional[list[int]]
|
4211
4296
|
"""A list of token ids from the input."""
|
4212
4297
|
|
4213
4298
|
tokens: Optional[list[bytes]]
|
@@ -4355,7 +4440,7 @@ class SupervisedHyperParameters(_common.BaseModel):
|
|
4355
4440
|
adapter_size: Optional[AdapterSize] = Field(
|
4356
4441
|
default=None, description="""Optional. Adapter size for tuning."""
|
4357
4442
|
)
|
4358
|
-
epoch_count: Optional[
|
4443
|
+
epoch_count: Optional[int] = Field(
|
4359
4444
|
default=None,
|
4360
4445
|
description="""Optional. Number of complete passes the model makes over the entire training dataset during training.""",
|
4361
4446
|
)
|
@@ -4371,7 +4456,7 @@ class SupervisedHyperParametersDict(TypedDict, total=False):
|
|
4371
4456
|
adapter_size: Optional[AdapterSize]
|
4372
4457
|
"""Optional. Adapter size for tuning."""
|
4373
4458
|
|
4374
|
-
epoch_count: Optional[
|
4459
|
+
epoch_count: Optional[int]
|
4375
4460
|
"""Optional. Number of complete passes the model makes over the entire training dataset during training."""
|
4376
4461
|
|
4377
4462
|
learning_rate_multiplier: Optional[float]
|
@@ -4420,7 +4505,7 @@ SupervisedTuningSpecOrDict = Union[
|
|
4420
4505
|
class DatasetDistributionDistributionBucket(_common.BaseModel):
|
4421
4506
|
"""Dataset bucket used to create a histogram for the distribution given a population of values."""
|
4422
4507
|
|
4423
|
-
count: Optional[
|
4508
|
+
count: Optional[int] = Field(
|
4424
4509
|
default=None,
|
4425
4510
|
description="""Output only. Number of values in the bucket.""",
|
4426
4511
|
)
|
@@ -4435,7 +4520,7 @@ class DatasetDistributionDistributionBucket(_common.BaseModel):
|
|
4435
4520
|
class DatasetDistributionDistributionBucketDict(TypedDict, total=False):
|
4436
4521
|
"""Dataset bucket used to create a histogram for the distribution given a population of values."""
|
4437
4522
|
|
4438
|
-
count: Optional[
|
4523
|
+
count: Optional[int]
|
4439
4524
|
"""Output only. Number of values in the bucket."""
|
4440
4525
|
|
4441
4526
|
left: Optional[float]
|
@@ -4521,19 +4606,19 @@ DatasetDistributionOrDict = Union[DatasetDistribution, DatasetDistributionDict]
|
|
4521
4606
|
class DatasetStats(_common.BaseModel):
|
4522
4607
|
"""Statistics computed over a tuning dataset."""
|
4523
4608
|
|
4524
|
-
total_billable_character_count: Optional[
|
4609
|
+
total_billable_character_count: Optional[int] = Field(
|
4525
4610
|
default=None,
|
4526
4611
|
description="""Output only. Number of billable characters in the tuning dataset.""",
|
4527
4612
|
)
|
4528
|
-
total_tuning_character_count: Optional[
|
4613
|
+
total_tuning_character_count: Optional[int] = Field(
|
4529
4614
|
default=None,
|
4530
4615
|
description="""Output only. Number of tuning characters in the tuning dataset.""",
|
4531
4616
|
)
|
4532
|
-
tuning_dataset_example_count: Optional[
|
4617
|
+
tuning_dataset_example_count: Optional[int] = Field(
|
4533
4618
|
default=None,
|
4534
4619
|
description="""Output only. Number of examples in the tuning dataset.""",
|
4535
4620
|
)
|
4536
|
-
tuning_step_count: Optional[
|
4621
|
+
tuning_step_count: Optional[int] = Field(
|
4537
4622
|
default=None,
|
4538
4623
|
description="""Output only. Number of tuning steps for this Tuning Job.""",
|
4539
4624
|
)
|
@@ -4558,16 +4643,16 @@ class DatasetStats(_common.BaseModel):
|
|
4558
4643
|
class DatasetStatsDict(TypedDict, total=False):
|
4559
4644
|
"""Statistics computed over a tuning dataset."""
|
4560
4645
|
|
4561
|
-
total_billable_character_count: Optional[
|
4646
|
+
total_billable_character_count: Optional[int]
|
4562
4647
|
"""Output only. Number of billable characters in the tuning dataset."""
|
4563
4648
|
|
4564
|
-
total_tuning_character_count: Optional[
|
4649
|
+
total_tuning_character_count: Optional[int]
|
4565
4650
|
"""Output only. Number of tuning characters in the tuning dataset."""
|
4566
4651
|
|
4567
|
-
tuning_dataset_example_count: Optional[
|
4652
|
+
tuning_dataset_example_count: Optional[int]
|
4568
4653
|
"""Output only. Number of examples in the tuning dataset."""
|
4569
4654
|
|
4570
|
-
tuning_step_count: Optional[
|
4655
|
+
tuning_step_count: Optional[int]
|
4571
4656
|
"""Output only. Number of tuning steps for this Tuning Job."""
|
4572
4657
|
|
4573
4658
|
user_dataset_examples: Optional[list[ContentDict]]
|
@@ -4646,7 +4731,7 @@ SupervisedTuningDatasetDistributionDatasetBucketOrDict = Union[
|
|
4646
4731
|
class SupervisedTuningDatasetDistribution(_common.BaseModel):
|
4647
4732
|
"""Dataset distribution for Supervised Tuning."""
|
4648
4733
|
|
4649
|
-
billable_sum: Optional[
|
4734
|
+
billable_sum: Optional[int] = Field(
|
4650
4735
|
default=None,
|
4651
4736
|
description="""Output only. Sum of a given population of values that are billable.""",
|
4652
4737
|
)
|
@@ -4680,7 +4765,7 @@ class SupervisedTuningDatasetDistribution(_common.BaseModel):
|
|
4680
4765
|
default=None,
|
4681
4766
|
description="""Output only. The 95th percentile of the values in the population.""",
|
4682
4767
|
)
|
4683
|
-
sum: Optional[
|
4768
|
+
sum: Optional[int] = Field(
|
4684
4769
|
default=None,
|
4685
4770
|
description="""Output only. Sum of a given population of values.""",
|
4686
4771
|
)
|
@@ -4689,7 +4774,7 @@ class SupervisedTuningDatasetDistribution(_common.BaseModel):
|
|
4689
4774
|
class SupervisedTuningDatasetDistributionDict(TypedDict, total=False):
|
4690
4775
|
"""Dataset distribution for Supervised Tuning."""
|
4691
4776
|
|
4692
|
-
billable_sum: Optional[
|
4777
|
+
billable_sum: Optional[int]
|
4693
4778
|
"""Output only. Sum of a given population of values that are billable."""
|
4694
4779
|
|
4695
4780
|
buckets: Optional[list[SupervisedTuningDatasetDistributionDatasetBucketDict]]
|
@@ -4713,7 +4798,7 @@ class SupervisedTuningDatasetDistributionDict(TypedDict, total=False):
|
|
4713
4798
|
p95: Optional[float]
|
4714
4799
|
"""Output only. The 95th percentile of the values in the population."""
|
4715
4800
|
|
4716
|
-
sum: Optional[
|
4801
|
+
sum: Optional[int]
|
4717
4802
|
"""Output only. Sum of a given population of values."""
|
4718
4803
|
|
4719
4804
|
|
@@ -4725,31 +4810,31 @@ SupervisedTuningDatasetDistributionOrDict = Union[
|
|
4725
4810
|
class SupervisedTuningDataStats(_common.BaseModel):
|
4726
4811
|
"""Tuning data statistics for Supervised Tuning."""
|
4727
4812
|
|
4728
|
-
total_billable_character_count: Optional[
|
4813
|
+
total_billable_character_count: Optional[int] = Field(
|
4729
4814
|
default=None,
|
4730
4815
|
description="""Output only. Number of billable characters in the tuning dataset.""",
|
4731
4816
|
)
|
4732
|
-
total_billable_token_count: Optional[
|
4817
|
+
total_billable_token_count: Optional[int] = Field(
|
4733
4818
|
default=None,
|
4734
4819
|
description="""Output only. Number of billable tokens in the tuning dataset.""",
|
4735
4820
|
)
|
4736
|
-
total_truncated_example_count: Optional[
|
4821
|
+
total_truncated_example_count: Optional[int] = Field(
|
4737
4822
|
default=None,
|
4738
4823
|
description="""The number of examples in the dataset that have been truncated by any amount.""",
|
4739
4824
|
)
|
4740
|
-
total_tuning_character_count: Optional[
|
4825
|
+
total_tuning_character_count: Optional[int] = Field(
|
4741
4826
|
default=None,
|
4742
4827
|
description="""Output only. Number of tuning characters in the tuning dataset.""",
|
4743
4828
|
)
|
4744
|
-
truncated_example_indices: Optional[list[
|
4829
|
+
truncated_example_indices: Optional[list[int]] = Field(
|
4745
4830
|
default=None,
|
4746
4831
|
description="""A partial sample of the indices (starting from 1) of the truncated examples.""",
|
4747
4832
|
)
|
4748
|
-
tuning_dataset_example_count: Optional[
|
4833
|
+
tuning_dataset_example_count: Optional[int] = Field(
|
4749
4834
|
default=None,
|
4750
4835
|
description="""Output only. Number of examples in the tuning dataset.""",
|
4751
4836
|
)
|
4752
|
-
tuning_step_count: Optional[
|
4837
|
+
tuning_step_count: Optional[int] = Field(
|
4753
4838
|
default=None,
|
4754
4839
|
description="""Output only. Number of tuning steps for this Tuning Job.""",
|
4755
4840
|
)
|
@@ -4780,25 +4865,25 @@ class SupervisedTuningDataStats(_common.BaseModel):
|
|
4780
4865
|
class SupervisedTuningDataStatsDict(TypedDict, total=False):
|
4781
4866
|
"""Tuning data statistics for Supervised Tuning."""
|
4782
4867
|
|
4783
|
-
total_billable_character_count: Optional[
|
4868
|
+
total_billable_character_count: Optional[int]
|
4784
4869
|
"""Output only. Number of billable characters in the tuning dataset."""
|
4785
4870
|
|
4786
|
-
total_billable_token_count: Optional[
|
4871
|
+
total_billable_token_count: Optional[int]
|
4787
4872
|
"""Output only. Number of billable tokens in the tuning dataset."""
|
4788
4873
|
|
4789
|
-
total_truncated_example_count: Optional[
|
4874
|
+
total_truncated_example_count: Optional[int]
|
4790
4875
|
"""The number of examples in the dataset that have been truncated by any amount."""
|
4791
4876
|
|
4792
|
-
total_tuning_character_count: Optional[
|
4877
|
+
total_tuning_character_count: Optional[int]
|
4793
4878
|
"""Output only. Number of tuning characters in the tuning dataset."""
|
4794
4879
|
|
4795
|
-
truncated_example_indices: Optional[list[
|
4880
|
+
truncated_example_indices: Optional[list[int]]
|
4796
4881
|
"""A partial sample of the indices (starting from 1) of the truncated examples."""
|
4797
4882
|
|
4798
|
-
tuning_dataset_example_count: Optional[
|
4883
|
+
tuning_dataset_example_count: Optional[int]
|
4799
4884
|
"""Output only. Number of examples in the tuning dataset."""
|
4800
4885
|
|
4801
|
-
tuning_step_count: Optional[
|
4886
|
+
tuning_step_count: Optional[int]
|
4802
4887
|
"""Output only. Number of tuning steps for this Tuning Job."""
|
4803
4888
|
|
4804
4889
|
user_dataset_examples: Optional[list[ContentDict]]
|
@@ -4874,7 +4959,7 @@ class DistillationHyperParameters(_common.BaseModel):
|
|
4874
4959
|
adapter_size: Optional[AdapterSize] = Field(
|
4875
4960
|
default=None, description="""Optional. Adapter size for distillation."""
|
4876
4961
|
)
|
4877
|
-
epoch_count: Optional[
|
4962
|
+
epoch_count: Optional[int] = Field(
|
4878
4963
|
default=None,
|
4879
4964
|
description="""Optional. Number of complete passes the model makes over the entire training dataset during training.""",
|
4880
4965
|
)
|
@@ -4890,7 +4975,7 @@ class DistillationHyperParametersDict(TypedDict, total=False):
|
|
4890
4975
|
adapter_size: Optional[AdapterSize]
|
4891
4976
|
"""Optional. Adapter size for distillation."""
|
4892
4977
|
|
4893
|
-
epoch_count: Optional[
|
4978
|
+
epoch_count: Optional[int]
|
4894
4979
|
"""Optional. Number of complete passes the model makes over the entire training dataset during training."""
|
4895
4980
|
|
4896
4981
|
learning_rate_multiplier: Optional[float]
|
@@ -6492,7 +6577,7 @@ class CreateBatchJobConfig(_common.BaseModel):
|
|
6492
6577
|
)
|
6493
6578
|
dest: Optional[str] = Field(
|
6494
6579
|
default=None,
|
6495
|
-
description="""GCS or
|
6580
|
+
description="""GCS or BigQuery URI prefix for the output predictions. Example:
|
6496
6581
|
"gs://path/to/output/data" or "bq://projectId.bqDatasetId.bqTableId".
|
6497
6582
|
""",
|
6498
6583
|
)
|
@@ -6509,7 +6594,7 @@ class CreateBatchJobConfigDict(TypedDict, total=False):
|
|
6509
6594
|
"""
|
6510
6595
|
|
6511
6596
|
dest: Optional[str]
|
6512
|
-
"""GCS or
|
6597
|
+
"""GCS or BigQuery URI prefix for the output predictions. Example:
|
6513
6598
|
"gs://path/to/output/data" or "bq://projectId.bqDatasetId.bqTableId".
|
6514
6599
|
"""
|
6515
6600
|
|
@@ -6529,7 +6614,7 @@ class _CreateBatchJobParameters(_common.BaseModel):
|
|
6529
6614
|
)
|
6530
6615
|
src: Optional[str] = Field(
|
6531
6616
|
default=None,
|
6532
|
-
description="""GCS URI(-s) or
|
6617
|
+
description="""GCS URI(-s) or BigQuery URI to your input data to run batch job.
|
6533
6618
|
Example: "gs://path/to/input/data" or "bq://projectId.bqDatasetId.bqTableId".
|
6534
6619
|
""",
|
6535
6620
|
)
|
@@ -6548,7 +6633,7 @@ class _CreateBatchJobParametersDict(TypedDict, total=False):
|
|
6548
6633
|
"""
|
6549
6634
|
|
6550
6635
|
src: Optional[str]
|
6551
|
-
"""GCS URI(-s) or
|
6636
|
+
"""GCS URI(-s) or BigQuery URI to your input data to run batch job.
|
6552
6637
|
Example: "gs://path/to/input/data" or "bq://projectId.bqDatasetId.bqTableId".
|
6553
6638
|
"""
|
6554
6639
|
|
@@ -7150,10 +7235,6 @@ class UpscaleImageConfig(_common.BaseModel):
|
|
7150
7235
|
http_options: Optional[dict[str, Any]] = Field(
|
7151
7236
|
default=None, description="""Used to override HTTP request options."""
|
7152
7237
|
)
|
7153
|
-
upscale_factor: Optional[str] = Field(
|
7154
|
-
default=None,
|
7155
|
-
description="""The factor to which the image will be upscaled.""",
|
7156
|
-
)
|
7157
7238
|
include_rai_reason: Optional[bool] = Field(
|
7158
7239
|
default=None,
|
7159
7240
|
description="""Whether to include a reason for filtered-out images in the
|
@@ -7181,9 +7262,6 @@ class UpscaleImageConfigDict(TypedDict, total=False):
|
|
7181
7262
|
http_options: Optional[dict[str, Any]]
|
7182
7263
|
"""Used to override HTTP request options."""
|
7183
7264
|
|
7184
|
-
upscale_factor: Optional[str]
|
7185
|
-
"""The factor to which the image will be upscaled."""
|
7186
|
-
|
7187
7265
|
include_rai_reason: Optional[bool]
|
7188
7266
|
"""Whether to include a reason for filtered-out images in the
|
7189
7267
|
response."""
|
@@ -7208,6 +7286,10 @@ class UpscaleImageParameters(_common.BaseModel):
|
|
7208
7286
|
image: Optional[Image] = Field(
|
7209
7287
|
default=None, description="""The input image to upscale."""
|
7210
7288
|
)
|
7289
|
+
upscale_factor: Optional[str] = Field(
|
7290
|
+
default=None,
|
7291
|
+
description="""The factor to upscale the image (x2 or x4).""",
|
7292
|
+
)
|
7211
7293
|
config: Optional[UpscaleImageConfig] = Field(
|
7212
7294
|
default=None, description="""Configuration for upscaling."""
|
7213
7295
|
)
|
@@ -7222,6 +7304,9 @@ class UpscaleImageParametersDict(TypedDict, total=False):
|
|
7222
7304
|
image: Optional[ImageDict]
|
7223
7305
|
"""The input image to upscale."""
|
7224
7306
|
|
7307
|
+
upscale_factor: Optional[str]
|
7308
|
+
"""The factor to upscale the image (x2 or x4)."""
|
7309
|
+
|
7225
7310
|
config: Optional[UpscaleImageConfigDict]
|
7226
7311
|
"""Configuration for upscaling."""
|
7227
7312
|
|
@@ -7655,7 +7740,7 @@ class LiveServerToolCallCancellation(_common.BaseModel):
|
|
7655
7740
|
server turns.
|
7656
7741
|
"""
|
7657
7742
|
|
7658
|
-
ids: Optional[list[
|
7743
|
+
ids: Optional[list[str]] = Field(
|
7659
7744
|
default=None, description="""The ids of the tool calls to be cancelled."""
|
7660
7745
|
)
|
7661
7746
|
|
@@ -7668,7 +7753,7 @@ class LiveServerToolCallCancellationDict(TypedDict, total=False):
|
|
7668
7753
|
server turns.
|
7669
7754
|
"""
|
7670
7755
|
|
7671
|
-
ids: Optional[list[
|
7756
|
+
ids: Optional[list[str]]
|
7672
7757
|
"""The ids of the tool calls to be cancelled."""
|
7673
7758
|
|
7674
7759
|
|
@@ -7950,13 +8035,13 @@ class LiveClientMessage(_common.BaseModel):
|
|
7950
8035
|
|
7951
8036
|
setup: Optional[LiveClientSetup] = Field(
|
7952
8037
|
default=None,
|
7953
|
-
description="""Message to be sent
|
8038
|
+
description="""Message to be sent by the system when connecting to the API. SDK users should not send this message.""",
|
7954
8039
|
)
|
7955
8040
|
client_content: Optional[LiveClientContent] = Field(
|
7956
8041
|
default=None,
|
7957
8042
|
description="""Incremental update of the current conversation delivered from the client.""",
|
7958
8043
|
)
|
7959
|
-
|
8044
|
+
realtime_input: Optional[LiveClientRealtimeInput] = Field(
|
7960
8045
|
default=None, description="""User input that is sent in real time."""
|
7961
8046
|
)
|
7962
8047
|
tool_response: Optional[LiveClientToolResponse] = Field(
|
@@ -7969,12 +8054,12 @@ class LiveClientMessageDict(TypedDict, total=False):
|
|
7969
8054
|
"""Messages sent by the client in the API call."""
|
7970
8055
|
|
7971
8056
|
setup: Optional[LiveClientSetupDict]
|
7972
|
-
"""Message to be sent
|
8057
|
+
"""Message to be sent by the system when connecting to the API. SDK users should not send this message."""
|
7973
8058
|
|
7974
8059
|
client_content: Optional[LiveClientContentDict]
|
7975
8060
|
"""Incremental update of the current conversation delivered from the client."""
|
7976
8061
|
|
7977
|
-
|
8062
|
+
realtime_input: Optional[LiveClientRealtimeInputDict]
|
7978
8063
|
"""User input that is sent in real time."""
|
7979
8064
|
|
7980
8065
|
tool_response: Optional[LiveClientToolResponseDict]
|