google-genai 0.3.0__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
google/genai/models.py CHANGED
@@ -13,6 +13,8 @@
13
13
  # limitations under the License.
14
14
  #
15
15
 
16
+ # Code generated by the Google Gen AI SDK generator DO NOT EDIT.
17
+
16
18
  import logging
17
19
  from typing import AsyncIterator, Iterator, Optional, Union
18
20
  from urllib.parse import urlencode
@@ -20,7 +22,7 @@ from . import _common
20
22
  from . import _extra_utils
21
23
  from . import _transformers as t
22
24
  from . import types
23
- from ._api_client import ApiClient
25
+ from ._api_client import ApiClient, HttpOptionsDict
24
26
  from ._common import get_value_by_path as getv
25
27
  from ._common import set_value_by_path as setv
26
28
  from .pagers import AsyncPager, Pager
@@ -32,7 +34,7 @@ def _Part_to_mldev(
32
34
  parent_object: dict = None,
33
35
  ) -> dict:
34
36
  to_object = {}
35
- if getv(from_object, ['video_metadata']):
37
+ if getv(from_object, ['video_metadata']) is not None:
36
38
  raise ValueError('video_metadata parameter is not supported in Google AI.')
37
39
 
38
40
  if getv(from_object, ['thought']) is not None:
@@ -164,51 +166,51 @@ def _Schema_to_mldev(
164
166
  parent_object: dict = None,
165
167
  ) -> dict:
166
168
  to_object = {}
167
- if getv(from_object, ['min_items']):
169
+ if getv(from_object, ['min_items']) is not None:
168
170
  raise ValueError('min_items parameter is not supported in Google AI.')
169
171
 
170
- if getv(from_object, ['example']):
172
+ if getv(from_object, ['example']) is not None:
171
173
  raise ValueError('example parameter is not supported in Google AI.')
172
174
 
173
- if getv(from_object, ['property_ordering']):
175
+ if getv(from_object, ['property_ordering']) is not None:
174
176
  raise ValueError(
175
177
  'property_ordering parameter is not supported in Google AI.'
176
178
  )
177
179
 
178
- if getv(from_object, ['pattern']):
180
+ if getv(from_object, ['pattern']) is not None:
179
181
  raise ValueError('pattern parameter is not supported in Google AI.')
180
182
 
181
- if getv(from_object, ['minimum']):
183
+ if getv(from_object, ['minimum']) is not None:
182
184
  raise ValueError('minimum parameter is not supported in Google AI.')
183
185
 
184
- if getv(from_object, ['default']):
186
+ if getv(from_object, ['default']) is not None:
185
187
  raise ValueError('default parameter is not supported in Google AI.')
186
188
 
187
- if getv(from_object, ['any_of']):
189
+ if getv(from_object, ['any_of']) is not None:
188
190
  raise ValueError('any_of parameter is not supported in Google AI.')
189
191
 
190
- if getv(from_object, ['max_length']):
192
+ if getv(from_object, ['max_length']) is not None:
191
193
  raise ValueError('max_length parameter is not supported in Google AI.')
192
194
 
193
- if getv(from_object, ['title']):
195
+ if getv(from_object, ['title']) is not None:
194
196
  raise ValueError('title parameter is not supported in Google AI.')
195
197
 
196
- if getv(from_object, ['min_length']):
198
+ if getv(from_object, ['min_length']) is not None:
197
199
  raise ValueError('min_length parameter is not supported in Google AI.')
198
200
 
199
- if getv(from_object, ['min_properties']):
201
+ if getv(from_object, ['min_properties']) is not None:
200
202
  raise ValueError('min_properties parameter is not supported in Google AI.')
201
203
 
202
- if getv(from_object, ['max_items']):
204
+ if getv(from_object, ['max_items']) is not None:
203
205
  raise ValueError('max_items parameter is not supported in Google AI.')
204
206
 
205
- if getv(from_object, ['maximum']):
207
+ if getv(from_object, ['maximum']) is not None:
206
208
  raise ValueError('maximum parameter is not supported in Google AI.')
207
209
 
208
- if getv(from_object, ['nullable']):
210
+ if getv(from_object, ['nullable']) is not None:
209
211
  raise ValueError('nullable parameter is not supported in Google AI.')
210
212
 
211
- if getv(from_object, ['max_properties']):
213
+ if getv(from_object, ['max_properties']) is not None:
212
214
  raise ValueError('max_properties parameter is not supported in Google AI.')
213
215
 
214
216
  if getv(from_object, ['type']) is not None:
@@ -320,7 +322,7 @@ def _SafetySetting_to_mldev(
320
322
  parent_object: dict = None,
321
323
  ) -> dict:
322
324
  to_object = {}
323
- if getv(from_object, ['method']):
325
+ if getv(from_object, ['method']) is not None:
324
326
  raise ValueError('method parameter is not supported in Google AI.')
325
327
 
326
328
  if getv(from_object, ['category']) is not None:
@@ -356,7 +358,7 @@ def _FunctionDeclaration_to_mldev(
356
358
  parent_object: dict = None,
357
359
  ) -> dict:
358
360
  to_object = {}
359
- if getv(from_object, ['response']):
361
+ if getv(from_object, ['response']) is not None:
360
362
  raise ValueError('response parameter is not supported in Google AI.')
361
363
 
362
364
  if getv(from_object, ['description']) is not None:
@@ -512,7 +514,7 @@ def _Tool_to_mldev(
512
514
  ],
513
515
  )
514
516
 
515
- if getv(from_object, ['retrieval']):
517
+ if getv(from_object, ['retrieval']) is not None:
516
518
  raise ValueError('retrieval parameter is not supported in Google AI.')
517
519
 
518
520
  if getv(from_object, ['google_search']) is not None:
@@ -797,13 +799,15 @@ def _GenerateContentConfig_to_mldev(
797
799
  if getv(from_object, ['stop_sequences']) is not None:
798
800
  setv(to_object, ['stopSequences'], getv(from_object, ['stop_sequences']))
799
801
 
800
- if getv(from_object, ['response_logprobs']):
801
- raise ValueError(
802
- 'response_logprobs parameter is not supported in Google AI.'
802
+ if getv(from_object, ['response_logprobs']) is not None:
803
+ setv(
804
+ to_object,
805
+ ['responseLogprobs'],
806
+ getv(from_object, ['response_logprobs']),
803
807
  )
804
808
 
805
- if getv(from_object, ['logprobs']):
806
- raise ValueError('logprobs parameter is not supported in Google AI.')
809
+ if getv(from_object, ['logprobs']) is not None:
810
+ setv(to_object, ['logprobs'], getv(from_object, ['logprobs']))
807
811
 
808
812
  if getv(from_object, ['presence_penalty']) is not None:
809
813
  setv(
@@ -838,7 +842,7 @@ def _GenerateContentConfig_to_mldev(
838
842
  ),
839
843
  )
840
844
 
841
- if getv(from_object, ['routing_config']):
845
+ if getv(from_object, ['routing_config']) is not None:
842
846
  raise ValueError('routing_config parameter is not supported in Google AI.')
843
847
 
844
848
  if getv(from_object, ['safety_settings']) is not None:
@@ -886,7 +890,7 @@ def _GenerateContentConfig_to_mldev(
886
890
  getv(from_object, ['response_modalities']),
887
891
  )
888
892
 
889
- if getv(from_object, ['media_resolution']):
893
+ if getv(from_object, ['media_resolution']) is not None:
890
894
  raise ValueError(
891
895
  'media_resolution parameter is not supported in Google AI.'
892
896
  )
@@ -1152,10 +1156,10 @@ def _EmbedContentConfig_to_mldev(
1152
1156
  getv(from_object, ['output_dimensionality']),
1153
1157
  )
1154
1158
 
1155
- if getv(from_object, ['mime_type']):
1159
+ if getv(from_object, ['mime_type']) is not None:
1156
1160
  raise ValueError('mime_type parameter is not supported in Google AI.')
1157
1161
 
1158
- if getv(from_object, ['auto_truncate']):
1162
+ if getv(from_object, ['auto_truncate']) is not None:
1159
1163
  raise ValueError('auto_truncate parameter is not supported in Google AI.')
1160
1164
 
1161
1165
  return to_object
@@ -1282,7 +1286,7 @@ def _GenerateImageConfig_to_mldev(
1282
1286
  if getv(from_object, ['http_options']) is not None:
1283
1287
  setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
1284
1288
 
1285
- if getv(from_object, ['output_gcs_uri']):
1289
+ if getv(from_object, ['output_gcs_uri']) is not None:
1286
1290
  raise ValueError('output_gcs_uri parameter is not supported in Google AI.')
1287
1291
 
1288
1292
  if getv(from_object, ['negative_prompt']) is not None:
@@ -1306,7 +1310,7 @@ def _GenerateImageConfig_to_mldev(
1306
1310
  getv(from_object, ['guidance_scale']),
1307
1311
  )
1308
1312
 
1309
- if getv(from_object, ['seed']):
1313
+ if getv(from_object, ['seed']) is not None:
1310
1314
  raise ValueError('seed parameter is not supported in Google AI.')
1311
1315
 
1312
1316
  if getv(from_object, ['safety_filter_level']) is not None:
@@ -1358,7 +1362,7 @@ def _GenerateImageConfig_to_mldev(
1358
1362
  getv(from_object, ['output_compression_quality']),
1359
1363
  )
1360
1364
 
1361
- if getv(from_object, ['add_watermark']):
1365
+ if getv(from_object, ['add_watermark']) is not None:
1362
1366
  raise ValueError('add_watermark parameter is not supported in Google AI.')
1363
1367
 
1364
1368
  if getv(from_object, ['aspect_ratio']) is not None:
@@ -1539,11 +1543,15 @@ def _Image_to_mldev(
1539
1543
  parent_object: dict = None,
1540
1544
  ) -> dict:
1541
1545
  to_object = {}
1542
- if getv(from_object, ['gcs_uri']):
1546
+ if getv(from_object, ['gcs_uri']) is not None:
1543
1547
  raise ValueError('gcs_uri parameter is not supported in Google AI.')
1544
1548
 
1545
1549
  if getv(from_object, ['image_bytes']) is not None:
1546
- setv(to_object, ['bytesBase64Encoded'], getv(from_object, ['image_bytes']))
1550
+ setv(
1551
+ to_object,
1552
+ ['bytesBase64Encoded'],
1553
+ t.t_bytes(api_client, getv(from_object, ['image_bytes'])),
1554
+ )
1547
1555
 
1548
1556
  return to_object
1549
1557
 
@@ -1558,7 +1566,11 @@ def _Image_to_vertex(
1558
1566
  setv(to_object, ['gcsUri'], getv(from_object, ['gcs_uri']))
1559
1567
 
1560
1568
  if getv(from_object, ['image_bytes']) is not None:
1561
- setv(to_object, ['bytesBase64Encoded'], getv(from_object, ['image_bytes']))
1569
+ setv(
1570
+ to_object,
1571
+ ['bytesBase64Encoded'],
1572
+ t.t_bytes(api_client, getv(from_object, ['image_bytes'])),
1573
+ )
1562
1574
 
1563
1575
  return to_object
1564
1576
 
@@ -1569,15 +1581,15 @@ def _MaskReferenceConfig_to_mldev(
1569
1581
  parent_object: dict = None,
1570
1582
  ) -> dict:
1571
1583
  to_object = {}
1572
- if getv(from_object, ['mask_mode']):
1584
+ if getv(from_object, ['mask_mode']) is not None:
1573
1585
  raise ValueError('mask_mode parameter is not supported in Google AI.')
1574
1586
 
1575
- if getv(from_object, ['segmentation_classes']):
1587
+ if getv(from_object, ['segmentation_classes']) is not None:
1576
1588
  raise ValueError(
1577
1589
  'segmentation_classes parameter is not supported in Google AI.'
1578
1590
  )
1579
1591
 
1580
- if getv(from_object, ['mask_dilation']):
1592
+ if getv(from_object, ['mask_dilation']) is not None:
1581
1593
  raise ValueError('mask_dilation parameter is not supported in Google AI.')
1582
1594
 
1583
1595
  return to_object
@@ -1609,10 +1621,10 @@ def _ControlReferenceConfig_to_mldev(
1609
1621
  parent_object: dict = None,
1610
1622
  ) -> dict:
1611
1623
  to_object = {}
1612
- if getv(from_object, ['control_type']):
1624
+ if getv(from_object, ['control_type']) is not None:
1613
1625
  raise ValueError('control_type parameter is not supported in Google AI.')
1614
1626
 
1615
- if getv(from_object, ['enable_control_image_computation']):
1627
+ if getv(from_object, ['enable_control_image_computation']) is not None:
1616
1628
  raise ValueError(
1617
1629
  'enable_control_image_computation parameter is not supported in'
1618
1630
  ' Google AI.'
@@ -1646,7 +1658,7 @@ def _StyleReferenceConfig_to_mldev(
1646
1658
  parent_object: dict = None,
1647
1659
  ) -> dict:
1648
1660
  to_object = {}
1649
- if getv(from_object, ['style_description']):
1661
+ if getv(from_object, ['style_description']) is not None:
1650
1662
  raise ValueError(
1651
1663
  'style_description parameter is not supported in Google AI.'
1652
1664
  )
@@ -1676,10 +1688,10 @@ def _SubjectReferenceConfig_to_mldev(
1676
1688
  parent_object: dict = None,
1677
1689
  ) -> dict:
1678
1690
  to_object = {}
1679
- if getv(from_object, ['subject_type']):
1691
+ if getv(from_object, ['subject_type']) is not None:
1680
1692
  raise ValueError('subject_type parameter is not supported in Google AI.')
1681
1693
 
1682
- if getv(from_object, ['subject_description']):
1694
+ if getv(from_object, ['subject_description']) is not None:
1683
1695
  raise ValueError(
1684
1696
  'subject_description parameter is not supported in Google AI.'
1685
1697
  )
@@ -1712,31 +1724,31 @@ def _ReferenceImageAPI_to_mldev(
1712
1724
  parent_object: dict = None,
1713
1725
  ) -> dict:
1714
1726
  to_object = {}
1715
- if getv(from_object, ['reference_image']):
1727
+ if getv(from_object, ['reference_image']) is not None:
1716
1728
  raise ValueError('reference_image parameter is not supported in Google AI.')
1717
1729
 
1718
- if getv(from_object, ['reference_id']):
1730
+ if getv(from_object, ['reference_id']) is not None:
1719
1731
  raise ValueError('reference_id parameter is not supported in Google AI.')
1720
1732
 
1721
- if getv(from_object, ['reference_type']):
1733
+ if getv(from_object, ['reference_type']) is not None:
1722
1734
  raise ValueError('reference_type parameter is not supported in Google AI.')
1723
1735
 
1724
- if getv(from_object, ['mask_image_config']):
1736
+ if getv(from_object, ['mask_image_config']) is not None:
1725
1737
  raise ValueError(
1726
1738
  'mask_image_config parameter is not supported in Google AI.'
1727
1739
  )
1728
1740
 
1729
- if getv(from_object, ['control_image_config']):
1741
+ if getv(from_object, ['control_image_config']) is not None:
1730
1742
  raise ValueError(
1731
1743
  'control_image_config parameter is not supported in Google AI.'
1732
1744
  )
1733
1745
 
1734
- if getv(from_object, ['style_image_config']):
1746
+ if getv(from_object, ['style_image_config']) is not None:
1735
1747
  raise ValueError(
1736
1748
  'style_image_config parameter is not supported in Google AI.'
1737
1749
  )
1738
1750
 
1739
- if getv(from_object, ['subject_image_config']):
1751
+ if getv(from_object, ['subject_image_config']) is not None:
1740
1752
  raise ValueError(
1741
1753
  'subject_image_config parameter is not supported in Google AI.'
1742
1754
  )
@@ -1813,7 +1825,7 @@ def _EditImageConfig_to_mldev(
1813
1825
  if getv(from_object, ['http_options']) is not None:
1814
1826
  setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
1815
1827
 
1816
- if getv(from_object, ['output_gcs_uri']):
1828
+ if getv(from_object, ['output_gcs_uri']) is not None:
1817
1829
  raise ValueError('output_gcs_uri parameter is not supported in Google AI.')
1818
1830
 
1819
1831
  if getv(from_object, ['negative_prompt']) is not None:
@@ -1837,7 +1849,7 @@ def _EditImageConfig_to_mldev(
1837
1849
  getv(from_object, ['guidance_scale']),
1838
1850
  )
1839
1851
 
1840
- if getv(from_object, ['seed']):
1852
+ if getv(from_object, ['seed']) is not None:
1841
1853
  raise ValueError('seed parameter is not supported in Google AI.')
1842
1854
 
1843
1855
  if getv(from_object, ['safety_filter_level']) is not None:
@@ -2083,13 +2095,6 @@ def _UpscaleImageAPIConfig_to_mldev(
2083
2095
  if getv(from_object, ['http_options']) is not None:
2084
2096
  setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
2085
2097
 
2086
- if getv(from_object, ['upscale_factor']) is not None:
2087
- setv(
2088
- parent_object,
2089
- ['parameters', 'upscaleConfig', 'upscaleFactor'],
2090
- getv(from_object, ['upscale_factor']),
2091
- )
2092
-
2093
2098
  if getv(from_object, ['include_rai_reason']) is not None:
2094
2099
  setv(
2095
2100
  parent_object,
@@ -2133,13 +2138,6 @@ def _UpscaleImageAPIConfig_to_vertex(
2133
2138
  if getv(from_object, ['http_options']) is not None:
2134
2139
  setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
2135
2140
 
2136
- if getv(from_object, ['upscale_factor']) is not None:
2137
- setv(
2138
- parent_object,
2139
- ['parameters', 'upscaleConfig', 'upscaleFactor'],
2140
- getv(from_object, ['upscale_factor']),
2141
- )
2142
-
2143
2141
  if getv(from_object, ['include_rai_reason']) is not None:
2144
2142
  setv(
2145
2143
  parent_object,
@@ -2194,6 +2192,13 @@ def _UpscaleImageAPIParameters_to_mldev(
2194
2192
  _Image_to_mldev(api_client, getv(from_object, ['image']), to_object),
2195
2193
  )
2196
2194
 
2195
+ if getv(from_object, ['upscale_factor']) is not None:
2196
+ setv(
2197
+ to_object,
2198
+ ['parameters', 'upscaleConfig', 'upscaleFactor'],
2199
+ getv(from_object, ['upscale_factor']),
2200
+ )
2201
+
2197
2202
  if getv(from_object, ['config']) is not None:
2198
2203
  setv(
2199
2204
  to_object,
@@ -2226,6 +2231,13 @@ def _UpscaleImageAPIParameters_to_vertex(
2226
2231
  _Image_to_vertex(api_client, getv(from_object, ['image']), to_object),
2227
2232
  )
2228
2233
 
2234
+ if getv(from_object, ['upscale_factor']) is not None:
2235
+ setv(
2236
+ to_object,
2237
+ ['parameters', 'upscaleConfig', 'upscaleFactor'],
2238
+ getv(from_object, ['upscale_factor']),
2239
+ )
2240
+
2229
2241
  if getv(from_object, ['config']) is not None:
2230
2242
  setv(
2231
2243
  to_object,
@@ -2276,6 +2288,9 @@ def _ListModelsConfig_to_mldev(
2276
2288
  parent_object: dict = None,
2277
2289
  ) -> dict:
2278
2290
  to_object = {}
2291
+ if getv(from_object, ['http_options']) is not None:
2292
+ setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
2293
+
2279
2294
  if getv(from_object, ['page_size']) is not None:
2280
2295
  setv(
2281
2296
  parent_object, ['_query', 'pageSize'], getv(from_object, ['page_size'])
@@ -2291,6 +2306,13 @@ def _ListModelsConfig_to_mldev(
2291
2306
  if getv(from_object, ['filter']) is not None:
2292
2307
  setv(parent_object, ['_query', 'filter'], getv(from_object, ['filter']))
2293
2308
 
2309
+ if getv(from_object, ['query_base']) is not None:
2310
+ setv(
2311
+ parent_object,
2312
+ ['_url', 'models_url'],
2313
+ t.t_models_url(api_client, getv(from_object, ['query_base'])),
2314
+ )
2315
+
2294
2316
  return to_object
2295
2317
 
2296
2318
 
@@ -2300,6 +2322,9 @@ def _ListModelsConfig_to_vertex(
2300
2322
  parent_object: dict = None,
2301
2323
  ) -> dict:
2302
2324
  to_object = {}
2325
+ if getv(from_object, ['http_options']) is not None:
2326
+ setv(to_object, ['httpOptions'], getv(from_object, ['http_options']))
2327
+
2303
2328
  if getv(from_object, ['page_size']) is not None:
2304
2329
  setv(
2305
2330
  parent_object, ['_query', 'pageSize'], getv(from_object, ['page_size'])
@@ -2315,6 +2340,13 @@ def _ListModelsConfig_to_vertex(
2315
2340
  if getv(from_object, ['filter']) is not None:
2316
2341
  setv(parent_object, ['_query', 'filter'], getv(from_object, ['filter']))
2317
2342
 
2343
+ if getv(from_object, ['query_base']) is not None:
2344
+ setv(
2345
+ parent_object,
2346
+ ['_url', 'models_url'],
2347
+ t.t_models_url(api_client, getv(from_object, ['query_base'])),
2348
+ )
2349
+
2318
2350
  return to_object
2319
2351
 
2320
2352
 
@@ -2496,7 +2528,7 @@ def _CountTokensConfig_to_mldev(
2496
2528
  ],
2497
2529
  )
2498
2530
 
2499
- if getv(from_object, ['generation_config']):
2531
+ if getv(from_object, ['generation_config']) is not None:
2500
2532
  raise ValueError(
2501
2533
  'generation_config parameter is not supported in Google AI.'
2502
2534
  )
@@ -2655,7 +2687,7 @@ def _ComputeTokensParameters_to_mldev(
2655
2687
  t.t_model(api_client, getv(from_object, ['model'])),
2656
2688
  )
2657
2689
 
2658
- if getv(from_object, ['contents']):
2690
+ if getv(from_object, ['contents']) is not None:
2659
2691
  raise ValueError('contents parameter is not supported in Google AI.')
2660
2692
 
2661
2693
  if getv(from_object, ['config']) is not None:
@@ -3169,7 +3201,11 @@ def _Image_from_mldev(
3169
3201
  to_object = {}
3170
3202
 
3171
3203
  if getv(from_object, ['bytesBase64Encoded']) is not None:
3172
- setv(to_object, ['image_bytes'], getv(from_object, ['bytesBase64Encoded']))
3204
+ setv(
3205
+ to_object,
3206
+ ['image_bytes'],
3207
+ t.t_bytes(api_client, getv(from_object, ['bytesBase64Encoded'])),
3208
+ )
3173
3209
 
3174
3210
  return to_object
3175
3211
 
@@ -3184,7 +3220,11 @@ def _Image_from_vertex(
3184
3220
  setv(to_object, ['gcs_uri'], getv(from_object, ['gcsUri']))
3185
3221
 
3186
3222
  if getv(from_object, ['bytesBase64Encoded']) is not None:
3187
- setv(to_object, ['image_bytes'], getv(from_object, ['bytesBase64Encoded']))
3223
+ setv(
3224
+ to_object,
3225
+ ['image_bytes'],
3226
+ t.t_bytes(api_client, getv(from_object, ['bytesBase64Encoded'])),
3227
+ )
3188
3228
 
3189
3229
  return to_object
3190
3230
 
@@ -3520,13 +3560,15 @@ def _ListModelsResponse_from_mldev(
3520
3560
  if getv(from_object, ['nextPageToken']) is not None:
3521
3561
  setv(to_object, ['next_page_token'], getv(from_object, ['nextPageToken']))
3522
3562
 
3523
- if getv(from_object, ['tunedModels']) is not None:
3563
+ if getv(from_object, ['_self']) is not None:
3524
3564
  setv(
3525
3565
  to_object,
3526
3566
  ['models'],
3527
3567
  [
3528
3568
  _Model_from_mldev(api_client, item, to_object)
3529
- for item in getv(from_object, ['tunedModels'])
3569
+ for item in t.t_extract_models(
3570
+ api_client, getv(from_object, ['_self'])
3571
+ )
3530
3572
  ],
3531
3573
  )
3532
3574
 
@@ -3542,13 +3584,15 @@ def _ListModelsResponse_from_vertex(
3542
3584
  if getv(from_object, ['nextPageToken']) is not None:
3543
3585
  setv(to_object, ['next_page_token'], getv(from_object, ['nextPageToken']))
3544
3586
 
3545
- if getv(from_object, ['models']) is not None:
3587
+ if getv(from_object, ['_self']) is not None:
3546
3588
  setv(
3547
3589
  to_object,
3548
3590
  ['models'],
3549
3591
  [
3550
3592
  _Model_from_vertex(api_client, item, to_object)
3551
- for item in getv(from_object, ['models'])
3593
+ for item in t.t_extract_models(
3594
+ api_client, getv(from_object, ['_self'])
3595
+ )
3552
3596
  ],
3553
3597
  )
3554
3598
 
@@ -3645,14 +3689,14 @@ class Models(_common.BaseModule):
3645
3689
  config=config,
3646
3690
  )
3647
3691
 
3648
- if self.api_client.vertexai:
3692
+ if self._api_client.vertexai:
3649
3693
  request_dict = _GenerateContentParameters_to_vertex(
3650
- self.api_client, parameter_model
3694
+ self._api_client, parameter_model
3651
3695
  )
3652
3696
  path = '{model}:generateContent'.format_map(request_dict.get('_url'))
3653
3697
  else:
3654
3698
  request_dict = _GenerateContentParameters_to_mldev(
3655
- self.api_client, parameter_model
3699
+ self._api_client, parameter_model
3656
3700
  )
3657
3701
  path = '{model}:generateContent'.format_map(request_dict.get('_url'))
3658
3702
  query_params = request_dict.get('_query')
@@ -3664,23 +3708,23 @@ class Models(_common.BaseModule):
3664
3708
  request_dict = _common.convert_to_dict(request_dict)
3665
3709
  request_dict = _common.apply_base64_encoding(request_dict)
3666
3710
 
3667
- response_dict = self.api_client.request(
3711
+ response_dict = self._api_client.request(
3668
3712
  'post', path, request_dict, http_options
3669
3713
  )
3670
3714
 
3671
- if self.api_client.vertexai:
3715
+ if self._api_client.vertexai:
3672
3716
  response_dict = _GenerateContentResponse_from_vertex(
3673
- self.api_client, response_dict
3717
+ self._api_client, response_dict
3674
3718
  )
3675
3719
  else:
3676
3720
  response_dict = _GenerateContentResponse_from_mldev(
3677
- self.api_client, response_dict
3721
+ self._api_client, response_dict
3678
3722
  )
3679
3723
 
3680
3724
  return_value = types.GenerateContentResponse._from_response(
3681
3725
  response_dict, parameter_model
3682
3726
  )
3683
- self.api_client._verify_response(return_value)
3727
+ self._api_client._verify_response(return_value)
3684
3728
  return return_value
3685
3729
 
3686
3730
  def generate_content_stream(
@@ -3696,16 +3740,16 @@ class Models(_common.BaseModule):
3696
3740
  config=config,
3697
3741
  )
3698
3742
 
3699
- if self.api_client.vertexai:
3743
+ if self._api_client.vertexai:
3700
3744
  request_dict = _GenerateContentParameters_to_vertex(
3701
- self.api_client, parameter_model
3745
+ self._api_client, parameter_model
3702
3746
  )
3703
3747
  path = '{model}:streamGenerateContent?alt=sse'.format_map(
3704
3748
  request_dict.get('_url')
3705
3749
  )
3706
3750
  else:
3707
3751
  request_dict = _GenerateContentParameters_to_mldev(
3708
- self.api_client, parameter_model
3752
+ self._api_client, parameter_model
3709
3753
  )
3710
3754
  path = '{model}:streamGenerateContent?alt=sse'.format_map(
3711
3755
  request_dict.get('_url')
@@ -3719,23 +3763,23 @@ class Models(_common.BaseModule):
3719
3763
  request_dict = _common.convert_to_dict(request_dict)
3720
3764
  request_dict = _common.apply_base64_encoding(request_dict)
3721
3765
 
3722
- for response_dict in self.api_client.request_streamed(
3766
+ for response_dict in self._api_client.request_streamed(
3723
3767
  'post', path, request_dict, http_options
3724
3768
  ):
3725
3769
 
3726
- if self.api_client.vertexai:
3770
+ if self._api_client.vertexai:
3727
3771
  response_dict = _GenerateContentResponse_from_vertex(
3728
- self.api_client, response_dict
3772
+ self._api_client, response_dict
3729
3773
  )
3730
3774
  else:
3731
3775
  response_dict = _GenerateContentResponse_from_mldev(
3732
- self.api_client, response_dict
3776
+ self._api_client, response_dict
3733
3777
  )
3734
3778
 
3735
3779
  return_value = types.GenerateContentResponse._from_response(
3736
3780
  response_dict, parameter_model
3737
3781
  )
3738
- self.api_client._verify_response(return_value)
3782
+ self._api_client._verify_response(return_value)
3739
3783
  yield return_value
3740
3784
 
3741
3785
  def embed_content(
@@ -3774,14 +3818,14 @@ class Models(_common.BaseModule):
3774
3818
  config=config,
3775
3819
  )
3776
3820
 
3777
- if self.api_client.vertexai:
3821
+ if self._api_client.vertexai:
3778
3822
  request_dict = _EmbedContentParameters_to_vertex(
3779
- self.api_client, parameter_model
3823
+ self._api_client, parameter_model
3780
3824
  )
3781
3825
  path = '{model}:predict'.format_map(request_dict.get('_url'))
3782
3826
  else:
3783
3827
  request_dict = _EmbedContentParameters_to_mldev(
3784
- self.api_client, parameter_model
3828
+ self._api_client, parameter_model
3785
3829
  )
3786
3830
  path = '{model}:batchEmbedContents'.format_map(request_dict.get('_url'))
3787
3831
  query_params = request_dict.get('_query')
@@ -3793,23 +3837,23 @@ class Models(_common.BaseModule):
3793
3837
  request_dict = _common.convert_to_dict(request_dict)
3794
3838
  request_dict = _common.apply_base64_encoding(request_dict)
3795
3839
 
3796
- response_dict = self.api_client.request(
3840
+ response_dict = self._api_client.request(
3797
3841
  'post', path, request_dict, http_options
3798
3842
  )
3799
3843
 
3800
- if self.api_client.vertexai:
3844
+ if self._api_client.vertexai:
3801
3845
  response_dict = _EmbedContentResponse_from_vertex(
3802
- self.api_client, response_dict
3846
+ self._api_client, response_dict
3803
3847
  )
3804
3848
  else:
3805
3849
  response_dict = _EmbedContentResponse_from_mldev(
3806
- self.api_client, response_dict
3850
+ self._api_client, response_dict
3807
3851
  )
3808
3852
 
3809
3853
  return_value = types.EmbedContentResponse._from_response(
3810
3854
  response_dict, parameter_model
3811
3855
  )
3812
- self.api_client._verify_response(return_value)
3856
+ self._api_client._verify_response(return_value)
3813
3857
  return return_value
3814
3858
 
3815
3859
  def generate_image(
@@ -3848,14 +3892,14 @@ class Models(_common.BaseModule):
3848
3892
  config=config,
3849
3893
  )
3850
3894
 
3851
- if self.api_client.vertexai:
3895
+ if self._api_client.vertexai:
3852
3896
  request_dict = _GenerateImageParameters_to_vertex(
3853
- self.api_client, parameter_model
3897
+ self._api_client, parameter_model
3854
3898
  )
3855
3899
  path = '{model}:predict'.format_map(request_dict.get('_url'))
3856
3900
  else:
3857
3901
  request_dict = _GenerateImageParameters_to_mldev(
3858
- self.api_client, parameter_model
3902
+ self._api_client, parameter_model
3859
3903
  )
3860
3904
  path = '{model}:predict'.format_map(request_dict.get('_url'))
3861
3905
  query_params = request_dict.get('_query')
@@ -3867,23 +3911,23 @@ class Models(_common.BaseModule):
3867
3911
  request_dict = _common.convert_to_dict(request_dict)
3868
3912
  request_dict = _common.apply_base64_encoding(request_dict)
3869
3913
 
3870
- response_dict = self.api_client.request(
3914
+ response_dict = self._api_client.request(
3871
3915
  'post', path, request_dict, http_options
3872
3916
  )
3873
3917
 
3874
- if self.api_client.vertexai:
3918
+ if self._api_client.vertexai:
3875
3919
  response_dict = _GenerateImageResponse_from_vertex(
3876
- self.api_client, response_dict
3920
+ self._api_client, response_dict
3877
3921
  )
3878
3922
  else:
3879
3923
  response_dict = _GenerateImageResponse_from_mldev(
3880
- self.api_client, response_dict
3924
+ self._api_client, response_dict
3881
3925
  )
3882
3926
 
3883
3927
  return_value = types.GenerateImageResponse._from_response(
3884
3928
  response_dict, parameter_model
3885
3929
  )
3886
- self.api_client._verify_response(return_value)
3930
+ self._api_client._verify_response(return_value)
3887
3931
  return return_value
3888
3932
 
3889
3933
  def edit_image(
@@ -3943,11 +3987,11 @@ class Models(_common.BaseModule):
3943
3987
  config=config,
3944
3988
  )
3945
3989
 
3946
- if not self.api_client.vertexai:
3990
+ if not self._api_client.vertexai:
3947
3991
  raise ValueError('This method is only supported in the Vertex AI client.')
3948
3992
  else:
3949
3993
  request_dict = _EditImageParameters_to_vertex(
3950
- self.api_client, parameter_model
3994
+ self._api_client, parameter_model
3951
3995
  )
3952
3996
  path = '{model}:predict'.format_map(request_dict.get('_url'))
3953
3997
 
@@ -3960,23 +4004,23 @@ class Models(_common.BaseModule):
3960
4004
  request_dict = _common.convert_to_dict(request_dict)
3961
4005
  request_dict = _common.apply_base64_encoding(request_dict)
3962
4006
 
3963
- response_dict = self.api_client.request(
4007
+ response_dict = self._api_client.request(
3964
4008
  'post', path, request_dict, http_options
3965
4009
  )
3966
4010
 
3967
- if self.api_client.vertexai:
4011
+ if self._api_client.vertexai:
3968
4012
  response_dict = _EditImageResponse_from_vertex(
3969
- self.api_client, response_dict
4013
+ self._api_client, response_dict
3970
4014
  )
3971
4015
  else:
3972
4016
  response_dict = _EditImageResponse_from_mldev(
3973
- self.api_client, response_dict
4017
+ self._api_client, response_dict
3974
4018
  )
3975
4019
 
3976
4020
  return_value = types.EditImageResponse._from_response(
3977
4021
  response_dict, parameter_model
3978
4022
  )
3979
- self.api_client._verify_response(return_value)
4023
+ self._api_client._verify_response(return_value)
3980
4024
  return return_value
3981
4025
 
3982
4026
  def _upscale_image(
@@ -3984,6 +4028,7 @@ class Models(_common.BaseModule):
3984
4028
  *,
3985
4029
  model: str,
3986
4030
  image: types.ImageOrDict,
4031
+ upscale_factor: str,
3987
4032
  config: Optional[types._UpscaleImageAPIConfigOrDict] = None,
3988
4033
  ) -> types.UpscaleImageResponse:
3989
4034
  """Upscales an image.
@@ -3991,20 +4036,22 @@ class Models(_common.BaseModule):
3991
4036
  Args:
3992
4037
  model (str): The model to use.
3993
4038
  image (Image): The input image for upscaling.
4039
+ upscale_factor (str): The factor to upscale the image (x2 or x4).
3994
4040
  config (_UpscaleImageAPIConfig): Configuration for upscaling.
3995
4041
  """
3996
4042
 
3997
4043
  parameter_model = types._UpscaleImageAPIParameters(
3998
4044
  model=model,
3999
4045
  image=image,
4046
+ upscale_factor=upscale_factor,
4000
4047
  config=config,
4001
4048
  )
4002
4049
 
4003
- if not self.api_client.vertexai:
4050
+ if not self._api_client.vertexai:
4004
4051
  raise ValueError('This method is only supported in the Vertex AI client.')
4005
4052
  else:
4006
4053
  request_dict = _UpscaleImageAPIParameters_to_vertex(
4007
- self.api_client, parameter_model
4054
+ self._api_client, parameter_model
4008
4055
  )
4009
4056
  path = '{model}:predict'.format_map(request_dict.get('_url'))
4010
4057
 
@@ -4017,23 +4064,23 @@ class Models(_common.BaseModule):
4017
4064
  request_dict = _common.convert_to_dict(request_dict)
4018
4065
  request_dict = _common.apply_base64_encoding(request_dict)
4019
4066
 
4020
- response_dict = self.api_client.request(
4067
+ response_dict = self._api_client.request(
4021
4068
  'post', path, request_dict, http_options
4022
4069
  )
4023
4070
 
4024
- if self.api_client.vertexai:
4071
+ if self._api_client.vertexai:
4025
4072
  response_dict = _UpscaleImageResponse_from_vertex(
4026
- self.api_client, response_dict
4073
+ self._api_client, response_dict
4027
4074
  )
4028
4075
  else:
4029
4076
  response_dict = _UpscaleImageResponse_from_mldev(
4030
- self.api_client, response_dict
4077
+ self._api_client, response_dict
4031
4078
  )
4032
4079
 
4033
4080
  return_value = types.UpscaleImageResponse._from_response(
4034
4081
  response_dict, parameter_model
4035
4082
  )
4036
- self.api_client._verify_response(return_value)
4083
+ self._api_client._verify_response(return_value)
4037
4084
  return return_value
4038
4085
 
4039
4086
  def get(self, *, model: str) -> types.Model:
@@ -4041,14 +4088,14 @@ class Models(_common.BaseModule):
4041
4088
  model=model,
4042
4089
  )
4043
4090
 
4044
- if self.api_client.vertexai:
4091
+ if self._api_client.vertexai:
4045
4092
  request_dict = _GetModelParameters_to_vertex(
4046
- self.api_client, parameter_model
4093
+ self._api_client, parameter_model
4047
4094
  )
4048
4095
  path = '{name}'.format_map(request_dict.get('_url'))
4049
4096
  else:
4050
4097
  request_dict = _GetModelParameters_to_mldev(
4051
- self.api_client, parameter_model
4098
+ self._api_client, parameter_model
4052
4099
  )
4053
4100
  path = '{name}'.format_map(request_dict.get('_url'))
4054
4101
  query_params = request_dict.get('_query')
@@ -4060,17 +4107,17 @@ class Models(_common.BaseModule):
4060
4107
  request_dict = _common.convert_to_dict(request_dict)
4061
4108
  request_dict = _common.apply_base64_encoding(request_dict)
4062
4109
 
4063
- response_dict = self.api_client.request(
4110
+ response_dict = self._api_client.request(
4064
4111
  'get', path, request_dict, http_options
4065
4112
  )
4066
4113
 
4067
- if self.api_client.vertexai:
4068
- response_dict = _Model_from_vertex(self.api_client, response_dict)
4114
+ if self._api_client.vertexai:
4115
+ response_dict = _Model_from_vertex(self._api_client, response_dict)
4069
4116
  else:
4070
- response_dict = _Model_from_mldev(self.api_client, response_dict)
4117
+ response_dict = _Model_from_mldev(self._api_client, response_dict)
4071
4118
 
4072
4119
  return_value = types.Model._from_response(response_dict, parameter_model)
4073
- self.api_client._verify_response(return_value)
4120
+ self._api_client._verify_response(return_value)
4074
4121
  return return_value
4075
4122
 
4076
4123
  def _list(
@@ -4080,16 +4127,16 @@ class Models(_common.BaseModule):
4080
4127
  config=config,
4081
4128
  )
4082
4129
 
4083
- if self.api_client.vertexai:
4130
+ if self._api_client.vertexai:
4084
4131
  request_dict = _ListModelsParameters_to_vertex(
4085
- self.api_client, parameter_model
4132
+ self._api_client, parameter_model
4086
4133
  )
4087
- path = 'models'.format_map(request_dict.get('_url'))
4134
+ path = '{models_url}'.format_map(request_dict.get('_url'))
4088
4135
  else:
4089
4136
  request_dict = _ListModelsParameters_to_mldev(
4090
- self.api_client, parameter_model
4137
+ self._api_client, parameter_model
4091
4138
  )
4092
- path = 'tunedModels'.format_map(request_dict.get('_url'))
4139
+ path = '{models_url}'.format_map(request_dict.get('_url'))
4093
4140
  query_params = request_dict.get('_query')
4094
4141
  if query_params:
4095
4142
  path = f'{path}?{urlencode(query_params)}'
@@ -4099,23 +4146,23 @@ class Models(_common.BaseModule):
4099
4146
  request_dict = _common.convert_to_dict(request_dict)
4100
4147
  request_dict = _common.apply_base64_encoding(request_dict)
4101
4148
 
4102
- response_dict = self.api_client.request(
4149
+ response_dict = self._api_client.request(
4103
4150
  'get', path, request_dict, http_options
4104
4151
  )
4105
4152
 
4106
- if self.api_client.vertexai:
4153
+ if self._api_client.vertexai:
4107
4154
  response_dict = _ListModelsResponse_from_vertex(
4108
- self.api_client, response_dict
4155
+ self._api_client, response_dict
4109
4156
  )
4110
4157
  else:
4111
4158
  response_dict = _ListModelsResponse_from_mldev(
4112
- self.api_client, response_dict
4159
+ self._api_client, response_dict
4113
4160
  )
4114
4161
 
4115
4162
  return_value = types.ListModelsResponse._from_response(
4116
4163
  response_dict, parameter_model
4117
4164
  )
4118
- self.api_client._verify_response(return_value)
4165
+ self._api_client._verify_response(return_value)
4119
4166
  return return_value
4120
4167
 
4121
4168
  def update(
@@ -4129,14 +4176,14 @@ class Models(_common.BaseModule):
4129
4176
  config=config,
4130
4177
  )
4131
4178
 
4132
- if self.api_client.vertexai:
4179
+ if self._api_client.vertexai:
4133
4180
  request_dict = _UpdateModelParameters_to_vertex(
4134
- self.api_client, parameter_model
4181
+ self._api_client, parameter_model
4135
4182
  )
4136
4183
  path = '{model}'.format_map(request_dict.get('_url'))
4137
4184
  else:
4138
4185
  request_dict = _UpdateModelParameters_to_mldev(
4139
- self.api_client, parameter_model
4186
+ self._api_client, parameter_model
4140
4187
  )
4141
4188
  path = '{name}'.format_map(request_dict.get('_url'))
4142
4189
  query_params = request_dict.get('_query')
@@ -4148,17 +4195,17 @@ class Models(_common.BaseModule):
4148
4195
  request_dict = _common.convert_to_dict(request_dict)
4149
4196
  request_dict = _common.apply_base64_encoding(request_dict)
4150
4197
 
4151
- response_dict = self.api_client.request(
4198
+ response_dict = self._api_client.request(
4152
4199
  'patch', path, request_dict, http_options
4153
4200
  )
4154
4201
 
4155
- if self.api_client.vertexai:
4156
- response_dict = _Model_from_vertex(self.api_client, response_dict)
4202
+ if self._api_client.vertexai:
4203
+ response_dict = _Model_from_vertex(self._api_client, response_dict)
4157
4204
  else:
4158
- response_dict = _Model_from_mldev(self.api_client, response_dict)
4205
+ response_dict = _Model_from_mldev(self._api_client, response_dict)
4159
4206
 
4160
4207
  return_value = types.Model._from_response(response_dict, parameter_model)
4161
- self.api_client._verify_response(return_value)
4208
+ self._api_client._verify_response(return_value)
4162
4209
  return return_value
4163
4210
 
4164
4211
  def delete(self, *, model: str) -> types.DeleteModelResponse:
@@ -4166,14 +4213,14 @@ class Models(_common.BaseModule):
4166
4213
  model=model,
4167
4214
  )
4168
4215
 
4169
- if self.api_client.vertexai:
4216
+ if self._api_client.vertexai:
4170
4217
  request_dict = _DeleteModelParameters_to_vertex(
4171
- self.api_client, parameter_model
4218
+ self._api_client, parameter_model
4172
4219
  )
4173
4220
  path = '{name}'.format_map(request_dict.get('_url'))
4174
4221
  else:
4175
4222
  request_dict = _DeleteModelParameters_to_mldev(
4176
- self.api_client, parameter_model
4223
+ self._api_client, parameter_model
4177
4224
  )
4178
4225
  path = '{name}'.format_map(request_dict.get('_url'))
4179
4226
  query_params = request_dict.get('_query')
@@ -4185,23 +4232,23 @@ class Models(_common.BaseModule):
4185
4232
  request_dict = _common.convert_to_dict(request_dict)
4186
4233
  request_dict = _common.apply_base64_encoding(request_dict)
4187
4234
 
4188
- response_dict = self.api_client.request(
4235
+ response_dict = self._api_client.request(
4189
4236
  'delete', path, request_dict, http_options
4190
4237
  )
4191
4238
 
4192
- if self.api_client.vertexai:
4239
+ if self._api_client.vertexai:
4193
4240
  response_dict = _DeleteModelResponse_from_vertex(
4194
- self.api_client, response_dict
4241
+ self._api_client, response_dict
4195
4242
  )
4196
4243
  else:
4197
4244
  response_dict = _DeleteModelResponse_from_mldev(
4198
- self.api_client, response_dict
4245
+ self._api_client, response_dict
4199
4246
  )
4200
4247
 
4201
4248
  return_value = types.DeleteModelResponse._from_response(
4202
4249
  response_dict, parameter_model
4203
4250
  )
4204
- self.api_client._verify_response(return_value)
4251
+ self._api_client._verify_response(return_value)
4205
4252
  return return_value
4206
4253
 
4207
4254
  def count_tokens(
@@ -4237,14 +4284,14 @@ class Models(_common.BaseModule):
4237
4284
  config=config,
4238
4285
  )
4239
4286
 
4240
- if self.api_client.vertexai:
4287
+ if self._api_client.vertexai:
4241
4288
  request_dict = _CountTokensParameters_to_vertex(
4242
- self.api_client, parameter_model
4289
+ self._api_client, parameter_model
4243
4290
  )
4244
4291
  path = '{model}:countTokens'.format_map(request_dict.get('_url'))
4245
4292
  else:
4246
4293
  request_dict = _CountTokensParameters_to_mldev(
4247
- self.api_client, parameter_model
4294
+ self._api_client, parameter_model
4248
4295
  )
4249
4296
  path = '{model}:countTokens'.format_map(request_dict.get('_url'))
4250
4297
  query_params = request_dict.get('_query')
@@ -4256,23 +4303,23 @@ class Models(_common.BaseModule):
4256
4303
  request_dict = _common.convert_to_dict(request_dict)
4257
4304
  request_dict = _common.apply_base64_encoding(request_dict)
4258
4305
 
4259
- response_dict = self.api_client.request(
4306
+ response_dict = self._api_client.request(
4260
4307
  'post', path, request_dict, http_options
4261
4308
  )
4262
4309
 
4263
- if self.api_client.vertexai:
4310
+ if self._api_client.vertexai:
4264
4311
  response_dict = _CountTokensResponse_from_vertex(
4265
- self.api_client, response_dict
4312
+ self._api_client, response_dict
4266
4313
  )
4267
4314
  else:
4268
4315
  response_dict = _CountTokensResponse_from_mldev(
4269
- self.api_client, response_dict
4316
+ self._api_client, response_dict
4270
4317
  )
4271
4318
 
4272
4319
  return_value = types.CountTokensResponse._from_response(
4273
4320
  response_dict, parameter_model
4274
4321
  )
4275
- self.api_client._verify_response(return_value)
4322
+ self._api_client._verify_response(return_value)
4276
4323
  return return_value
4277
4324
 
4278
4325
  def compute_tokens(
@@ -4310,11 +4357,11 @@ class Models(_common.BaseModule):
4310
4357
  config=config,
4311
4358
  )
4312
4359
 
4313
- if not self.api_client.vertexai:
4360
+ if not self._api_client.vertexai:
4314
4361
  raise ValueError('This method is only supported in the Vertex AI client.')
4315
4362
  else:
4316
4363
  request_dict = _ComputeTokensParameters_to_vertex(
4317
- self.api_client, parameter_model
4364
+ self._api_client, parameter_model
4318
4365
  )
4319
4366
  path = '{model}:computeTokens'.format_map(request_dict.get('_url'))
4320
4367
 
@@ -4327,23 +4374,23 @@ class Models(_common.BaseModule):
4327
4374
  request_dict = _common.convert_to_dict(request_dict)
4328
4375
  request_dict = _common.apply_base64_encoding(request_dict)
4329
4376
 
4330
- response_dict = self.api_client.request(
4377
+ response_dict = self._api_client.request(
4331
4378
  'post', path, request_dict, http_options
4332
4379
  )
4333
4380
 
4334
- if self.api_client.vertexai:
4381
+ if self._api_client.vertexai:
4335
4382
  response_dict = _ComputeTokensResponse_from_vertex(
4336
- self.api_client, response_dict
4383
+ self._api_client, response_dict
4337
4384
  )
4338
4385
  else:
4339
4386
  response_dict = _ComputeTokensResponse_from_mldev(
4340
- self.api_client, response_dict
4387
+ self._api_client, response_dict
4341
4388
  )
4342
4389
 
4343
4390
  return_value = types.ComputeTokensResponse._from_response(
4344
4391
  response_dict, parameter_model
4345
4392
  )
4346
- self.api_client._verify_response(return_value)
4393
+ self._api_client._verify_response(return_value)
4347
4394
  return return_value
4348
4395
 
4349
4396
  def generate_content(
@@ -4423,7 +4470,7 @@ class Models(_common.BaseModule):
4423
4470
  )
4424
4471
  if not func_response_parts:
4425
4472
  break
4426
- contents = t.t_contents(self.api_client, contents)
4473
+ contents = t.t_contents(self._api_client, contents)
4427
4474
  contents.append(response.candidates[0].content)
4428
4475
  contents.append(
4429
4476
  types.Content(
@@ -4443,13 +4490,15 @@ class Models(_common.BaseModule):
4443
4490
  *,
4444
4491
  model: str,
4445
4492
  image: types.ImageOrDict,
4446
- config: types.UpscaleImageConfigOrDict,
4493
+ upscale_factor: str,
4494
+ config: Optional[types.UpscaleImageConfigOrDict] = None,
4447
4495
  ) -> types.UpscaleImageResponse:
4448
4496
  """Makes an API request to upscale a provided image.
4449
4497
 
4450
4498
  Args:
4451
4499
  model (str): The model to use.
4452
4500
  image (Image): The input image for upscaling.
4501
+ upscale_factor (str): The factor to upscale the image (x2 or x4).
4453
4502
  config (UpscaleImageConfig): Configuration for upscaling.
4454
4503
 
4455
4504
  Usage:
@@ -4462,9 +4511,7 @@ class Models(_common.BaseModule):
4462
4511
  response=client.models.upscale_image(
4463
4512
  model='imagen-3.0-generate-001',
4464
4513
  image=types.Image.from_file(IMAGE_FILE_PATH),
4465
- config={
4466
- 'upscale_factor': 'x2',
4467
- }
4514
+ upscale_factor='x2',
4468
4515
  )
4469
4516
  response.generated_images[0].image.show()
4470
4517
  # Opens my-image.png which is upscaled by a factor of 2.
@@ -4474,10 +4521,12 @@ class Models(_common.BaseModule):
4474
4521
  types.UpscaleImageParameters(
4475
4522
  model=model,
4476
4523
  image=image,
4524
+ upscale_factor=upscale_factor,
4477
4525
  config=config,
4478
4526
  )
4479
4527
 
4480
4528
  # Convert to API config.
4529
+ config = config or {}
4481
4530
  config_dct = config if isinstance(config, dict) else config.dict()
4482
4531
  api_config = types._UpscaleImageAPIConfigDict(**config_dct) # pylint: disable=protected-access
4483
4532
 
@@ -4485,7 +4534,12 @@ class Models(_common.BaseModule):
4485
4534
  api_config['mode'] = 'upscale'
4486
4535
  api_config['number_of_images'] = 1
4487
4536
 
4488
- return self._upscale_image(model=model, image=image, config=api_config)
4537
+ return self._upscale_image(
4538
+ model=model,
4539
+ image=image,
4540
+ upscale_factor=upscale_factor,
4541
+ config=api_config,
4542
+ )
4489
4543
 
4490
4544
  def list(
4491
4545
  self,
@@ -4509,17 +4563,24 @@ class Models(_common.BaseModule):
4509
4563
  types._ListModelsParameters(config=config).config
4510
4564
  or types.ListModelsConfig()
4511
4565
  )
4512
-
4513
- if self.api_client.vertexai:
4514
- # Filter for tuning jobs artifacts by labels.
4566
+ if self._api_client.vertexai:
4515
4567
  config = config.copy()
4516
- filter_value = config.filter
4517
- config.filter = (
4518
- filter_value + '&filter=labels.tune-type:*'
4519
- if filter_value
4520
- else 'labels.tune-type:*'
4521
- )
4522
-
4568
+ if config.query_base:
4569
+ http_options = (
4570
+ config.http_options if config.http_options else HttpOptionsDict()
4571
+ )
4572
+ http_options['skip_project_and_location_in_path'] = True
4573
+ config.http_options = http_options
4574
+ else:
4575
+ # Filter for tuning jobs artifacts by labels.
4576
+ filter_value = config.filter
4577
+ config.filter = (
4578
+ filter_value + '&filter=labels.tune-type:*'
4579
+ if filter_value
4580
+ else 'labels.tune-type:*'
4581
+ )
4582
+ if not config.query_base:
4583
+ config.query_base = False
4523
4584
  return Pager(
4524
4585
  'models',
4525
4586
  self._list,
@@ -4543,14 +4604,14 @@ class AsyncModels(_common.BaseModule):
4543
4604
  config=config,
4544
4605
  )
4545
4606
 
4546
- if self.api_client.vertexai:
4607
+ if self._api_client.vertexai:
4547
4608
  request_dict = _GenerateContentParameters_to_vertex(
4548
- self.api_client, parameter_model
4609
+ self._api_client, parameter_model
4549
4610
  )
4550
4611
  path = '{model}:generateContent'.format_map(request_dict.get('_url'))
4551
4612
  else:
4552
4613
  request_dict = _GenerateContentParameters_to_mldev(
4553
- self.api_client, parameter_model
4614
+ self._api_client, parameter_model
4554
4615
  )
4555
4616
  path = '{model}:generateContent'.format_map(request_dict.get('_url'))
4556
4617
  query_params = request_dict.get('_query')
@@ -4562,23 +4623,23 @@ class AsyncModels(_common.BaseModule):
4562
4623
  request_dict = _common.convert_to_dict(request_dict)
4563
4624
  request_dict = _common.apply_base64_encoding(request_dict)
4564
4625
 
4565
- response_dict = await self.api_client.async_request(
4626
+ response_dict = await self._api_client.async_request(
4566
4627
  'post', path, request_dict, http_options
4567
4628
  )
4568
4629
 
4569
- if self.api_client.vertexai:
4630
+ if self._api_client.vertexai:
4570
4631
  response_dict = _GenerateContentResponse_from_vertex(
4571
- self.api_client, response_dict
4632
+ self._api_client, response_dict
4572
4633
  )
4573
4634
  else:
4574
4635
  response_dict = _GenerateContentResponse_from_mldev(
4575
- self.api_client, response_dict
4636
+ self._api_client, response_dict
4576
4637
  )
4577
4638
 
4578
4639
  return_value = types.GenerateContentResponse._from_response(
4579
4640
  response_dict, parameter_model
4580
4641
  )
4581
- self.api_client._verify_response(return_value)
4642
+ self._api_client._verify_response(return_value)
4582
4643
  return return_value
4583
4644
 
4584
4645
  async def generate_content_stream(
@@ -4594,16 +4655,16 @@ class AsyncModels(_common.BaseModule):
4594
4655
  config=config,
4595
4656
  )
4596
4657
 
4597
- if self.api_client.vertexai:
4658
+ if self._api_client.vertexai:
4598
4659
  request_dict = _GenerateContentParameters_to_vertex(
4599
- self.api_client, parameter_model
4660
+ self._api_client, parameter_model
4600
4661
  )
4601
4662
  path = '{model}:streamGenerateContent?alt=sse'.format_map(
4602
4663
  request_dict.get('_url')
4603
4664
  )
4604
4665
  else:
4605
4666
  request_dict = _GenerateContentParameters_to_mldev(
4606
- self.api_client, parameter_model
4667
+ self._api_client, parameter_model
4607
4668
  )
4608
4669
  path = '{model}:streamGenerateContent?alt=sse'.format_map(
4609
4670
  request_dict.get('_url')
@@ -4617,23 +4678,23 @@ class AsyncModels(_common.BaseModule):
4617
4678
  request_dict = _common.convert_to_dict(request_dict)
4618
4679
  request_dict = _common.apply_base64_encoding(request_dict)
4619
4680
 
4620
- async for response_dict in self.api_client.async_request_streamed(
4681
+ async for response_dict in self._api_client.async_request_streamed(
4621
4682
  'post', path, request_dict, http_options
4622
4683
  ):
4623
4684
 
4624
- if self.api_client.vertexai:
4685
+ if self._api_client.vertexai:
4625
4686
  response_dict = _GenerateContentResponse_from_vertex(
4626
- self.api_client, response_dict
4687
+ self._api_client, response_dict
4627
4688
  )
4628
4689
  else:
4629
4690
  response_dict = _GenerateContentResponse_from_mldev(
4630
- self.api_client, response_dict
4691
+ self._api_client, response_dict
4631
4692
  )
4632
4693
 
4633
4694
  return_value = types.GenerateContentResponse._from_response(
4634
4695
  response_dict, parameter_model
4635
4696
  )
4636
- self.api_client._verify_response(return_value)
4697
+ self._api_client._verify_response(return_value)
4637
4698
  yield return_value
4638
4699
 
4639
4700
  async def embed_content(
@@ -4672,14 +4733,14 @@ class AsyncModels(_common.BaseModule):
4672
4733
  config=config,
4673
4734
  )
4674
4735
 
4675
- if self.api_client.vertexai:
4736
+ if self._api_client.vertexai:
4676
4737
  request_dict = _EmbedContentParameters_to_vertex(
4677
- self.api_client, parameter_model
4738
+ self._api_client, parameter_model
4678
4739
  )
4679
4740
  path = '{model}:predict'.format_map(request_dict.get('_url'))
4680
4741
  else:
4681
4742
  request_dict = _EmbedContentParameters_to_mldev(
4682
- self.api_client, parameter_model
4743
+ self._api_client, parameter_model
4683
4744
  )
4684
4745
  path = '{model}:batchEmbedContents'.format_map(request_dict.get('_url'))
4685
4746
  query_params = request_dict.get('_query')
@@ -4691,23 +4752,23 @@ class AsyncModels(_common.BaseModule):
4691
4752
  request_dict = _common.convert_to_dict(request_dict)
4692
4753
  request_dict = _common.apply_base64_encoding(request_dict)
4693
4754
 
4694
- response_dict = await self.api_client.async_request(
4755
+ response_dict = await self._api_client.async_request(
4695
4756
  'post', path, request_dict, http_options
4696
4757
  )
4697
4758
 
4698
- if self.api_client.vertexai:
4759
+ if self._api_client.vertexai:
4699
4760
  response_dict = _EmbedContentResponse_from_vertex(
4700
- self.api_client, response_dict
4761
+ self._api_client, response_dict
4701
4762
  )
4702
4763
  else:
4703
4764
  response_dict = _EmbedContentResponse_from_mldev(
4704
- self.api_client, response_dict
4765
+ self._api_client, response_dict
4705
4766
  )
4706
4767
 
4707
4768
  return_value = types.EmbedContentResponse._from_response(
4708
4769
  response_dict, parameter_model
4709
4770
  )
4710
- self.api_client._verify_response(return_value)
4771
+ self._api_client._verify_response(return_value)
4711
4772
  return return_value
4712
4773
 
4713
4774
  async def generate_image(
@@ -4746,14 +4807,14 @@ class AsyncModels(_common.BaseModule):
4746
4807
  config=config,
4747
4808
  )
4748
4809
 
4749
- if self.api_client.vertexai:
4810
+ if self._api_client.vertexai:
4750
4811
  request_dict = _GenerateImageParameters_to_vertex(
4751
- self.api_client, parameter_model
4812
+ self._api_client, parameter_model
4752
4813
  )
4753
4814
  path = '{model}:predict'.format_map(request_dict.get('_url'))
4754
4815
  else:
4755
4816
  request_dict = _GenerateImageParameters_to_mldev(
4756
- self.api_client, parameter_model
4817
+ self._api_client, parameter_model
4757
4818
  )
4758
4819
  path = '{model}:predict'.format_map(request_dict.get('_url'))
4759
4820
  query_params = request_dict.get('_query')
@@ -4765,23 +4826,23 @@ class AsyncModels(_common.BaseModule):
4765
4826
  request_dict = _common.convert_to_dict(request_dict)
4766
4827
  request_dict = _common.apply_base64_encoding(request_dict)
4767
4828
 
4768
- response_dict = await self.api_client.async_request(
4829
+ response_dict = await self._api_client.async_request(
4769
4830
  'post', path, request_dict, http_options
4770
4831
  )
4771
4832
 
4772
- if self.api_client.vertexai:
4833
+ if self._api_client.vertexai:
4773
4834
  response_dict = _GenerateImageResponse_from_vertex(
4774
- self.api_client, response_dict
4835
+ self._api_client, response_dict
4775
4836
  )
4776
4837
  else:
4777
4838
  response_dict = _GenerateImageResponse_from_mldev(
4778
- self.api_client, response_dict
4839
+ self._api_client, response_dict
4779
4840
  )
4780
4841
 
4781
4842
  return_value = types.GenerateImageResponse._from_response(
4782
4843
  response_dict, parameter_model
4783
4844
  )
4784
- self.api_client._verify_response(return_value)
4845
+ self._api_client._verify_response(return_value)
4785
4846
  return return_value
4786
4847
 
4787
4848
  async def edit_image(
@@ -4841,11 +4902,11 @@ class AsyncModels(_common.BaseModule):
4841
4902
  config=config,
4842
4903
  )
4843
4904
 
4844
- if not self.api_client.vertexai:
4905
+ if not self._api_client.vertexai:
4845
4906
  raise ValueError('This method is only supported in the Vertex AI client.')
4846
4907
  else:
4847
4908
  request_dict = _EditImageParameters_to_vertex(
4848
- self.api_client, parameter_model
4909
+ self._api_client, parameter_model
4849
4910
  )
4850
4911
  path = '{model}:predict'.format_map(request_dict.get('_url'))
4851
4912
 
@@ -4858,23 +4919,23 @@ class AsyncModels(_common.BaseModule):
4858
4919
  request_dict = _common.convert_to_dict(request_dict)
4859
4920
  request_dict = _common.apply_base64_encoding(request_dict)
4860
4921
 
4861
- response_dict = await self.api_client.async_request(
4922
+ response_dict = await self._api_client.async_request(
4862
4923
  'post', path, request_dict, http_options
4863
4924
  )
4864
4925
 
4865
- if self.api_client.vertexai:
4926
+ if self._api_client.vertexai:
4866
4927
  response_dict = _EditImageResponse_from_vertex(
4867
- self.api_client, response_dict
4928
+ self._api_client, response_dict
4868
4929
  )
4869
4930
  else:
4870
4931
  response_dict = _EditImageResponse_from_mldev(
4871
- self.api_client, response_dict
4932
+ self._api_client, response_dict
4872
4933
  )
4873
4934
 
4874
4935
  return_value = types.EditImageResponse._from_response(
4875
4936
  response_dict, parameter_model
4876
4937
  )
4877
- self.api_client._verify_response(return_value)
4938
+ self._api_client._verify_response(return_value)
4878
4939
  return return_value
4879
4940
 
4880
4941
  async def _upscale_image(
@@ -4882,6 +4943,7 @@ class AsyncModels(_common.BaseModule):
4882
4943
  *,
4883
4944
  model: str,
4884
4945
  image: types.ImageOrDict,
4946
+ upscale_factor: str,
4885
4947
  config: Optional[types._UpscaleImageAPIConfigOrDict] = None,
4886
4948
  ) -> types.UpscaleImageResponse:
4887
4949
  """Upscales an image.
@@ -4889,20 +4951,22 @@ class AsyncModels(_common.BaseModule):
4889
4951
  Args:
4890
4952
  model (str): The model to use.
4891
4953
  image (Image): The input image for upscaling.
4954
+ upscale_factor (str): The factor to upscale the image (x2 or x4).
4892
4955
  config (_UpscaleImageAPIConfig): Configuration for upscaling.
4893
4956
  """
4894
4957
 
4895
4958
  parameter_model = types._UpscaleImageAPIParameters(
4896
4959
  model=model,
4897
4960
  image=image,
4961
+ upscale_factor=upscale_factor,
4898
4962
  config=config,
4899
4963
  )
4900
4964
 
4901
- if not self.api_client.vertexai:
4965
+ if not self._api_client.vertexai:
4902
4966
  raise ValueError('This method is only supported in the Vertex AI client.')
4903
4967
  else:
4904
4968
  request_dict = _UpscaleImageAPIParameters_to_vertex(
4905
- self.api_client, parameter_model
4969
+ self._api_client, parameter_model
4906
4970
  )
4907
4971
  path = '{model}:predict'.format_map(request_dict.get('_url'))
4908
4972
 
@@ -4915,23 +4979,23 @@ class AsyncModels(_common.BaseModule):
4915
4979
  request_dict = _common.convert_to_dict(request_dict)
4916
4980
  request_dict = _common.apply_base64_encoding(request_dict)
4917
4981
 
4918
- response_dict = await self.api_client.async_request(
4982
+ response_dict = await self._api_client.async_request(
4919
4983
  'post', path, request_dict, http_options
4920
4984
  )
4921
4985
 
4922
- if self.api_client.vertexai:
4986
+ if self._api_client.vertexai:
4923
4987
  response_dict = _UpscaleImageResponse_from_vertex(
4924
- self.api_client, response_dict
4988
+ self._api_client, response_dict
4925
4989
  )
4926
4990
  else:
4927
4991
  response_dict = _UpscaleImageResponse_from_mldev(
4928
- self.api_client, response_dict
4992
+ self._api_client, response_dict
4929
4993
  )
4930
4994
 
4931
4995
  return_value = types.UpscaleImageResponse._from_response(
4932
4996
  response_dict, parameter_model
4933
4997
  )
4934
- self.api_client._verify_response(return_value)
4998
+ self._api_client._verify_response(return_value)
4935
4999
  return return_value
4936
5000
 
4937
5001
  async def get(self, *, model: str) -> types.Model:
@@ -4939,14 +5003,14 @@ class AsyncModels(_common.BaseModule):
4939
5003
  model=model,
4940
5004
  )
4941
5005
 
4942
- if self.api_client.vertexai:
5006
+ if self._api_client.vertexai:
4943
5007
  request_dict = _GetModelParameters_to_vertex(
4944
- self.api_client, parameter_model
5008
+ self._api_client, parameter_model
4945
5009
  )
4946
5010
  path = '{name}'.format_map(request_dict.get('_url'))
4947
5011
  else:
4948
5012
  request_dict = _GetModelParameters_to_mldev(
4949
- self.api_client, parameter_model
5013
+ self._api_client, parameter_model
4950
5014
  )
4951
5015
  path = '{name}'.format_map(request_dict.get('_url'))
4952
5016
  query_params = request_dict.get('_query')
@@ -4958,17 +5022,17 @@ class AsyncModels(_common.BaseModule):
4958
5022
  request_dict = _common.convert_to_dict(request_dict)
4959
5023
  request_dict = _common.apply_base64_encoding(request_dict)
4960
5024
 
4961
- response_dict = await self.api_client.async_request(
5025
+ response_dict = await self._api_client.async_request(
4962
5026
  'get', path, request_dict, http_options
4963
5027
  )
4964
5028
 
4965
- if self.api_client.vertexai:
4966
- response_dict = _Model_from_vertex(self.api_client, response_dict)
5029
+ if self._api_client.vertexai:
5030
+ response_dict = _Model_from_vertex(self._api_client, response_dict)
4967
5031
  else:
4968
- response_dict = _Model_from_mldev(self.api_client, response_dict)
5032
+ response_dict = _Model_from_mldev(self._api_client, response_dict)
4969
5033
 
4970
5034
  return_value = types.Model._from_response(response_dict, parameter_model)
4971
- self.api_client._verify_response(return_value)
5035
+ self._api_client._verify_response(return_value)
4972
5036
  return return_value
4973
5037
 
4974
5038
  async def _list(
@@ -4978,16 +5042,16 @@ class AsyncModels(_common.BaseModule):
4978
5042
  config=config,
4979
5043
  )
4980
5044
 
4981
- if self.api_client.vertexai:
5045
+ if self._api_client.vertexai:
4982
5046
  request_dict = _ListModelsParameters_to_vertex(
4983
- self.api_client, parameter_model
5047
+ self._api_client, parameter_model
4984
5048
  )
4985
- path = 'models'.format_map(request_dict.get('_url'))
5049
+ path = '{models_url}'.format_map(request_dict.get('_url'))
4986
5050
  else:
4987
5051
  request_dict = _ListModelsParameters_to_mldev(
4988
- self.api_client, parameter_model
5052
+ self._api_client, parameter_model
4989
5053
  )
4990
- path = 'tunedModels'.format_map(request_dict.get('_url'))
5054
+ path = '{models_url}'.format_map(request_dict.get('_url'))
4991
5055
  query_params = request_dict.get('_query')
4992
5056
  if query_params:
4993
5057
  path = f'{path}?{urlencode(query_params)}'
@@ -4997,23 +5061,23 @@ class AsyncModels(_common.BaseModule):
4997
5061
  request_dict = _common.convert_to_dict(request_dict)
4998
5062
  request_dict = _common.apply_base64_encoding(request_dict)
4999
5063
 
5000
- response_dict = await self.api_client.async_request(
5064
+ response_dict = await self._api_client.async_request(
5001
5065
  'get', path, request_dict, http_options
5002
5066
  )
5003
5067
 
5004
- if self.api_client.vertexai:
5068
+ if self._api_client.vertexai:
5005
5069
  response_dict = _ListModelsResponse_from_vertex(
5006
- self.api_client, response_dict
5070
+ self._api_client, response_dict
5007
5071
  )
5008
5072
  else:
5009
5073
  response_dict = _ListModelsResponse_from_mldev(
5010
- self.api_client, response_dict
5074
+ self._api_client, response_dict
5011
5075
  )
5012
5076
 
5013
5077
  return_value = types.ListModelsResponse._from_response(
5014
5078
  response_dict, parameter_model
5015
5079
  )
5016
- self.api_client._verify_response(return_value)
5080
+ self._api_client._verify_response(return_value)
5017
5081
  return return_value
5018
5082
 
5019
5083
  async def update(
@@ -5027,14 +5091,14 @@ class AsyncModels(_common.BaseModule):
5027
5091
  config=config,
5028
5092
  )
5029
5093
 
5030
- if self.api_client.vertexai:
5094
+ if self._api_client.vertexai:
5031
5095
  request_dict = _UpdateModelParameters_to_vertex(
5032
- self.api_client, parameter_model
5096
+ self._api_client, parameter_model
5033
5097
  )
5034
5098
  path = '{model}'.format_map(request_dict.get('_url'))
5035
5099
  else:
5036
5100
  request_dict = _UpdateModelParameters_to_mldev(
5037
- self.api_client, parameter_model
5101
+ self._api_client, parameter_model
5038
5102
  )
5039
5103
  path = '{name}'.format_map(request_dict.get('_url'))
5040
5104
  query_params = request_dict.get('_query')
@@ -5046,17 +5110,17 @@ class AsyncModels(_common.BaseModule):
5046
5110
  request_dict = _common.convert_to_dict(request_dict)
5047
5111
  request_dict = _common.apply_base64_encoding(request_dict)
5048
5112
 
5049
- response_dict = await self.api_client.async_request(
5113
+ response_dict = await self._api_client.async_request(
5050
5114
  'patch', path, request_dict, http_options
5051
5115
  )
5052
5116
 
5053
- if self.api_client.vertexai:
5054
- response_dict = _Model_from_vertex(self.api_client, response_dict)
5117
+ if self._api_client.vertexai:
5118
+ response_dict = _Model_from_vertex(self._api_client, response_dict)
5055
5119
  else:
5056
- response_dict = _Model_from_mldev(self.api_client, response_dict)
5120
+ response_dict = _Model_from_mldev(self._api_client, response_dict)
5057
5121
 
5058
5122
  return_value = types.Model._from_response(response_dict, parameter_model)
5059
- self.api_client._verify_response(return_value)
5123
+ self._api_client._verify_response(return_value)
5060
5124
  return return_value
5061
5125
 
5062
5126
  async def delete(self, *, model: str) -> types.DeleteModelResponse:
@@ -5064,14 +5128,14 @@ class AsyncModels(_common.BaseModule):
5064
5128
  model=model,
5065
5129
  )
5066
5130
 
5067
- if self.api_client.vertexai:
5131
+ if self._api_client.vertexai:
5068
5132
  request_dict = _DeleteModelParameters_to_vertex(
5069
- self.api_client, parameter_model
5133
+ self._api_client, parameter_model
5070
5134
  )
5071
5135
  path = '{name}'.format_map(request_dict.get('_url'))
5072
5136
  else:
5073
5137
  request_dict = _DeleteModelParameters_to_mldev(
5074
- self.api_client, parameter_model
5138
+ self._api_client, parameter_model
5075
5139
  )
5076
5140
  path = '{name}'.format_map(request_dict.get('_url'))
5077
5141
  query_params = request_dict.get('_query')
@@ -5083,23 +5147,23 @@ class AsyncModels(_common.BaseModule):
5083
5147
  request_dict = _common.convert_to_dict(request_dict)
5084
5148
  request_dict = _common.apply_base64_encoding(request_dict)
5085
5149
 
5086
- response_dict = await self.api_client.async_request(
5150
+ response_dict = await self._api_client.async_request(
5087
5151
  'delete', path, request_dict, http_options
5088
5152
  )
5089
5153
 
5090
- if self.api_client.vertexai:
5154
+ if self._api_client.vertexai:
5091
5155
  response_dict = _DeleteModelResponse_from_vertex(
5092
- self.api_client, response_dict
5156
+ self._api_client, response_dict
5093
5157
  )
5094
5158
  else:
5095
5159
  response_dict = _DeleteModelResponse_from_mldev(
5096
- self.api_client, response_dict
5160
+ self._api_client, response_dict
5097
5161
  )
5098
5162
 
5099
5163
  return_value = types.DeleteModelResponse._from_response(
5100
5164
  response_dict, parameter_model
5101
5165
  )
5102
- self.api_client._verify_response(return_value)
5166
+ self._api_client._verify_response(return_value)
5103
5167
  return return_value
5104
5168
 
5105
5169
  async def count_tokens(
@@ -5135,14 +5199,14 @@ class AsyncModels(_common.BaseModule):
5135
5199
  config=config,
5136
5200
  )
5137
5201
 
5138
- if self.api_client.vertexai:
5202
+ if self._api_client.vertexai:
5139
5203
  request_dict = _CountTokensParameters_to_vertex(
5140
- self.api_client, parameter_model
5204
+ self._api_client, parameter_model
5141
5205
  )
5142
5206
  path = '{model}:countTokens'.format_map(request_dict.get('_url'))
5143
5207
  else:
5144
5208
  request_dict = _CountTokensParameters_to_mldev(
5145
- self.api_client, parameter_model
5209
+ self._api_client, parameter_model
5146
5210
  )
5147
5211
  path = '{model}:countTokens'.format_map(request_dict.get('_url'))
5148
5212
  query_params = request_dict.get('_query')
@@ -5154,23 +5218,23 @@ class AsyncModels(_common.BaseModule):
5154
5218
  request_dict = _common.convert_to_dict(request_dict)
5155
5219
  request_dict = _common.apply_base64_encoding(request_dict)
5156
5220
 
5157
- response_dict = await self.api_client.async_request(
5221
+ response_dict = await self._api_client.async_request(
5158
5222
  'post', path, request_dict, http_options
5159
5223
  )
5160
5224
 
5161
- if self.api_client.vertexai:
5225
+ if self._api_client.vertexai:
5162
5226
  response_dict = _CountTokensResponse_from_vertex(
5163
- self.api_client, response_dict
5227
+ self._api_client, response_dict
5164
5228
  )
5165
5229
  else:
5166
5230
  response_dict = _CountTokensResponse_from_mldev(
5167
- self.api_client, response_dict
5231
+ self._api_client, response_dict
5168
5232
  )
5169
5233
 
5170
5234
  return_value = types.CountTokensResponse._from_response(
5171
5235
  response_dict, parameter_model
5172
5236
  )
5173
- self.api_client._verify_response(return_value)
5237
+ self._api_client._verify_response(return_value)
5174
5238
  return return_value
5175
5239
 
5176
5240
  async def compute_tokens(
@@ -5208,11 +5272,11 @@ class AsyncModels(_common.BaseModule):
5208
5272
  config=config,
5209
5273
  )
5210
5274
 
5211
- if not self.api_client.vertexai:
5275
+ if not self._api_client.vertexai:
5212
5276
  raise ValueError('This method is only supported in the Vertex AI client.')
5213
5277
  else:
5214
5278
  request_dict = _ComputeTokensParameters_to_vertex(
5215
- self.api_client, parameter_model
5279
+ self._api_client, parameter_model
5216
5280
  )
5217
5281
  path = '{model}:computeTokens'.format_map(request_dict.get('_url'))
5218
5282
 
@@ -5225,23 +5289,23 @@ class AsyncModels(_common.BaseModule):
5225
5289
  request_dict = _common.convert_to_dict(request_dict)
5226
5290
  request_dict = _common.apply_base64_encoding(request_dict)
5227
5291
 
5228
- response_dict = await self.api_client.async_request(
5292
+ response_dict = await self._api_client.async_request(
5229
5293
  'post', path, request_dict, http_options
5230
5294
  )
5231
5295
 
5232
- if self.api_client.vertexai:
5296
+ if self._api_client.vertexai:
5233
5297
  response_dict = _ComputeTokensResponse_from_vertex(
5234
- self.api_client, response_dict
5298
+ self._api_client, response_dict
5235
5299
  )
5236
5300
  else:
5237
5301
  response_dict = _ComputeTokensResponse_from_mldev(
5238
- self.api_client, response_dict
5302
+ self._api_client, response_dict
5239
5303
  )
5240
5304
 
5241
5305
  return_value = types.ComputeTokensResponse._from_response(
5242
5306
  response_dict, parameter_model
5243
5307
  )
5244
- self.api_client._verify_response(return_value)
5308
+ self._api_client._verify_response(return_value)
5245
5309
  return return_value
5246
5310
 
5247
5311
  async def generate_content(
@@ -5311,7 +5375,7 @@ class AsyncModels(_common.BaseModule):
5311
5375
  )
5312
5376
  if not func_response_parts:
5313
5377
  break
5314
- contents = t.t_contents(self.api_client, contents)
5378
+ contents = t.t_contents(self._api_client, contents)
5315
5379
  contents.append(response.candidates[0].content)
5316
5380
  contents.append(
5317
5381
  types.Content(
@@ -5349,16 +5413,24 @@ class AsyncModels(_common.BaseModule):
5349
5413
  types._ListModelsParameters(config=config).config
5350
5414
  or types.ListModelsConfig()
5351
5415
  )
5352
-
5353
- if self.api_client.vertexai:
5354
- # Filter for tuning jobs artifacts by labels.
5416
+ if self._api_client.vertexai:
5355
5417
  config = config.copy()
5356
- filter_value = config.filter
5357
- config.filter = (
5358
- filter_value + '&filter=labels.tune-type:*'
5359
- if filter_value
5360
- else 'labels.tune-type:*'
5361
- )
5418
+ if config.query_base:
5419
+ http_options = (
5420
+ config.http_options if config.http_options else HttpOptionsDict()
5421
+ )
5422
+ http_options['skip_project_and_location_in_path'] = True
5423
+ config.http_options = http_options
5424
+ else:
5425
+ # Filter for tuning jobs artifacts by labels.
5426
+ filter_value = config.filter
5427
+ config.filter = (
5428
+ filter_value + '&filter=labels.tune-type:*'
5429
+ if filter_value
5430
+ else 'labels.tune-type:*'
5431
+ )
5432
+ if not config.query_base:
5433
+ config.query_base = False
5362
5434
  return AsyncPager(
5363
5435
  'models',
5364
5436
  self._list,
@@ -5371,13 +5443,15 @@ class AsyncModels(_common.BaseModule):
5371
5443
  *,
5372
5444
  model: str,
5373
5445
  image: types.ImageOrDict,
5374
- config: types.UpscaleImageConfigOrDict,
5446
+ upscale_factor: str,
5447
+ config: Optional[types.UpscaleImageConfigOrDict] = None,
5375
5448
  ) -> types.UpscaleImageResponse:
5376
5449
  """Makes an API request to upscale a provided image.
5377
5450
 
5378
5451
  Args:
5379
5452
  model (str): The model to use.
5380
5453
  image (Image): The input image for upscaling.
5454
+ upscale_factor (str): The factor to upscale the image (x2 or x4).
5381
5455
  config (UpscaleImageConfig): Configuration for upscaling.
5382
5456
 
5383
5457
  Usage:
@@ -5388,11 +5462,9 @@ class AsyncModels(_common.BaseModule):
5388
5462
 
5389
5463
  IMAGE_FILE_PATH="my-image.png"
5390
5464
  response = await client.aio.models.upscale_image(
5391
- model = 'imagen-3.0-generate-001',
5392
- image = types.Image.from_file(IMAGE_FILE_PATH),
5393
- config = {
5394
- 'upscale_factor': 'x2',
5395
- }
5465
+ model='imagen-3.0-generate-001',
5466
+ image=types.Image.from_file(IMAGE_FILE_PATH),
5467
+ upscale_factor='x2',
5396
5468
  )
5397
5469
  response.generated_images[0].image.show()
5398
5470
  # Opens my-image.png which is upscaled by a factor of 2.
@@ -5402,10 +5474,12 @@ class AsyncModels(_common.BaseModule):
5402
5474
  types.UpscaleImageParameters(
5403
5475
  model=model,
5404
5476
  image=image,
5477
+ upscale_factor=upscale_factor,
5405
5478
  config=config,
5406
5479
  )
5407
5480
 
5408
5481
  # Convert to API config.
5482
+ config = config or {}
5409
5483
  config_dct = config if isinstance(config, dict) else config.dict()
5410
5484
  api_config = types._UpscaleImageAPIConfigDict(**config_dct) # pylint: disable=protected-access
5411
5485
 
@@ -5414,5 +5488,8 @@ class AsyncModels(_common.BaseModule):
5414
5488
  api_config['number_of_images'] = 1
5415
5489
 
5416
5490
  return await self._upscale_image(
5417
- model=model, image=image, config=api_config
5491
+ model=model,
5492
+ image=image,
5493
+ upscale_factor=upscale_factor,
5494
+ config=api_config,
5418
5495
  )