google-genai 0.3.0__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
google/genai/tunings.py CHANGED
@@ -13,6 +13,8 @@
13
13
  # limitations under the License.
14
14
  #
15
15
 
16
+ # Code generated by the Google Gen AI SDK generator DO NOT EDIT.
17
+
16
18
  from typing import Optional, Union
17
19
  from urllib.parse import urlencode
18
20
  from . import _common
@@ -195,10 +197,10 @@ def _TuningExample_to_vertex(
195
197
  parent_object: dict = None,
196
198
  ) -> dict:
197
199
  to_object = {}
198
- if getv(from_object, ['text_input']):
200
+ if getv(from_object, ['text_input']) is not None:
199
201
  raise ValueError('text_input parameter is not supported in Vertex AI.')
200
202
 
201
- if getv(from_object, ['output']):
203
+ if getv(from_object, ['output']) is not None:
202
204
  raise ValueError('output parameter is not supported in Vertex AI.')
203
205
 
204
206
  return to_object
@@ -210,7 +212,7 @@ def _TuningDataset_to_mldev(
210
212
  parent_object: dict = None,
211
213
  ) -> dict:
212
214
  to_object = {}
213
- if getv(from_object, ['gcs_uri']):
215
+ if getv(from_object, ['gcs_uri']) is not None:
214
216
  raise ValueError('gcs_uri parameter is not supported in Google AI.')
215
217
 
216
218
  if getv(from_object, ['examples']) is not None:
@@ -239,7 +241,7 @@ def _TuningDataset_to_vertex(
239
241
  getv(from_object, ['gcs_uri']),
240
242
  )
241
243
 
242
- if getv(from_object, ['examples']):
244
+ if getv(from_object, ['examples']) is not None:
243
245
  raise ValueError('examples parameter is not supported in Vertex AI.')
244
246
 
245
247
  return to_object
@@ -251,7 +253,7 @@ def _TuningValidationDataset_to_mldev(
251
253
  parent_object: dict = None,
252
254
  ) -> dict:
253
255
  to_object = {}
254
- if getv(from_object, ['gcs_uri']):
256
+ if getv(from_object, ['gcs_uri']) is not None:
255
257
  raise ValueError('gcs_uri parameter is not supported in Google AI.')
256
258
 
257
259
  return to_object
@@ -278,7 +280,7 @@ def _CreateTuningJobConfig_to_mldev(
278
280
  if getv(from_object, ['http_options']) is not None:
279
281
  setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
280
282
 
281
- if getv(from_object, ['validation_dataset']):
283
+ if getv(from_object, ['validation_dataset']) is not None:
282
284
  raise ValueError(
283
285
  'validation_dataset parameter is not supported in Google AI.'
284
286
  )
@@ -290,7 +292,7 @@ def _CreateTuningJobConfig_to_mldev(
290
292
  getv(from_object, ['tuned_model_display_name']),
291
293
  )
292
294
 
293
- if getv(from_object, ['description']):
295
+ if getv(from_object, ['description']) is not None:
294
296
  raise ValueError('description parameter is not supported in Google AI.')
295
297
 
296
298
  if getv(from_object, ['epoch_count']) is not None:
@@ -307,7 +309,7 @@ def _CreateTuningJobConfig_to_mldev(
307
309
  getv(from_object, ['learning_rate_multiplier']),
308
310
  )
309
311
 
310
- if getv(from_object, ['adapter_size']):
312
+ if getv(from_object, ['adapter_size']) is not None:
311
313
  raise ValueError('adapter_size parameter is not supported in Google AI.')
312
314
 
313
315
  if getv(from_object, ['batch_size']) is not None:
@@ -376,10 +378,10 @@ def _CreateTuningJobConfig_to_vertex(
376
378
  getv(from_object, ['adapter_size']),
377
379
  )
378
380
 
379
- if getv(from_object, ['batch_size']):
381
+ if getv(from_object, ['batch_size']) is not None:
380
382
  raise ValueError('batch_size parameter is not supported in Vertex AI.')
381
383
 
382
- if getv(from_object, ['learning_rate']):
384
+ if getv(from_object, ['learning_rate']) is not None:
383
385
  raise ValueError('learning_rate parameter is not supported in Vertex AI.')
384
386
 
385
387
  return to_object
@@ -451,7 +453,7 @@ def _DistillationDataset_to_mldev(
451
453
  parent_object: dict = None,
452
454
  ) -> dict:
453
455
  to_object = {}
454
- if getv(from_object, ['gcs_uri']):
456
+ if getv(from_object, ['gcs_uri']) is not None:
455
457
  raise ValueError('gcs_uri parameter is not supported in Google AI.')
456
458
 
457
459
  return to_object
@@ -479,7 +481,7 @@ def _DistillationValidationDataset_to_mldev(
479
481
  parent_object: dict = None,
480
482
  ) -> dict:
481
483
  to_object = {}
482
- if getv(from_object, ['gcs_uri']):
484
+ if getv(from_object, ['gcs_uri']) is not None:
483
485
  raise ValueError('gcs_uri parameter is not supported in Google AI.')
484
486
 
485
487
  return to_object
@@ -506,7 +508,7 @@ def _CreateDistillationJobConfig_to_mldev(
506
508
  if getv(from_object, ['http_options']) is not None:
507
509
  setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
508
510
 
509
- if getv(from_object, ['validation_dataset']):
511
+ if getv(from_object, ['validation_dataset']) is not None:
510
512
  raise ValueError(
511
513
  'validation_dataset parameter is not supported in Google AI.'
512
514
  )
@@ -532,10 +534,10 @@ def _CreateDistillationJobConfig_to_mldev(
532
534
  getv(from_object, ['learning_rate_multiplier']),
533
535
  )
534
536
 
535
- if getv(from_object, ['adapter_size']):
537
+ if getv(from_object, ['adapter_size']) is not None:
536
538
  raise ValueError('adapter_size parameter is not supported in Google AI.')
537
539
 
538
- if getv(from_object, ['pipeline_root_directory']):
540
+ if getv(from_object, ['pipeline_root_directory']) is not None:
539
541
  raise ValueError(
540
542
  'pipeline_root_directory parameter is not supported in Google AI.'
541
543
  )
@@ -605,10 +607,10 @@ def _CreateDistillationJobParameters_to_mldev(
605
607
  parent_object: dict = None,
606
608
  ) -> dict:
607
609
  to_object = {}
608
- if getv(from_object, ['student_model']):
610
+ if getv(from_object, ['student_model']) is not None:
609
611
  raise ValueError('student_model parameter is not supported in Google AI.')
610
612
 
611
- if getv(from_object, ['teacher_model']):
613
+ if getv(from_object, ['teacher_model']) is not None:
612
614
  raise ValueError('teacher_model parameter is not supported in Google AI.')
613
615
 
614
616
  if getv(from_object, ['training_dataset']) is not None:
@@ -970,14 +972,14 @@ class Tunings(_common.BaseModule):
970
972
  config=config,
971
973
  )
972
974
 
973
- if self.api_client.vertexai:
975
+ if self._api_client.vertexai:
974
976
  request_dict = _GetTuningJobParameters_to_vertex(
975
- self.api_client, parameter_model
977
+ self._api_client, parameter_model
976
978
  )
977
979
  path = '{name}'.format_map(request_dict.get('_url'))
978
980
  else:
979
981
  request_dict = _GetTuningJobParameters_to_mldev(
980
- self.api_client, parameter_model
982
+ self._api_client, parameter_model
981
983
  )
982
984
  path = '{name}'.format_map(request_dict.get('_url'))
983
985
  query_params = request_dict.get('_query')
@@ -989,19 +991,19 @@ class Tunings(_common.BaseModule):
989
991
  request_dict = _common.convert_to_dict(request_dict)
990
992
  request_dict = _common.apply_base64_encoding(request_dict)
991
993
 
992
- response_dict = self.api_client.request(
994
+ response_dict = self._api_client.request(
993
995
  'get', path, request_dict, http_options
994
996
  )
995
997
 
996
- if self.api_client.vertexai:
997
- response_dict = _TuningJob_from_vertex(self.api_client, response_dict)
998
+ if self._api_client.vertexai:
999
+ response_dict = _TuningJob_from_vertex(self._api_client, response_dict)
998
1000
  else:
999
- response_dict = _TuningJob_from_mldev(self.api_client, response_dict)
1001
+ response_dict = _TuningJob_from_mldev(self._api_client, response_dict)
1000
1002
 
1001
1003
  return_value = types.TuningJob._from_response(
1002
1004
  response_dict, parameter_model
1003
1005
  )
1004
- self.api_client._verify_response(return_value)
1006
+ self._api_client._verify_response(return_value)
1005
1007
  return return_value
1006
1008
 
1007
1009
  def _list(
@@ -1020,14 +1022,14 @@ class Tunings(_common.BaseModule):
1020
1022
  config=config,
1021
1023
  )
1022
1024
 
1023
- if self.api_client.vertexai:
1025
+ if self._api_client.vertexai:
1024
1026
  request_dict = _ListTuningJobsParameters_to_vertex(
1025
- self.api_client, parameter_model
1027
+ self._api_client, parameter_model
1026
1028
  )
1027
1029
  path = 'tuningJobs'.format_map(request_dict.get('_url'))
1028
1030
  else:
1029
1031
  request_dict = _ListTuningJobsParameters_to_mldev(
1030
- self.api_client, parameter_model
1032
+ self._api_client, parameter_model
1031
1033
  )
1032
1034
  path = 'tunedModels'.format_map(request_dict.get('_url'))
1033
1035
  query_params = request_dict.get('_query')
@@ -1039,23 +1041,23 @@ class Tunings(_common.BaseModule):
1039
1041
  request_dict = _common.convert_to_dict(request_dict)
1040
1042
  request_dict = _common.apply_base64_encoding(request_dict)
1041
1043
 
1042
- response_dict = self.api_client.request(
1044
+ response_dict = self._api_client.request(
1043
1045
  'get', path, request_dict, http_options
1044
1046
  )
1045
1047
 
1046
- if self.api_client.vertexai:
1048
+ if self._api_client.vertexai:
1047
1049
  response_dict = _ListTuningJobsResponse_from_vertex(
1048
- self.api_client, response_dict
1050
+ self._api_client, response_dict
1049
1051
  )
1050
1052
  else:
1051
1053
  response_dict = _ListTuningJobsResponse_from_mldev(
1052
- self.api_client, response_dict
1054
+ self._api_client, response_dict
1053
1055
  )
1054
1056
 
1055
1057
  return_value = types.ListTuningJobsResponse._from_response(
1056
1058
  response_dict, parameter_model
1057
1059
  )
1058
- self.api_client._verify_response(return_value)
1060
+ self._api_client._verify_response(return_value)
1059
1061
  return return_value
1060
1062
 
1061
1063
  def _tune(
@@ -1082,14 +1084,14 @@ class Tunings(_common.BaseModule):
1082
1084
  config=config,
1083
1085
  )
1084
1086
 
1085
- if self.api_client.vertexai:
1087
+ if self._api_client.vertexai:
1086
1088
  request_dict = _CreateTuningJobParameters_to_vertex(
1087
- self.api_client, parameter_model
1089
+ self._api_client, parameter_model
1088
1090
  )
1089
1091
  path = 'tuningJobs'.format_map(request_dict.get('_url'))
1090
1092
  else:
1091
1093
  request_dict = _CreateTuningJobParameters_to_mldev(
1092
- self.api_client, parameter_model
1094
+ self._api_client, parameter_model
1093
1095
  )
1094
1096
  path = 'tunedModels'.format_map(request_dict.get('_url'))
1095
1097
  query_params = request_dict.get('_query')
@@ -1101,23 +1103,23 @@ class Tunings(_common.BaseModule):
1101
1103
  request_dict = _common.convert_to_dict(request_dict)
1102
1104
  request_dict = _common.apply_base64_encoding(request_dict)
1103
1105
 
1104
- response_dict = self.api_client.request(
1106
+ response_dict = self._api_client.request(
1105
1107
  'post', path, request_dict, http_options
1106
1108
  )
1107
1109
 
1108
- if self.api_client.vertexai:
1110
+ if self._api_client.vertexai:
1109
1111
  response_dict = _TuningJobOrOperation_from_vertex(
1110
- self.api_client, response_dict
1112
+ self._api_client, response_dict
1111
1113
  )
1112
1114
  else:
1113
1115
  response_dict = _TuningJobOrOperation_from_mldev(
1114
- self.api_client, response_dict
1116
+ self._api_client, response_dict
1115
1117
  )
1116
1118
 
1117
1119
  return_value = types.TuningJobOrOperation._from_response(
1118
1120
  response_dict, parameter_model
1119
1121
  ).tuning_job
1120
- self.api_client._verify_response(return_value)
1122
+ self._api_client._verify_response(return_value)
1121
1123
  return return_value
1122
1124
 
1123
1125
  def distill(
@@ -1147,11 +1149,11 @@ class Tunings(_common.BaseModule):
1147
1149
  config=config,
1148
1150
  )
1149
1151
 
1150
- if not self.api_client.vertexai:
1152
+ if not self._api_client.vertexai:
1151
1153
  raise ValueError('This method is only supported in the Vertex AI client.')
1152
1154
  else:
1153
1155
  request_dict = _CreateDistillationJobParameters_to_vertex(
1154
- self.api_client, parameter_model
1156
+ self._api_client, parameter_model
1155
1157
  )
1156
1158
  path = 'tuningJobs'.format_map(request_dict.get('_url'))
1157
1159
 
@@ -1164,19 +1166,19 @@ class Tunings(_common.BaseModule):
1164
1166
  request_dict = _common.convert_to_dict(request_dict)
1165
1167
  request_dict = _common.apply_base64_encoding(request_dict)
1166
1168
 
1167
- response_dict = self.api_client.request(
1169
+ response_dict = self._api_client.request(
1168
1170
  'post', path, request_dict, http_options
1169
1171
  )
1170
1172
 
1171
- if self.api_client.vertexai:
1172
- response_dict = _TuningJob_from_vertex(self.api_client, response_dict)
1173
+ if self._api_client.vertexai:
1174
+ response_dict = _TuningJob_from_vertex(self._api_client, response_dict)
1173
1175
  else:
1174
- response_dict = _TuningJob_from_mldev(self.api_client, response_dict)
1176
+ response_dict = _TuningJob_from_mldev(self._api_client, response_dict)
1175
1177
 
1176
1178
  return_value = types.TuningJob._from_response(
1177
1179
  response_dict, parameter_model
1178
1180
  )
1179
- self.api_client._verify_response(return_value)
1181
+ self._api_client._verify_response(return_value)
1180
1182
  return return_value
1181
1183
 
1182
1184
  def list(
@@ -1196,10 +1198,10 @@ class Tunings(_common.BaseModule):
1196
1198
  config: Optional[types.GetTuningJobConfigOrDict] = None,
1197
1199
  ) -> types.TuningJob:
1198
1200
  job = self._get(name=name, config=config)
1199
- if job.experiment and self.api_client.vertexai:
1201
+ if job.experiment and self._api_client.vertexai:
1200
1202
  _IpythonUtils.display_experiment_button(
1201
1203
  experiment=job.experiment,
1202
- project=self.api_client.project,
1204
+ project=self._api_client.project,
1203
1205
  )
1204
1206
  return job
1205
1207
 
@@ -1215,7 +1217,7 @@ class Tunings(_common.BaseModule):
1215
1217
  training_dataset=training_dataset,
1216
1218
  config=config,
1217
1219
  )
1218
- if result.name and self.api_client.vertexai:
1220
+ if result.name and self._api_client.vertexai:
1219
1221
  _IpythonUtils.display_model_tuning_button(tuning_job_resource=result.name)
1220
1222
  return result
1221
1223
 
@@ -1242,14 +1244,14 @@ class AsyncTunings(_common.BaseModule):
1242
1244
  config=config,
1243
1245
  )
1244
1246
 
1245
- if self.api_client.vertexai:
1247
+ if self._api_client.vertexai:
1246
1248
  request_dict = _GetTuningJobParameters_to_vertex(
1247
- self.api_client, parameter_model
1249
+ self._api_client, parameter_model
1248
1250
  )
1249
1251
  path = '{name}'.format_map(request_dict.get('_url'))
1250
1252
  else:
1251
1253
  request_dict = _GetTuningJobParameters_to_mldev(
1252
- self.api_client, parameter_model
1254
+ self._api_client, parameter_model
1253
1255
  )
1254
1256
  path = '{name}'.format_map(request_dict.get('_url'))
1255
1257
  query_params = request_dict.get('_query')
@@ -1261,19 +1263,19 @@ class AsyncTunings(_common.BaseModule):
1261
1263
  request_dict = _common.convert_to_dict(request_dict)
1262
1264
  request_dict = _common.apply_base64_encoding(request_dict)
1263
1265
 
1264
- response_dict = await self.api_client.async_request(
1266
+ response_dict = await self._api_client.async_request(
1265
1267
  'get', path, request_dict, http_options
1266
1268
  )
1267
1269
 
1268
- if self.api_client.vertexai:
1269
- response_dict = _TuningJob_from_vertex(self.api_client, response_dict)
1270
+ if self._api_client.vertexai:
1271
+ response_dict = _TuningJob_from_vertex(self._api_client, response_dict)
1270
1272
  else:
1271
- response_dict = _TuningJob_from_mldev(self.api_client, response_dict)
1273
+ response_dict = _TuningJob_from_mldev(self._api_client, response_dict)
1272
1274
 
1273
1275
  return_value = types.TuningJob._from_response(
1274
1276
  response_dict, parameter_model
1275
1277
  )
1276
- self.api_client._verify_response(return_value)
1278
+ self._api_client._verify_response(return_value)
1277
1279
  return return_value
1278
1280
 
1279
1281
  async def _list(
@@ -1292,14 +1294,14 @@ class AsyncTunings(_common.BaseModule):
1292
1294
  config=config,
1293
1295
  )
1294
1296
 
1295
- if self.api_client.vertexai:
1297
+ if self._api_client.vertexai:
1296
1298
  request_dict = _ListTuningJobsParameters_to_vertex(
1297
- self.api_client, parameter_model
1299
+ self._api_client, parameter_model
1298
1300
  )
1299
1301
  path = 'tuningJobs'.format_map(request_dict.get('_url'))
1300
1302
  else:
1301
1303
  request_dict = _ListTuningJobsParameters_to_mldev(
1302
- self.api_client, parameter_model
1304
+ self._api_client, parameter_model
1303
1305
  )
1304
1306
  path = 'tunedModels'.format_map(request_dict.get('_url'))
1305
1307
  query_params = request_dict.get('_query')
@@ -1311,23 +1313,23 @@ class AsyncTunings(_common.BaseModule):
1311
1313
  request_dict = _common.convert_to_dict(request_dict)
1312
1314
  request_dict = _common.apply_base64_encoding(request_dict)
1313
1315
 
1314
- response_dict = await self.api_client.async_request(
1316
+ response_dict = await self._api_client.async_request(
1315
1317
  'get', path, request_dict, http_options
1316
1318
  )
1317
1319
 
1318
- if self.api_client.vertexai:
1320
+ if self._api_client.vertexai:
1319
1321
  response_dict = _ListTuningJobsResponse_from_vertex(
1320
- self.api_client, response_dict
1322
+ self._api_client, response_dict
1321
1323
  )
1322
1324
  else:
1323
1325
  response_dict = _ListTuningJobsResponse_from_mldev(
1324
- self.api_client, response_dict
1326
+ self._api_client, response_dict
1325
1327
  )
1326
1328
 
1327
1329
  return_value = types.ListTuningJobsResponse._from_response(
1328
1330
  response_dict, parameter_model
1329
1331
  )
1330
- self.api_client._verify_response(return_value)
1332
+ self._api_client._verify_response(return_value)
1331
1333
  return return_value
1332
1334
 
1333
1335
  async def _tune(
@@ -1354,14 +1356,14 @@ class AsyncTunings(_common.BaseModule):
1354
1356
  config=config,
1355
1357
  )
1356
1358
 
1357
- if self.api_client.vertexai:
1359
+ if self._api_client.vertexai:
1358
1360
  request_dict = _CreateTuningJobParameters_to_vertex(
1359
- self.api_client, parameter_model
1361
+ self._api_client, parameter_model
1360
1362
  )
1361
1363
  path = 'tuningJobs'.format_map(request_dict.get('_url'))
1362
1364
  else:
1363
1365
  request_dict = _CreateTuningJobParameters_to_mldev(
1364
- self.api_client, parameter_model
1366
+ self._api_client, parameter_model
1365
1367
  )
1366
1368
  path = 'tunedModels'.format_map(request_dict.get('_url'))
1367
1369
  query_params = request_dict.get('_query')
@@ -1373,23 +1375,23 @@ class AsyncTunings(_common.BaseModule):
1373
1375
  request_dict = _common.convert_to_dict(request_dict)
1374
1376
  request_dict = _common.apply_base64_encoding(request_dict)
1375
1377
 
1376
- response_dict = await self.api_client.async_request(
1378
+ response_dict = await self._api_client.async_request(
1377
1379
  'post', path, request_dict, http_options
1378
1380
  )
1379
1381
 
1380
- if self.api_client.vertexai:
1382
+ if self._api_client.vertexai:
1381
1383
  response_dict = _TuningJobOrOperation_from_vertex(
1382
- self.api_client, response_dict
1384
+ self._api_client, response_dict
1383
1385
  )
1384
1386
  else:
1385
1387
  response_dict = _TuningJobOrOperation_from_mldev(
1386
- self.api_client, response_dict
1388
+ self._api_client, response_dict
1387
1389
  )
1388
1390
 
1389
1391
  return_value = types.TuningJobOrOperation._from_response(
1390
1392
  response_dict, parameter_model
1391
1393
  ).tuning_job
1392
- self.api_client._verify_response(return_value)
1394
+ self._api_client._verify_response(return_value)
1393
1395
  return return_value
1394
1396
 
1395
1397
  async def distill(
@@ -1419,11 +1421,11 @@ class AsyncTunings(_common.BaseModule):
1419
1421
  config=config,
1420
1422
  )
1421
1423
 
1422
- if not self.api_client.vertexai:
1424
+ if not self._api_client.vertexai:
1423
1425
  raise ValueError('This method is only supported in the Vertex AI client.')
1424
1426
  else:
1425
1427
  request_dict = _CreateDistillationJobParameters_to_vertex(
1426
- self.api_client, parameter_model
1428
+ self._api_client, parameter_model
1427
1429
  )
1428
1430
  path = 'tuningJobs'.format_map(request_dict.get('_url'))
1429
1431
 
@@ -1436,19 +1438,19 @@ class AsyncTunings(_common.BaseModule):
1436
1438
  request_dict = _common.convert_to_dict(request_dict)
1437
1439
  request_dict = _common.apply_base64_encoding(request_dict)
1438
1440
 
1439
- response_dict = await self.api_client.async_request(
1441
+ response_dict = await self._api_client.async_request(
1440
1442
  'post', path, request_dict, http_options
1441
1443
  )
1442
1444
 
1443
- if self.api_client.vertexai:
1444
- response_dict = _TuningJob_from_vertex(self.api_client, response_dict)
1445
+ if self._api_client.vertexai:
1446
+ response_dict = _TuningJob_from_vertex(self._api_client, response_dict)
1445
1447
  else:
1446
- response_dict = _TuningJob_from_mldev(self.api_client, response_dict)
1448
+ response_dict = _TuningJob_from_mldev(self._api_client, response_dict)
1447
1449
 
1448
1450
  return_value = types.TuningJob._from_response(
1449
1451
  response_dict, parameter_model
1450
1452
  )
1451
- self.api_client._verify_response(return_value)
1453
+ self._api_client._verify_response(return_value)
1452
1454
  return return_value
1453
1455
 
1454
1456
  async def list(
@@ -1468,10 +1470,10 @@ class AsyncTunings(_common.BaseModule):
1468
1470
  config: Optional[types.GetTuningJobConfigOrDict] = None,
1469
1471
  ) -> types.TuningJob:
1470
1472
  job = await self._get(name=name, config=config)
1471
- if job.experiment and self.api_client.vertexai:
1473
+ if job.experiment and self._api_client.vertexai:
1472
1474
  _IpythonUtils.display_experiment_button(
1473
1475
  experiment=job.experiment,
1474
- project=self.api_client.project,
1476
+ project=self._api_client.project,
1475
1477
  )
1476
1478
  return job
1477
1479
 
@@ -1487,7 +1489,7 @@ class AsyncTunings(_common.BaseModule):
1487
1489
  training_dataset=training_dataset,
1488
1490
  config=config,
1489
1491
  )
1490
- if result.name and self.api_client.vertexai:
1492
+ if result.name and self._api_client.vertexai:
1491
1493
  _IpythonUtils.display_model_tuning_button(tuning_job_resource=result.name)
1492
1494
  return result
1493
1495